diff options
Diffstat (limited to 'Documentation/input/multi-touch-protocol.rst')
-rw-r--r-- | Documentation/input/multi-touch-protocol.rst | 411 |
1 files changed, 411 insertions, 0 deletions
diff --git a/Documentation/input/multi-touch-protocol.rst b/Documentation/input/multi-touch-protocol.rst new file mode 100644 index 000000000..6be70342e --- /dev/null +++ b/Documentation/input/multi-touch-protocol.rst @@ -0,0 +1,411 @@ +.. include:: <isonum.txt> + +========================= +Multi-touch (MT) Protocol +========================= + +:Copyright: |copy| 2009-2010 Henrik Rydberg <rydberg@euromail.se> + + +Introduction +------------ + +In order to utilize the full power of the new multi-touch and multi-user +devices, a way to report detailed data from multiple contacts, i.e., +objects in direct contact with the device surface, is needed. This +document describes the multi-touch (MT) protocol which allows kernel +drivers to report details for an arbitrary number of contacts. + +The protocol is divided into two types, depending on the capabilities of the +hardware. For devices handling anonymous contacts (type A), the protocol +describes how to send the raw data for all contacts to the receiver. For +devices capable of tracking identifiable contacts (type B), the protocol +describes how to send updates for individual contacts via event slots. + +.. note:: + MT potocol type A is obsolete, all kernel drivers have been + converted to use type B. + +Protocol Usage +-------------- + +Contact details are sent sequentially as separate packets of ABS_MT +events. Only the ABS_MT events are recognized as part of a contact +packet. Since these events are ignored by current single-touch (ST) +applications, the MT protocol can be implemented on top of the ST protocol +in an existing driver. + +Drivers for type A devices separate contact packets by calling +input_mt_sync() at the end of each packet. This generates a SYN_MT_REPORT +event, which instructs the receiver to accept the data for the current +contact and prepare to receive another. + +Drivers for type B devices separate contact packets by calling +input_mt_slot(), with a slot as argument, at the beginning of each packet. +This generates an ABS_MT_SLOT event, which instructs the receiver to +prepare for updates of the given slot. + +All drivers mark the end of a multi-touch transfer by calling the usual +input_sync() function. This instructs the receiver to act upon events +accumulated since last EV_SYN/SYN_REPORT and prepare to receive a new set +of events/packets. + +The main difference between the stateless type A protocol and the stateful +type B slot protocol lies in the usage of identifiable contacts to reduce +the amount of data sent to userspace. The slot protocol requires the use of +the ABS_MT_TRACKING_ID, either provided by the hardware or computed from +the raw data [#f5]_. + +For type A devices, the kernel driver should generate an arbitrary +enumeration of the full set of anonymous contacts currently on the +surface. The order in which the packets appear in the event stream is not +important. Event filtering and finger tracking is left to user space [#f3]_. + +For type B devices, the kernel driver should associate a slot with each +identified contact, and use that slot to propagate changes for the contact. +Creation, replacement and destruction of contacts is achieved by modifying +the ABS_MT_TRACKING_ID of the associated slot. A non-negative tracking id +is interpreted as a contact, and the value -1 denotes an unused slot. A +tracking id not previously present is considered new, and a tracking id no +longer present is considered removed. Since only changes are propagated, +the full state of each initiated contact has to reside in the receiving +end. Upon receiving an MT event, one simply updates the appropriate +attribute of the current slot. + +Some devices identify and/or track more contacts than they can report to the +driver. A driver for such a device should associate one type B slot with each +contact that is reported by the hardware. Whenever the identity of the +contact associated with a slot changes, the driver should invalidate that +slot by changing its ABS_MT_TRACKING_ID. If the hardware signals that it is +tracking more contacts than it is currently reporting, the driver should use +a BTN_TOOL_*TAP