diff options
Diffstat (limited to 'drivers/mtd/spi-nor/fsl-quadspi.c')
-rw-r--r-- | drivers/mtd/spi-nor/fsl-quadspi.c | 1224 |
1 files changed, 1224 insertions, 0 deletions
diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c new file mode 100644 index 000000000..1ff3430f8 --- /dev/null +++ b/drivers/mtd/spi-nor/fsl-quadspi.c @@ -0,0 +1,1224 @@ +/* + * Freescale QuadSPI driver. + * + * Copyright (C) 2013 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/interrupt.h> +#include <linux/errno.h> +#include <linux/platform_device.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/err.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/timer.h> +#include <linux/jiffies.h> +#include <linux/completion.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/spi-nor.h> +#include <linux/mutex.h> +#include <linux/pm_qos.h> +#include <linux/sizes.h> + +/* Controller needs driver to swap endian */ +#define QUADSPI_QUIRK_SWAP_ENDIAN (1 << 0) +/* Controller needs 4x internal clock */ +#define QUADSPI_QUIRK_4X_INT_CLK (1 << 1) +/* + * TKT253890, Controller needs driver to fill txfifo till 16 byte to + * trigger data transfer even though extern data will not transferred. + */ +#define QUADSPI_QUIRK_TKT253890 (1 << 2) +/* Controller cannot wake up from wait mode, TKT245618 */ +#define QUADSPI_QUIRK_TKT245618 (1 << 3) + +/* The registers */ +#define QUADSPI_MCR 0x00 +#define QUADSPI_MCR_RESERVED_SHIFT 16 +#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT) +#define QUADSPI_MCR_MDIS_SHIFT 14 +#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT) +#define QUADSPI_MCR_CLR_TXF_SHIFT 11 +#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT) +#define QUADSPI_MCR_CLR_RXF_SHIFT 10 +#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT) +#define QUADSPI_MCR_DDR_EN_SHIFT 7 +#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT) +#define QUADSPI_MCR_END_CFG_SHIFT 2 +#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT) +#define QUADSPI_MCR_SWRSTHD_SHIFT 1 +#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT) +#define QUADSPI_MCR_SWRSTSD_SHIFT 0 +#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT) + +#define QUADSPI_IPCR 0x08 +#define QUADSPI_IPCR_SEQID_SHIFT 24 +#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT) + +#define QUADSPI_BUF0CR 0x10 +#define QUADSPI_BUF1CR 0x14 +#define QUADSPI_BUF2CR 0x18 +#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe + +#define QUADSPI_BUF3CR 0x1c +#define QUADSPI_BUF3CR_ALLMST_SHIFT 31 +#define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT) +#define QUADSPI_BUF3CR_ADATSZ_SHIFT 8 +#define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT) + +#define QUADSPI_BFGENCR 0x20 +#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16 +#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT)) +#define QUADSPI_BFGENCR_SEQID_SHIFT 12 +#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT) + +#define QUADSPI_BUF0IND 0x30 +#define QUADSPI_BUF1IND 0x34 +#define QUADSPI_BUF2IND 0x38 +#define QUADSPI_SFAR 0x100 + +#define QUADSPI_SMPR 0x108 +#define QUADSPI_SMPR_DDRSMP_SHIFT 16 +#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT) +#define QUADSPI_SMPR_FSDLY_SHIFT 6 +#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT) +#define QUADSPI_SMPR_FSPHS_SHIFT 5 +#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT) +#define QUADSPI_SMPR_HSENA_SHIFT 0 +#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT) + +#define QUADSPI_RBSR 0x10c +#define QUADSPI_RBSR_RDBFL_SHIFT 8 +#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT) + +#define QUADSPI_RBCT 0x110 +#define QUADSPI_RBCT_WMRK_MASK 0x1F +#define QUADSPI_RBCT_RXBRD_SHIFT 8 +#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT) + +#define QUADSPI_TBSR 0x150 +#define QUADSPI_TBDR 0x154 +#define QUADSPI_SR 0x15c +#define QUADSPI_SR_IP_ACC_SHIFT 1 +#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT) +#define QUADSPI_SR_AHB_ACC_SHIFT 2 +#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT) + +#define QUADSPI_FR 0x160 +#define QUADSPI_FR_TFF_MASK 0x1 + +#define QUADSPI_SFA1AD 0x180 +#define