summaryrefslogtreecommitdiffstats
path: root/Documentation/virtual/kvm/mmu.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/virtual/kvm/mmu.txt')
-rw-r--r--Documentation/virtual/kvm/mmu.txt469
1 files changed, 469 insertions, 0 deletions
diff --git a/Documentation/virtual/kvm/mmu.txt b/Documentation/virtual/kvm/mmu.txt
new file mode 100644
index 000000000..851a8abca
--- /dev/null
+++ b/Documentation/virtual/kvm/mmu.txt
@@ -0,0 +1,469 @@
+The x86 kvm shadow mmu
+======================
+
+The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible
+for presenting a standard x86 mmu to the guest, while translating guest
+physical addresses to host physical addresses.
+
+The mmu code attempts to satisfy the following requirements:
+
+- correctness: the guest should not be able to determine that it is running
+ on an emulated mmu except for timing (we attempt to comply
+ with the specification, not emulate the characteristics of
+ a particular implementation such as tlb size)
+- security: the guest must not be able to touch host memory not assigned
+ to it
+- performance: minimize the performance penalty imposed by the mmu
+- scaling: need to scale to large memory and large vcpu guests
+- hardware: support the full range of x86 virtualization hardware
+- integration: Linux memory management code must be in control of guest memory
+ so that swapping, page migration, page merging, transparent
+ hugepages, and similar features work without change
+- dirty tracking: report writes to guest memory to enable live migration
+ and framebuffer-based displays
+- footprint: keep the amount of pinned kernel memory low (most memory
+ should be shrinkable)
+- reliability: avoid multipage or GFP_ATOMIC allocations
+
+Acronyms
+========
+
+pfn host page frame number
+hpa host physical address
+hva host virtual address
+gfn guest frame number
+gpa guest physical address
+gva guest virtual address
+ngpa nested guest physical address
+ngva nested guest virtual address
+pte page table entry (used also to refer generically to paging structure
+ entries)
+gpte guest pte (referring to gfns)
+spte shadow pte (referring to pfns)
+tdp two dimensional paging (vendor neutral term for NPT and EPT)
+
+Virtual and real hardware supported
+===================================
+
+The mmu supports first-generation mmu hardware, which allows an atomic switch
+of the current paging mode and cr3 during guest entry, as well as
+two-dimensional paging (AMD's NPT and Intel's EPT). The emulated hardware
+it exposes is the traditional 2/3/4 level x86 mmu, with support for global
+pages, pae, pse, pse36, cr0.wp, and 1GB pages. Emulated hardware also
+able to expose NPT capable hardware on NPT capable hosts.
+
+Translation
+===========
+
+The primary job of the mmu is to program the processor's mmu to translate
+addresses for the guest. Different translations are required at different
+times:
+
+- when guest paging is disabled, we translate guest physical addresses to
+ host physical addresses (gpa->hpa)
+- when guest paging is enabled, we translate guest virtual addresses, to
+ guest physical addresses, to host physical addresses (gva->gpa->hpa)
+- when the guest launches a guest of its own, we translate nested guest
+ virtual addresses, to nested guest physical addresses, to guest physical
+ addresses, to host physical addresses (ngva->ngpa->gpa->hpa)
+
+The primary challenge is to encode between 1 and 3 translations into hardware
+that support only 1 (traditional) and 2 (tdp) translations. When the
+number of required translations matches the hardware, the mmu operates in
+direct mode; otherwise it operates in shadow mode (see below).
+
+Memory
+======
+
+Guest memory (gpa) is part of the user address space of the process that is
+using kvm. Userspace defines the translation between guest addresses and user
+addresses (gpa->hva); note that two gpas may alias to the same hva, but not
+vice versa.
+
+These hvas may be backed using any method available to the host: anonymous
+memory, file backed memory, and device memory. Memory might be paged by the
+host at any time.
+
+Events
+======
+
+The mmu is driven by events, some from the guest, some from the host.