event to inform userspace of the total number of contacts +being tracked by the hardware at that moment. The driver should do this by +explicitly sending the corresponding BTN_TOOL_*TAP event and setting +use_count to false when calling input_mt_report_pointer_emulation(). +The driver should only advertise as many slots as the hardware can report. +Userspace can detect that a driver can report more total contacts than slots +by noting that the largest supported BTN_TOOL_*TAP event is larger than the +total number of type B slots reported in the absinfo for the ABS_MT_SLOT axis. + +The minimum value of the ABS_MT_SLOT axis must be 0. + +Protocol Example A +------------------ + +Here is what a minimal event sequence for a two-contact touch would look +like for a type A device:: + + ABS_MT_POSITION_X x[0] + ABS_MT_POSITION_Y y[0] + SYN_MT_REPORT + ABS_MT_POSITION_X x[1] + ABS_MT_POSITION_Y y[1] + SYN_MT_REPORT + SYN_REPORT + +The sequence after moving one of the contacts looks exactly the same; the +raw data for all present contacts are sent between every synchronization +with SYN_REPORT. + +Here is the sequence after lifting the first contact:: + + ABS_MT_POSITION_X x[1] + ABS_MT_POSITION_Y y[1] + SYN_MT_REPORT + SYN_REPORT + +And here is the sequence after lifting the second contact:: + + SYN_MT_REPORT + SYN_REPORT + +If the driver reports one of BTN_TOUCH or ABS_PRESSURE in addition to the +ABS_MT events, the last SYN_MT_REPORT event may be omitted. Otherwise, the +last SYN_REPORT will be dropped by the input core, resulting in no +zero-contact event reaching userland. + + +Protocol Example B +------------------ + +Here is what a minimal event sequence for a two-contact touch would look +like for a type B device:: + + ABS_MT_SLOT 0 + ABS_MT_TRACKING_ID 45 + ABS_MT_POSITION_X x[0] + ABS_MT_POSITION_Y y[0] + ABS_MT_SLOT 1 + ABS_MT_TRACKING_ID 46 + ABS_MT_POSITION_X x[1] + ABS_MT_POSITION_Y y[1] + SYN_REPORT + +Here is the sequence after moving contact 45 in the x direction:: + + ABS_MT_SLOT 0 + ABS_MT_POSITION_X x[0] + SYN_REPORT + +Here is the sequence after lifting the contact in slot 0:: + + ABS_MT_TRACKING_ID -1 + SYN_REPORT + +The slot being modified is already 0, so the ABS_MT_SLOT is omitted. The +message removes the association of slot 0 with contact 45, thereby +destroying contact 45 and freeing slot 0 to be reused for another contact. + +Finally, here is the sequence after lifting the second contact:: + + ABS_MT_SLOT 1 + ABS_MT_TRACKING_ID -1 + SYN_REPORT + + +Event Usage +----------- + +A set of ABS_MT events with the desired properties is defined. The events +are divided into categories, to allow for partial implementation. The +minimum set consists of ABS_MT_POSITION_X and ABS_MT_POSITION_Y, which +allows for multiple contacts to be tracked. If the device supports it, the +ABS_MT_TOUCH_MAJOR and ABS_MT_WIDTH_MAJOR may be used to provide the size +of the contact area and approaching tool, respectively. + +The TOUCH and WIDTH parameters have a geometrical interpretation; imagine +looking through a window at someone gently holding a finger against the +glass. You will see two regions, one inner region consisting of the part +of the finger actually touching the glass, and one outer region formed by +the perimeter of the finger. The center of the touching region (a) is +ABS_MT_POSITION_X/Y and the center of the approaching finger (b) is +ABS_MT_TOOL_X/Y. The touch diameter is ABS_MT_TOUCH_MAJOR and the finger +diameter is ABS_MT_WIDTH_MAJOR. Now imagine the person pressing the finger +harder against the glass. The touch region will increase, and in general, +the ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR, which is always smaller +than unity, is related to the contact pressure. For pressure-based devices, +ABS_MT_PRESSURE may be used to provide the pressure on the contact area +instead. Devices capable of contact hovering can use ABS_MT_DISTANCE to +indicate the distance between the contact and the surface. + +:: + + + Linux MT Win8 + __________ _______________________ + / \ | | + / \ | | + / ____ \ | | + / / \ \ | | + \ \ a \ \ | a | + \ \____/ \ | | + \ \ | | + \ b \ | b | + \ \ | | + \ \ | | + \ \ | | + \ / | | + \ / | | + \ / | | + \__________/ |_______________________| + + +In addition to the MAJOR parameters, the oval shape of the touch and finger +regions can be described by adding the MINOR parameters, such that MAJOR +and MINOR are the major and minor axis of an ellipse. The orientation of +the touch ellipse can be described with the ORIENTATION parameter, and the +direction of the finger ellipse is given by the vector (a - b). + +For type A devices, further specification of the touch shape is possible +via ABS_MT_BLOB_ID. + +The ABS_MT_TOOL_TYPE may be used to specify whether the touching tool is a +finger or a pen or something else. Finally, the ABS_MT_TRACKING_ID event +may be used to track identified contacts over time [#f5]_. + +In the type B protocol, ABS_MT_TOOL_TYPE and ABS_MT_TRACKING_ID are +implicitly handled by input core; drivers should instead call +input_mt_report_slot_state(). + + +Event Semantics +--------------- + +ABS_MT_TOUCH_MAJOR + The length of the major axis of the contact. The length should be given in + surface units. If the surface has an X times Y resolution, the largest + possible value of ABS_MT_TOUCH_MAJOR is sqrt(X^2 + Y^2), the diagonal [#f4]_. + +ABS_MT_TOUCH_MINOR + The length, in surface units, of the minor axis of the contact. If the + contact is circular, this event can be omitted [#f4]_. + +ABS_MT_WIDTH_MAJOR + The length, in surface units, of the major axis of the approaching + tool. This should be understood as the size of the tool itself. The + orientation of the contact and the approaching tool are assumed to be the + same [#f4]_. + +ABS_MT_WIDTH_MINOR + The length, in surface units, of the minor axis of the approaching + tool. Omit if circular [#f4]_. + + The above four values can be used to derive additional information about + the contact. The ratio ABS_MT_TOUCH_MAJOR / ABS_MT_WIDTH_MAJOR approximates + the notion of pressure. The fingers of the hand and the palm all have + different characteristic widths. + +ABS_MT_PRESSURE + The pressure, in arbitrary units, on the contact area. May be used instead + of TOUCH and WIDTH for pressure-based devices or any device with a spatial + signal intensity distribution. + +ABS_MT_DISTANCE + The distance, in surface units, between the contact and the surface. Zero + distance means the contact is touching the surface. A positive number means + the contact is hovering above the surface. + +ABS_MT_ORIENTATION + The orientation of the touching ellipse. The value should describe a signed + quarter of a revolution clockwise around the touch center. The signed value + range is arbitrary, but zero should be returned for an ellipse aligned with + the Y axis (north) of the surface, a negative value when the ellipse is + turned to the left, and a positive value when the ellipse is turned to the + right. When aligned with the X axis in the positive direction, the range + max should be returned; when aligned with the X axis in the negative + direction, the range -max should be returned. + + Touch ellipsis are symmetrical by default. For devices capable of true 360 + degree orientation, the reported orientation must exceed the range max to + indicate more than a quarter of a revolution. For an upside-down finger, + range max * 2 should be returned. + + Orientation can be omitted if the touch area is circular, or if the + information is not available in the kernel driver. Partial orientation + support is possible if the device can distinguish between the two axis, but + not (uniquely) any values in between. In such cases, the range of + ABS_MT_ORIENTATION should be [0, 1] [#f4]_. + +ABS_MT_POSITION_X + The surface X coordinate of the center of the touching ellipse. + +ABS_MT_POSITION_Y + The surface Y coordinate of the center of the touching ellipse. + +ABS_MT_TOOL_X + The surface X coordinate of the center of the approaching tool. Omit if + the device cannot distinguish between the intended touch point and the + tool itself. + +ABS_MT_TOOL_Y + The surface Y coordinate of the center of the approaching tool. Omit if the + device cannot distinguish between the intended touch point and the tool + itself. + + The four position values can be used to separate the position of the touch + from the position of the tool. If both positions are present, the major + tool axis points towards the touch point [#f1]_. Otherwise, the tool axes are + aligned with the touch axes. + +ABS_MT_TOOL_TYPE + The type of approaching tool. A lot of kernel drivers cannot