QUADSPI_SFA2AD 0x184 +#define QUADSPI_SFB1AD 0x188 +#define QUADSPI_SFB2AD 0x18c +#define QUADSPI_RBDR 0x200 + +#define QUADSPI_LUTKEY 0x300 +#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0 + +#define QUADSPI_LCKCR 0x304 +#define QUADSPI_LCKER_LOCK 0x1 +#define QUADSPI_LCKER_UNLOCK 0x2 + +#define QUADSPI_RSER 0x164 +#define QUADSPI_RSER_TFIE (0x1 << 0) + +#define QUADSPI_LUT_BASE 0x310 + +/* + * The definition of the LUT register shows below: + * + * --------------------------------------------------- + * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | + * --------------------------------------------------- + */ +#define OPRND0_SHIFT 0 +#define PAD0_SHIFT 8 +#define INSTR0_SHIFT 10 +#define OPRND1_SHIFT 16 + +/* Instruction set for the LUT register. */ +#define LUT_STOP 0 +#define LUT_CMD 1 +#define LUT_ADDR 2 +#define LUT_DUMMY 3 +#define LUT_MODE 4 +#define LUT_MODE2 5 +#define LUT_MODE4 6 +#define LUT_FSL_READ 7 +#define LUT_FSL_WRITE 8 +#define LUT_JMP_ON_CS 9 +#define LUT_ADDR_DDR 10 +#define LUT_MODE_DDR 11 +#define LUT_MODE2_DDR 12 +#define LUT_MODE4_DDR 13 +#define LUT_FSL_READ_DDR 14 +#define LUT_FSL_WRITE_DDR 15 +#define LUT_DATA_LEARN 16 + +/* + * The PAD definitions for LUT register. + * + * The pad stands for the lines number of IO[0:3]. + * For example, the Quad read need four IO lines, so you should + * set LUT_PAD4 which means we use four IO lines. + */ +#define LUT_PAD1 0 +#define LUT_PAD2 1 +#define LUT_PAD4 2 + +/* Oprands for the LUT register. */ +#define ADDR24BIT 0x18 +#define ADDR32BIT 0x20 + +/* Macros for constructing the LUT register. */ +#define LUT0(ins, pad, opr) \ + (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \ + ((LUT_##ins) << INSTR0_SHIFT)) + +#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT) + +/* other macros for LUT register. */ +#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4) +#define QUADSPI_LUT_NUM 64 + +/* SEQID -- we can have 16 seqids at most. */ +#define SEQID_READ 0 +#define SEQID_WREN 1 +#define SEQID_WRDI 2 +#define SEQID_RDSR 3 +#define SEQID_SE 4 +#define SEQID_CHIP_ERASE 5 +#define SEQID_PP 6 +#define SEQID_RDID 7 +#define SEQID_WRSR 8 +#define SEQID_RDCR 9 +#define SEQID_EN4B 10 +#define SEQID_BRWR 11 + +#define QUADSPI_MIN_IOMAP SZ_4M + +enum fsl_qspi_devtype { + FSL_QUADSPI_VYBRID, + FSL_QUADSPI_IMX6SX, + FSL_QUADSPI_IMX7D, + FSL_QUADSPI_IMX6UL, + FSL_QUADSPI_LS1021A, + FSL_QUADSPI_LS2080A, +}; + +struct fsl_qspi_devtype_data { + enum fsl_qspi_devtype devtype; + int rxfifo; + int txfifo; + int ahb_buf_size; + int driver_data; +}; + +static const struct fsl_qspi_devtype_data vybrid_data = { + .devtype = FSL_QUADSPI_VYBRID, + .rxfifo = 128, + .txfifo = 64, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN, +}; + +static const struct fsl_qspi_devtype_data imx6sx_data = { + .devtype = FSL_QUADSPI_IMX6SX, + .rxfifo = 128, + .txfifo = 512, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_4X_INT_CLK + | QUADSPI_QUIRK_TKT245618, +}; + +static const struct fsl_qspi_devtype_data imx7d_data = { + .devtype = FSL_QUADSPI_IMX7D, + .rxfifo = 512, + .txfifo = 512, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_TKT253890 + | QUADSPI_QUIRK_4X_INT_CLK, +}; + +static const struct fsl_qspi_devtype_data imx6ul_data = { + .devtype = FSL_QUADSPI_IMX6UL, + .rxfifo = 128, + .txfifo = 512, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_TKT253890 + | QUADSPI_QUIRK_4X_INT_CLK, +}; + +static struct fsl_qspi_devtype_data ls1021a_data = { + .devtype = FSL_QUADSPI_LS1021A, + .rxfifo = 128, + .txfifo = 64, + .ahb_buf_size = 1024, + .driver_data = 0, +}; + +static const struct fsl_qspi_devtype_data ls2080a_data = { + .devtype = FSL_QUADSPI_LS2080A, + .rxfifo = 128, + .txfifo = 64, + .ahb_buf_size = 1024, + .driver_data = QUADSPI_QUIRK_TKT253890, +}; + + +#define FSL_QSPI_MAX_CHIP 4 +struct fsl_qspi { + struct spi_nor nor[FSL_QSPI_MAX_CHIP]; + void __iomem *iobase; + void __iomem *ahb_addr; + u32 memmap_phy; + u32 memmap_offs; + u32 memmap_len; + struct clk *clk, *clk_en; + struct device *dev; + struct completion c; + const struct