+
+Guest generated events:
+- writes to control registers (especially cr3)
+- invlpg/invlpga instruction execution
+- access to missing or protected translations
+
+Host generated events:
+- changes in the gpa->hpa translation (either through gpa->hva changes or
+ through hva->hpa changes)
+- memory pressure (the shrinker)
+
+Shadow pages
+============
+
+The principal data structure is the shadow page, 'struct kvm_mmu_page'. A
+shadow page contains 512 sptes, which can be either leaf or nonleaf sptes. A
+shadow page may contain a mix of leaf and nonleaf sptes.
+
+A nonleaf spte allows the hardware mmu to reach the leaf pages and
+is not related to a translation directly. It points to other shadow pages.
+
+A leaf spte corresponds to either one or two translations encoded into
+one paging structure entry. These are always the lowest level of the
+translation stack, with optional higher level translations left to NPT/EPT.
+Leaf ptes point at guest pages.
+
+The following table shows translations encoded by leaf ptes, with higher-level
+translations in parentheses:
+
+ Non-nested guests:
+ nonpaging: gpa->hpa
+ paging: gva->gpa->hpa
+ paging, tdp: (gva->)gpa->hpa
+ Nested guests:
+ non-tdp: ngva->gpa->hpa (*)
+ tdp: (ngva->)ngpa->gpa->hpa
+
+(*) the guest hypervisor will encode the ngva->gpa translation into its page
+ tables if npt is not present
+
+Shadow pages contain the following information:
+ role.level:
+ The level in the shadow paging hierarchy that this shadow page belongs to.
+ 1=4k sptes, 2=2M sptes, 3=1G sptes, etc.
+ role.direct:
+ If set, leaf sptes reachable from this page are for a linear range.
+ Examples include real mode translation, large guest pages backed by small
+ host pages, and gpa->hpa translations when NPT or EPT is active.
+ The linear range starts at (gfn << PAGE_SHIFT) and its size is determined
+ by role.level (2MB for first level, 1GB for second level, 0.5TB for third
+ level, 256TB for fourth level)
+ If clear, this page corresponds to a guest page table denoted by the gfn
+ field.
+ role.quadrant:
+ When role.cr4_pae=0, the guest uses 32-bit gptes while the host uses 64-bit
+ sptes. That means a guest page table contains more ptes than the host,
+ so multiple shadow pages are needed to shadow one guest page.
+ For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
+ first or second 512-gpte block in the guest page table. For second-level
+ page tables, each 32-bit gpte is converted to two 64-bit sptes
+ (since each first-level guest page is shadowed by two first-level
+ shadow pages) so role.quadrant takes values in the range 0..3. Each
+ quadrant maps 1GB virtual address space.
+ role.access:
+ Inherited guest access permissions from the parent ptes in the form uwx.
+ Note execute permission is positive, not negative.
+ role.invalid:
+ The page is invalid and should not be used. It is a root page that is
+ currently pinned (by a cpu hardware register pointing to it); once it is
+ unpinned it will be destroyed.
+ role.cr4_pae:
+ Contains the value of cr4.pae for which the page is valid (e.g. whether
+ 32-bit or 64-bit gptes are in use).
+ role.nxe:
+ Contains the value of efer.nxe for which the page is valid.
+ role.cr0_wp:
+ Contains the value of cr0.wp for which the page is valid.
+ role.smep_andnot_wp:
+ Contains the value of cr4.smep && !cr0.wp for which the page is valid
+ (pages for which this is true are different from other pages; see the
+ treatment of cr0.wp=0 below).
+ role.smap_andnot_wp:
+ Contains the value of cr4.smap && !cr0.wp for which the page is valid
+ (pages for which this is true are different from other pages; see the
+ treatment of cr0.wp=0 below).
+ role.smm:
+ Is 1 if the page is valid in system management mode. This field
+ determines which of the kvm_memslots array was used to build this
+ shadow page; it is also used to go back from a struct kvm_mmu_page
+ to a memslot, through the kvm_memslots_for_spte_role macro and
+ __gfn_to_memslot.
+ role.ad_disabled:
+ Is 1 if the MMU instance cannot use A/D bits. EPT did not have A/D
+ bits before Haswell; shadow EPT page tables also cannot use A/D bits
+ if the L1 hypervisor does not enable them.
+ gfn:
+ Either the guest page table containing the translations shadowed by this
+ page, or the base page frame for linear translations. See role.direct.