distinguish + between different tool types, such as a finger or a pen. In such cases, the + event should be omitted. The protocol currently mainly supports + MT_TOOL_FINGER, MT_TOOL_PEN, and MT_TOOL_PALM [#f2]_. + For type B devices, this event is handled by input core; drivers should + instead use input_mt_report_slot_state(). A contact's ABS_MT_TOOL_TYPE may + change over time while still touching the device, because the firmware may + not be able to determine which tool is being used when it first appears. + +ABS_MT_BLOB_ID + The BLOB_ID groups several packets together into one arbitrarily shaped + contact. The sequence of points forms a polygon which defines the shape of + the contact. This is a low-level anonymous grouping for type A devices, and + should not be confused with the high-level trackingID [#f5]_. Most type A + devices do not have blob capability, so drivers can safely omit this event. + +ABS_MT_TRACKING_ID + The TRACKING_ID identifies an initiated contact throughout its life cycle + [#f5]_. The value range of the TRACKING_ID should be large enough to ensure + unique identification of a contact maintained over an extended period of + time. For type B devices, this event is handled by input core; drivers + should instead use input_mt_report_slot_state(). + + +Event Computation +----------------- + +The flora of different hardware unavoidably leads to some devices fitting +better to the MT protocol than others. To simplify and unify the mapping, +this section gives recipes for how to compute certain events. + +For devices reporting contacts as rectangular shapes, signed orientation +cannot be obtained. Assuming X and Y are the lengths of the sides of the +touching rectangle, here is a simple formula that retains the most +information possible:: + + ABS_MT_TOUCH_MAJOR := max(X, Y) + ABS_MT_TOUCH_MINOR := min(X, Y) + ABS_MT_ORIENTATION := bool(X > Y) + +The range of ABS_MT_ORIENTATION should be set to [0, 1], to indicate that +the device can distinguish between a finger along the Y axis (0) and a +finger along the X axis (1). + +For win8 devices with both T and C coordinates, the position mapping is:: + + ABS_MT_POSITION_X := T_X + ABS_MT_POSITION_Y := T_Y + ABS_MT_TOOL_X := C_X + ABS_MT_TOOL_Y := C_Y + +Unfortunately, there is not enough information to specify both the touching +ellipse and the tool ellipse, so one has to resort to approximations. One +simple scheme, which is compatible with earlier usage, is:: + + ABS_MT_TOUCH_MAJOR := min(X, Y) + ABS_MT_TOUCH_MINOR := <not used> + ABS_MT_ORIENTATION := <not used> + ABS_MT_WIDTH_MAJOR := min(X, Y) + distance(T, C) + ABS_MT_WIDTH_MINOR := min(X, Y) + +Rationale: We have no information about the orientation of the touching +ellipse, so approximate it with an inscribed circle instead. The tool +ellipse should align with the vector (T - C), so the diameter must +increase with distance(T, C). Finally, assume that the touch diameter is +equal to the tool thickness, and we arrive at the formulas above. + +Finger Tracking +--------------- + +The process of finger tracking, i.e., to assign a unique trackingID to each +initiated contact on the surface, is a Euclidian Bipartite Matching +problem. At each event synchronization, the set of actual contacts is +matched to the set of contacts from the previous synchronization. A full +implementation can be found in [#f3]_. + + +Gestures +-------- + +In the specific application of creating gesture events, the TOUCH and WIDTH +parameters can be used to, e.g., approximate finger pressure or distinguish +between index finger and thumb. With the addition of the MINOR parameters, +one can also distinguish between a sweeping finger and a pointing finger, +and with ORIENTATION, one can detect twisting of fingers. + + +Notes +----- + +In order to stay compatible with existing applications, the data reported +in a finger packet must not be recognized as single-touch events. + +For type A devices, all finger data bypasses input filtering, since +subsequent events of the same type refer to different fingers. + +.. [#f1] Also, the difference (TOOL_X - POSITION_X) can be used to model tilt. +.. [#f2] The list can of course be extended. +.. [#f3] The mtdev project: http://bitmath.org/code/mtdev/. +.. [#f4] See the section on event computation. +.. [#f5] See the section on finger tracking. |