fsl_qspi_devtype_data *devtype_data; + u32 nor_size; + u32 nor_num; + u32 clk_rate; + unsigned int chip_base_addr; /* We may support two chips. */ + bool has_second_chip; + bool big_endian; + struct mutex lock; + struct pm_qos_request pm_qos_req; +}; + +static inline int needs_swap_endian(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN; +} + +static inline int needs_4x_clock(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK; +} + +static inline int needs_fill_txfifo(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890; +} + +static inline int needs_wakeup_wait_mode(struct fsl_qspi *q) +{ + return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618; +} + +/* + * R/W functions for big- or little-endian registers: + * The qSPI controller's endian is independent of the CPU core's endian. + * So far, although the CPU core is little-endian but the qSPI have two + * versions for big-endian and little-endian. + */ +static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr) +{ + if (q->big_endian) + iowrite32be(val, addr); + else + iowrite32(val, addr); +} + +static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr) +{ + if (q->big_endian) + return ioread32be(addr); + else + return ioread32(addr); +} + +/* + * An IC bug makes us to re-arrange the 32-bit data. + * The following chips, such as IMX6SLX, have fixed this bug. + */ +static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a) +{ + return needs_swap_endian(q) ? __swab32(a) : a; +} + +static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q) +{ + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR); +} + +static inline void fsl_qspi_lock_lut(struct fsl_qspi *q) +{ + qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY); + qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR); +} + +static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id) +{ + struct fsl_qspi *q = dev_id; + u32 reg; + + /* clear interrupt */ + reg = qspi_readl(q, q->iobase + QUADSPI_FR); + qspi_writel(q, reg, q->iobase + QUADSPI_FR); + + if (reg & QUADSPI_FR_TFF_MASK) + complete(&q->c); + + dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg); + return IRQ_HANDLED; +} + +static void fsl_qspi_init_lut(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int rxfifo = q->devtype_data->rxfifo; + u32 lut_base; + int i; + + struct spi_nor *nor = &q->nor[0]; + u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT; + u8 read_op = nor->read_opcode; + u8 read_dm = nor->read_dummy; + + fsl_qspi_unlock_lut(q); + + /* Clear all the LUT table */ + for (i = 0; i < QUADSPI_LUT_NUM; i++) + qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4); + + /* Read */ + lut_base = SEQID_READ * 4; + + qspi_writel(q, LUT0(CMD, PAD1, read_op) | LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + qspi_writel(q, LUT0(DUMMY, PAD1, read_dm) | + LUT1(FSL_READ, PAD4, rxfifo), + base + QUADSPI_LUT(lut_base + 1)); + + /* Write enable */ + lut_base = SEQID_WREN * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN), + base + QUADSPI_LUT(lut_base)); + + /* Page Program */ + lut_base = SEQID_PP * 4; + + qspi_writel(q, LUT0(CMD, PAD1, nor->program_opcode) | + LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0), + base + QUADSPI_LUT(lut_base + 1)); + + /* Read Status */ + lut_base = SEQID_RDSR * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) | + LUT1(FSL_READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Erase a sector */ + lut_base = SEQID_SE * 4; + + qspi_writel(q, LUT0(CMD, PAD1, nor->erase_opcode) | + LUT1(ADDR, PAD1, addrlen), + base + QUADSPI_LUT(lut_base)); + + /* Erase the whole chip */ + lut_base = SEQID_CHIP_ERASE * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE), + base + QUADSPI_LUT(lut_base)); + + /* READ ID */ + lut_base = SEQID_RDID * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) | + LUT1(FSL_READ, PAD1, 0x8), + base + QUADSPI_LUT(lut_base)); + + /* Write Register */ + lut_base = SEQID_WRSR * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) | + LUT1(FSL_WRITE, PAD1, 0x2), + base + QUADSPI_LUT(lut_base)); + + /* Read Configuration