+ spt:
+ A pageful of 64-bit sptes containing the translations for this page.
+ Accessed by both kvm and hardware.
+ The page pointed to by spt will have its page->private pointing back
+ at the shadow page structure.
+ sptes in spt point either at guest pages, or at lower-level shadow pages.
+ Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point
+ at __pa(sp2->spt). sp2 will point back at sp1 through parent_pte.
+ The spt array forms a DAG structure with the shadow page as a node, and
+ guest pages as leaves.
+ gfns:
+ An array of 512 guest frame numbers, one for each present pte. Used to
+ perform a reverse map from a pte to a gfn. When role.direct is set, any
+ element of this array can be calculated from the gfn field when used, in
+ this case, the array of gfns is not allocated. See role.direct and gfn.
+ root_count:
+ A counter keeping track of how many hardware registers (guest cr3 or
+ pdptrs) are now pointing at the page. While this counter is nonzero, the
+ page cannot be destroyed. See role.invalid.
+ parent_ptes:
+ The reverse mapping for the pte/ptes pointing at this page's spt. If
+ parent_ptes bit 0 is zero, only one spte points at this page and
+ parent_ptes points at this single spte, otherwise, there exists multiple
+ sptes pointing at this page and (parent_ptes & ~0x1) points at a data
+ structure with a list of parent sptes.
+ unsync:
+ If true, then the translations in this page may not match the guest's
+ translation. This is equivalent to the state of the tlb when a pte is
+ changed but before the tlb entry is flushed. Accordingly, unsync ptes
+ are synchronized when the guest executes invlpg or flushes its tlb by
+ other means. Valid for leaf pages.
+ unsync_children:
+ How many sptes in the page point at pages that are unsync (or have
+ unsynchronized children).
+ unsync_child_bitmap:
+ A bitmap indicating which sptes in spt point (directly or indirectly) at
+ pages that may be unsynchronized. Used to quickly locate all unsychronized
+ pages reachable from a given page.
+ mmu_valid_gen:
+ Generation number of the page. It is compared with kvm->arch.mmu_valid_gen
+ during hash table lookup, and used to skip invalidated shadow pages (see
+ "Zapping all pages" below.)
+ clear_spte_count:
+ Only present on 32-bit hosts, where a 64-bit spte cannot be written
+ atomically. The reader uses this while running out of the MMU lock
+ to detect in-progress updates and retry them until the writer has
+ finished the write.
+ write_flooding_count:
+ A guest may write to a page table many times, causing a lot of
+ emulations if the page needs to be write-protected (see "Synchronized
+ and unsynchronized pages" below). Leaf pages can be unsynchronized
+ so that they do not trigger frequent emulation, but this is not
+ possible for non-leafs. This field counts the number of emulations
+ since the last time the page table was actually used; if emulation
+ is triggered too frequently on this page, KVM will unmap the page
+ to avoid emulation in the future.
+
+Reverse map
+===========
+
+The mmu maintains a reverse mapping whereby all ptes mapping a page can be
+reached given its gfn. This is used, for example, when swapping out a page.
+
+Synchronized and unsynchronized pages
+=====================================
+
+The guest uses two events to synchronize its tlb and page tables: tlb flushes
+and page invalidations (invlpg).
+
+A tlb flush means that we need to synchronize all sptes reachable from the
+guest's cr3. This is expensive, so we keep all guest page tables write
+protected, and synchronize sptes to gptes when a gpte is written.
+
+A special case is when a guest page table is reachable from the current
+guest cr3. In this case, the guest is obliged to issue an invlpg instruction
+before using the translation. We take advantage of that by removing write
+protection from the guest page, and allowing the guest to modify it freely.
+We synchronize modified gptes when the guest invokes invlpg. This reduces
+the amount of emulation we have to do when the guest modifies multiple gptes,
+or when the a guest page is no longer used as a page table and is used for
+random guest data.
+
+As a side effect we have to resynchronize all reachable unsynchronized shadow
+pages on a tlb flush.