Register */ + lut_base = SEQID_RDCR * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) | + LUT1(FSL_READ, PAD1, 0x1), + base + QUADSPI_LUT(lut_base)); + + /* Write disable */ + lut_base = SEQID_WRDI * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI), + base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Micron) */ + lut_base = SEQID_EN4B * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B), + base + QUADSPI_LUT(lut_base)); + + /* Enter 4 Byte Mode (Spansion) */ + lut_base = SEQID_BRWR * 4; + qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR), + base + QUADSPI_LUT(lut_base)); + + fsl_qspi_lock_lut(q); +} + +/* Get the SEQID for the command */ +static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd) +{ + switch (cmd) { + case SPINOR_OP_READ_1_1_4: + case SPINOR_OP_READ_1_1_4_4B: + return SEQID_READ; + case SPINOR_OP_WREN: + return SEQID_WREN; + case SPINOR_OP_WRDI: + return SEQID_WRDI; + case SPINOR_OP_RDSR: + return SEQID_RDSR; + case SPINOR_OP_SE: + return SEQID_SE; + case SPINOR_OP_CHIP_ERASE: + return SEQID_CHIP_ERASE; + case SPINOR_OP_PP: + return SEQID_PP; + case SPINOR_OP_RDID: + return SEQID_RDID; + case SPINOR_OP_WRSR: + return SEQID_WRSR; + case SPINOR_OP_RDCR: + return SEQID_RDCR; + case SPINOR_OP_EN4B: + return SEQID_EN4B; + case SPINOR_OP_BRWR: + return SEQID_BRWR; + default: + if (cmd == q->nor[0].erase_opcode) + return SEQID_SE; + dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd); + break; + } + return -EINVAL; +} + +static int +fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len) +{ + void __iomem *base = q->iobase; + int seqid; + u32 reg, reg2; + int err; + + init_completion(&q->c); + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n", + q->chip_base_addr, addr, len, cmd); + + /* save the reg */ + reg = qspi_readl(q, base + QUADSPI_MCR); + + qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr, + base + QUADSPI_SFAR); + qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS, + base + QUADSPI_RBCT); + qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR); + + do { + reg2 = qspi_readl(q, base + QUADSPI_SR); + if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) { + udelay(1); + dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2); + continue; + } + break; + } while (1); + + /* trigger the LUT now */ + seqid = fsl_qspi_get_seqid(q, cmd); + if (seqid < 0) + return seqid; + + qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, + base + QUADSPI_IPCR); + + /* Wait for the interrupt. */ + if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) { + dev_err(q->dev, + "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n", + cmd, addr, qspi_readl(q, base + QUADSPI_FR), + qspi_readl(q, base + QUADSPI_SR)); + err = -ETIMEDOUT; + } else { + err = 0; + } + + /* restore the MCR */ + qspi_writel(q, reg, base + QUADSPI_MCR); + + return err; +} + +/* Read out the data from the QUADSPI_RBDR buffer registers. */ +static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf) +{ + u32 tmp; + int i = 0; + + while (len > 0) { + tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4); + tmp = fsl_qspi_endian_xchg(q, tmp); + dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n", + q->chip_base_addr, tmp); + + if (len >= 4) { + *((u32 *)rxbuf) = tmp; + rxbuf += 4; + } else { + memcpy(rxbuf, &tmp, len); + break; + } + + len -= 4; + i++; + } +} + +/* + * If we have changed the content of the flash by writing or erasing, + * we need to invalidate the AHB buffer. If we do not do so, we may read out + * the wrong data. The spec tells us reset the AHB domain and Serial Flash + * domain at the same time. + */ +static inline void fsl_qspi_invalid(struct fsl_qspi *q) +{ + u32 reg; + + reg = qspi_readl(q, q->iobase + QUADSPI_MCR); + reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK; + qspi_writel(q, reg, q->iobase + QUADSPI_MCR); + + /* + * The minimum delay : 1 AHB + 2 SFCK clocks. + * Delay 1 us is enough. + */ + udelay(1); + + reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK); + qspi_writel(q, reg, q->iobase + QUADSPI_MCR); +} + +static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor, + u8 opcode, unsigned int to, u32 *txbuf, + unsigned count) +{ + int ret, i, j; + u32 tmp; + + dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n", + q->chip_base_addr, to, count); + + /* clear the TX FIFO. */ + tmp = qspi_readl(q, q->iobase + QUADSPI_MCR); + qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR); + + /* fill the TX data to the FIFO */ + for (j = 0, i = ((count + 3) / 4); j < i; j++) { + tmp = fsl_qspi_endian_xchg(q, *txbuf); + qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); + txbuf++; + } + + /* fill the TXFIFO upto 16 bytes for i.MX7d */ + if (needs_fill_txfifo(q)) + for (; i < 4; i++) + qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR); + + /* Trigger it */ + ret = fsl_qspi_runcmd(q, opcode, to, count); + + if (ret == 0) + return count; + + return ret; +} + +static void fsl_qspi_set_map_addr(struct fsl_qspi *q) +{ + int nor_size = q->nor_size; + void __iomem *base = q->iobase; + + qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD); + qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD); + qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD); + qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD); +} + +/* + * There are two different ways to read out the data from the flash: + * the "IP Command Read" and the "AHB Command Read". + * + * The IC guy suggests we use the "AHB Command Read" which is faster + * then the "IP Command Read". (What's more is that there is a bug in + * the "IP Command Read" in the Vybrid.) + * + * After we set up the registers for the "AHB Command Read", we can use + * the memcpy to read the data directly. A "missed" access to the buffer + * causes the controller to clear the buffer, and use the sequence pointed + * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash. + */ +static int fsl_qspi_init_ahb_read(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + int seqid; + + /* AHB configuration for access buffer 0/1/2 .*/ + qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR); + qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR); + qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR); + /* + * Set ADATSZ with the maximum AHB buffer size to improve the + * read performance. + */ + qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK | + ((q->devtype_data->ahb_buf_size / 8) + << QUADSPI_BUF3CR_ADATSZ_SHIFT), + base + QUADSPI_BUF3CR); + + /* We only use the buffer3 */ + qspi_writel(q, 0, base + QUADSPI_BUF0IND); + qspi_writel(q, 0, base + QUADSPI_BUF1IND); + qspi_writel(q, 0, base + QUADSPI_BUF2IND); + + /* Set the default lut sequence for AHB Read. */ + seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode); + if (seqid < 0) + return seqid; + + qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT, + q->iobase + QUADSPI_BFGENCR); + + return 0; +} + +/* This function was used to prepare and enable QSPI clock */ +static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q) +{ + int ret; + + ret = clk_prepare_enable(q->clk_en); + if (ret) + return ret; + + ret = clk_prepare_enable(q->clk); + if (ret) { + clk_disable_unprepare(q->clk_en); + return ret; + } + + if (needs_wakeup_wait_mode(q)) + pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0); + + return 0; +} + +/* This function was used to disable and unprepare QSPI clock */ +static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q) +{ + if (needs_wakeup_wait_mode(q)) + pm_qos_remove_request(&q->pm_qos_req); + + clk_disable_unprepare(q->clk); + clk_disable_unprepare(q->clk_en); + +} + +/* We use this function to do some basic init for spi_nor_scan(). */ +static int fsl_qspi_nor_setup(struct fsl_qspi *q) +{ + void __iomem *base = q->iobase; + u32 reg; + int ret; + + /* disable and unprepare clock to avoid glitch pass to controller */ + fsl_qspi_clk_disable_unprep(q); + + /* the default frequency, we will change it in the future. */ + ret = clk_set_rate(q->clk, 66000000); + if (ret) + return ret; + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + + /* Reset the module */ + qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK, + base + QUADSPI_MCR); + udelay(1); + + /* Init the LUT table. */ + fsl_qspi_init_lut(q); + + /* Disable the module */ + qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK, + base + QUADSPI_MCR); + + reg = qspi_readl(q, base + QUADSPI_SMPR); + qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK + | QUADSPI_SMPR_FSPHS_MASK + | QUADSPI_SMPR_HSENA_MASK + | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR); + + /* Enable the module */ + qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK, + base + QUADSPI_MCR); + + /* clear all interrupt status */ + qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR); + + /* enable the interrupt */ + qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER); + + return 0; +} + +static int fsl_qspi_nor_setup_last(struct fsl_qspi *q) +{ + unsigned long rate = q->clk_rate; + int ret; + + if (needs_4x_clock(q)) + rate *= 4; + + /* disable and unprepare clock to avoid glitch pass to controller */ + fsl_qspi_clk_disable_unprep(q); + + ret = clk_set_rate(q->clk, rate); + if (ret) + return ret; + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + + /* Init the LUT table again. */ + fsl_qspi_init_lut(q); + + /* Init for AHB read */ + return fsl_qspi_init_ahb_read(q); +} + +static const struct of_device_id fsl_qspi_dt_ids[] = { + { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, }, + { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, }, + { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, }, + { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, }, + { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, }, + { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids); + +static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor) +{ + q->chip_base_addr = q->nor_size * (nor - q->nor); +} + +static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + int ret; + struct fsl_qspi *q = nor->priv; + + ret = fsl_qspi_runcmd(q, opcode, 0, len); + if (ret) + return ret; + + fsl_qspi_read_data(q, len, buf); + return 0; +} + +static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + if (!buf) { + ret = fsl_qspi_runcmd(q, opcode, 0, 1); + if (ret) + return ret; + + if (opcode == SPINOR_OP_CHIP_ERASE) + fsl_qspi_invalid(q); + + } else if (len > 0) { + ret = fsl_qspi_nor_write(q, nor, opcode, 0, + (u32 *)buf, len); + if (ret > 0) + return 0; + } else { + dev_err(q->dev, "invalid cmd %d\n", opcode); + ret = -EINVAL; + } + + return ret; +} + +static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to, + size_t len, const u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to, + (u32 *)buf, len); + + /* invalid the data in the AHB buffer. */ + fsl_qspi_invalid(q); + return ret; +} + +static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from, + size_t len, u_char *buf) +{ + struct fsl_qspi *q = nor->priv; + u8 cmd = nor->read_opcode; + + /* if necessary,ioremap buffer before AHB read, */ + if (!q->ahb_addr) { + q->memmap_offs = q->chip_base_addr + from; + q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; + + q->ahb_addr = ioremap_nocache( + q->memmap_phy + q->memmap_offs, + q->memmap_len); + if (!q->ahb_addr) { + dev_err(q->dev, "ioremap failed\n"); + return -ENOMEM; + } + /* ioremap if the data requested is out of range */ + } else if (q->chip_base_addr + from < q->memmap_offs + || q->chip_base_addr + from + len > + q->memmap_offs + q->memmap_len) { + iounmap(q->ahb_addr); + + q->memmap_offs = q->chip_base_addr + from; + q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP; + q->ahb_addr = ioremap_nocache( + q->memmap_phy + q->memmap_offs, + q->memmap_len); + if (!q->ahb_addr) { + dev_err(q->dev, "ioremap failed\n"); + return -ENOMEM; + } + } + + dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n", + cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, + len); + + /* Read out the data directly from the AHB buffer.