+
+
+Reaction to events
+==================
+
+- guest page fault (or npt page fault, or ept violation)
+
+This is the most complicated event. The cause of a page fault can be:
+
+ - a true guest fault (the guest translation won't allow the access) (*)
+ - access to a missing translation
+ - access to a protected translation
+ - when logging dirty pages, memory is write protected
+ - synchronized shadow pages are write protected (*)
+ - access to untranslatable memory (mmio)
+
+ (*) not applicable in direct mode
+
+Handling a page fault is performed as follows:
+
+ - if the RSV bit of the error code is set, the page fault is caused by guest
+ accessing MMIO and cached MMIO information is available.
+ - walk shadow page table
+ - check for valid generation number in the spte (see "Fast invalidation of
+ MMIO sptes" below)
+ - cache the information to vcpu->arch.mmio_gva, vcpu->arch.access and
+ vcpu->arch.mmio_gfn, and call the emulator
+ - If both P bit and R/W bit of error code are set, this could possibly
+ be handled as a "fast page fault" (fixed without taking the MMU lock). See
+ the description in Documentation/virtual/kvm/locking.txt.
+ - if needed, walk the guest page tables to determine the guest translation
+ (gva->gpa or ngpa->gpa)
+ - if permissions are insufficient, reflect the fault back to the guest
+ - determine the host page
+ - if this is an mmio request, there is no host page; cache the info to
+ vcpu->arch.mmio_gva, vcpu->arch.access and vcpu->arch.mmio_gfn
+ - walk the shadow page table to find the spte for the translation,
+ instantiating missing intermediate page tables as necessary
+ - If this is an mmio request, cache the mmio info to the spte and set some
+ reserved bit on the spte (see callers of kvm_mmu_set_mmio_spte_mask)
+ - try to unsynchronize the page
+ - if successful, we can let the guest continue and modify the gpte
+ - emulate the instruction
+ - if failed, unshadow the page and let the guest continue
+ - update any translations that were modified by the instruction
+
+invlpg handling:
+
+ - walk the shadow page hierarchy and drop affected translations
+ - try to reinstantiate the indicated translation in the hope that the
+ guest will use it in the near future
+
+Guest control register updates:
+
+- mov to cr3
+ - look up new shadow roots
+ - synchronize newly reachable shadow pages
+
+- mov to cr0/cr4/efer
+ - set up mmu context for new paging mode
+ - look up new shadow roots
+ - synchronize newly reachable shadow pages
+
+Host translation updates:
+
+ - mmu notifier called with updated hva
+ - look up affected sptes through reverse map
+ - drop (or update) translations
+
+Emulating cr0.wp
+================
+
+If tdp is not enabled, the host must keep cr0.wp=1 so page write protection
+works for the guest kernel, not guest guest userspace. When the guest
+cr0.wp=1, this does not present a problem. However when the guest cr0.wp=0,
+we cannot map the permissions for gpte.u=1, gpte.w=0 to any spte (the
+semantics require allowing any guest kernel access plus user read access).
+
+We handle this by mapping the permissions to two possible sptes, depending
+on fault type:
+
+- kernel write fault: spte.u=0, spte.w=1 (allows full kernel access,
+ disallows user access)
+- read fault: spte.u=1, spte.w=0 (allows full read access, disallows kernel
+ write access)
+
+(user write faults generate a #PF)
+
+In the first case there are two additional complications:
+- if CR4.SMEP is enabled: since we've turned the page into a kernel page,
+ the kernel may now execute it. We handle this by also setting spte.nx.
+ If we get a user fetch or read fault, we'll change spte.u=1 and
+ spte.nx=gpte.nx back. For this to work, KVM forces EFER.NX to 1 when
+ shadow paging is in use.
+- if CR4.SMAP is disabled: since the page has been changed to a kernel
+ page, it can not be reused when CR4.SMAP is enabled. We set
+ CR4.SMAP && !CR0.WP into shadow page's role to avoid this case. Note,
+ here we do not care the case that CR4.SMAP is enabled since KVM will
+ directly inject #PF to guest due to failed permission check.
+
+To prevent an spte that was converted into a kernel page with cr0.wp=0
+from being written by the kernel after cr0.wp has changed to 1, we make
+the value of cr0.wp part of the page role. This means that an spte created
+with one value of cr0.wp cannot be used when cr0.wp has a different value -
+it will simply be missed by the shadow page lookup code. A similar issue
+exists when an spte created with cr0.wp=0 and cr4.smep=0 is used after
+changing cr4.smep to 1. To avoid this, the value of !cr0.wp && cr4.smep
+is also made a part of the page role.
+
+Large pages
+===========
+
+The mmu supports all combinations of large and small guest and host pages.
+Supported page sizes include 4k, 2M, 4M, and 1G. 4M pages are treated as
+two separate 2M pages, on both guest and host, since the mmu always uses PAE
+paging.
+
+To instantiate a large spte, four constraints must be satisfied:
+
+- the spte must point to a large host page
+- the guest pte must be a large pte of at least equivalent size (if tdp is
+ enabled, there is no guest pte and this condition is satisfied)
+- if the spte will be writeable, the large page frame may not overlap any
+ write-protected pages
+- the guest page must be wholly contained by a single memory slot
+
+To check the last two conditions, the mmu maintains a ->disallow_lpage set of
+arrays for each memory slot and large page size. Every write protected page
+causes its disallow_lpage to be incremented, thus preventing instantiation of
+a large spte. The frames at the end of an unaligned memory slot have
+artificially inflated ->disallow_lpages so they can never be instantiated.
+
+Zapping all pages (page generation count)
+=========================================
+
+For the large memory guests, walking and zapping all pages is really slow
+(because there are a lot of pages), and also blocks memory accesses of
+all VCPUs because it needs to hold the MMU lock.
+
+To make it be more scalable, kvm maintains a global generation number
+which is stored in kvm->arch.mmu_valid_gen. Every shadow page stores
+the current global generation-number into sp->mmu_valid_gen when it
+is created. Pages with a mismatching generation number are "obsolete".
+
+When KVM need zap all shadow pages sptes, it just simply increases the global
+generation-number then reload root shadow pages on all vcpus. As the VCPUs
+create new shadow page tables, the old pages are not used because of the
+mismatching generation number.
+
+KVM then walks through all pages and zaps obsolete pages. While the zap
+operation needs to take the MMU lock, the lock can be released periodically
+so that the VCPUs can make progress.
+
+Fast invalidation of MMIO sptes
+===============================
+
+As mentioned in "Reaction to events" above, kvm will cache MMIO
+information in leaf sptes. When a new memslot is added or an existing
+memslot is changed, this information may become stale and needs to be
+invalidated. This also needs to hold the MMU lock while walking all
+shadow pages, and is made more scalable with a similar technique.
+
+MMIO sptes have a few spare bits, which are used to store a
+generation number. The global generation number is stored in
+kvm_memslots(kvm)->generation, and increased whenever guest memory info
+changes. This generation number is distinct from the one described in
+the previous section.
+
+When KVM finds an MMIO spte, it checks the generation number of the spte.
+If the generation number of the spte does not equal the global generation
+number, it will ignore the cached MMIO information and handle the page
+fault through the slow path.
+
+Since only 19 bits are used to store generation-number on mmio spte, all
+pages are zapped when there is an overflow.
+
+Unfortunately, a single memory access might access kvm_memslots(kvm) multiple
+times, the last one happening when the generation number is retrieved and
+stored into the MMIO spte. Thus, the MMIO spte might be created based on
+out-of-date information, but with an up-to-date generation number.
+
+To avoid this, the generation number is incremented again after synchronize_srcu
+returns; thus, the low bit of kvm_memslots(kvm)->generation is only 1 during a
+memslot update, while some SRCU readers might be using the old copy. We do not
+want to use an MMIO sptes created with an odd generation number, and we can do
+this without losing a bit in the MMIO spte. The low bit of the generation
+is not stored in MMIO spte, and presumed zero when it is extracted out of the
+spte. If KVM is unlucky and creates an MMIO spte while the low bit is 1,
+the next access to the spte will always be a cache miss.
+
+
+Further reading
+===============
+
+- NPT presentation from KVM Forum 2008
+ http://www.linux-kvm.org/images/c/c8/KvmForum2008%24kdf2008_21.pdf
+