*/ + memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs, + len); + + return len; +} + +static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n", + nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs); + + ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0); + if (ret) + return ret; + + fsl_qspi_invalid(q); + return 0; +} + +static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + int ret; + + mutex_lock(&q->lock); + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + goto err_mutex; + + fsl_qspi_set_base_addr(q, nor); + return 0; + +err_mutex: + mutex_unlock(&q->lock); + return ret; +} + +static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops) +{ + struct fsl_qspi *q = nor->priv; + + fsl_qspi_clk_disable_unprep(q); + mutex_unlock(&q->lock); +} + +static int fsl_qspi_probe(struct platform_device *pdev) +{ + const struct spi_nor_hwcaps hwcaps = { + .mask = SNOR_HWCAPS_READ_1_1_4 | + SNOR_HWCAPS_PP, + }; + struct device_node *np = pdev->dev.of_node; + struct device *dev = &pdev->dev; + struct fsl_qspi *q; + struct resource *res; + struct spi_nor *nor; + struct mtd_info *mtd; + int ret, i = 0; + + q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL); + if (!q) + return -ENOMEM; + + q->nor_num = of_get_child_count(dev->of_node); + if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP) + return -ENODEV; + + q->dev = dev; + q->devtype_data = of_device_get_match_data(dev); + if (!q->devtype_data) + return -ENODEV; + platform_set_drvdata(pdev, q); + + /* find the resources */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI"); + q->iobase = devm_ioremap_resource(dev, res); + if (IS_ERR(q->iobase)) + return PTR_ERR(q->iobase); + + q->big_endian = of_property_read_bool(np, "big-endian"); + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, + "QuadSPI-memory"); + if (!devm_request_mem_region(dev, res->start, resource_size(res), + res->name)) { + dev_err(dev, "can't request region for resource %pR\n", res); + return -EBUSY; + } + + q->memmap_phy = res->start; + + /* find the clocks */ + q->clk_en = devm_clk_get(dev, "qspi_en"); + if (IS_ERR(q->clk_en)) + return PTR_ERR(q->clk_en); + + q->clk = devm_clk_get(dev, "qspi"); + if (IS_ERR(q->clk)) + return PTR_ERR(q->clk); + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) { + dev_err(dev, "can not enable the clock\n"); + goto clk_failed; + } + + /* find the irq */ + ret = platform_get_irq(pdev, 0); + if (ret < 0) { + dev_err(dev, "failed to get the irq: %d\n", ret); + goto irq_failed; + } + + ret = devm_request_irq(dev, ret, + fsl_qspi_irq_handler, 0, pdev->name, q); + if (ret) { + dev_err(dev, "failed to request irq: %d\n", ret); + goto irq_failed; + } + + ret = fsl_qspi_nor_setup(q); + if (ret) + goto irq_failed; + + if (of_get_property(np, "fsl,qspi-has-second-chip", NULL)) + q->has_second_chip = true; + + mutex_init(&q->lock); + + /* iterate the subnodes. */ + for_each_available_child_of_node(dev->of_node, np) { + /* skip the holes */ + if (!q->has_second_chip) + i *= 2; + + nor = &q->nor[i]; + mtd = &nor->mtd; + + nor->dev = dev; + spi_nor_set_flash_node(nor, np); + nor->priv = q; + + if (q->nor_num > 1 && !mtd->name) { + int spiflash_idx; + + ret = of_property_read_u32(np, "reg", &spiflash_idx); + if (!ret) { + mtd->name = devm_kasprintf(dev, GFP_KERNEL, + "%s-%d", + dev_name(dev), + spiflash_idx); + if (!mtd->name) { + ret = -ENOMEM; + goto mutex_failed; + } + } else { + dev_warn(dev, "reg property is missing\n"); + } + } + + /* fill the hooks */ + nor->read_reg = fsl_qspi_read_reg; + nor->write_reg = fsl_qspi_write_reg; + nor->read = fsl_qspi_read; + nor->write = fsl_qspi_write; + nor->erase = fsl_qspi_erase; + + nor->prepare = fsl_qspi_prep; + nor->unprepare = fsl_qspi_unprep; + + ret = of_property_read_u32(np, "spi-max-frequency", + &q->clk_rate); + if (ret < 0) + goto mutex_failed; + + /* set the chip address for READID */ + fsl_qspi_set_base_addr(q, nor); + + ret = spi_nor_scan(nor, NULL, &hwcaps); + if (ret) + goto mutex_failed; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto mutex_failed; + + /* Set the correct NOR size now. */ + if (q->nor_size == 0) { + q->nor_size = mtd->size; + + /* Map the SPI NOR to accessiable address */ + fsl_qspi_set_map_addr(q); + } + + /* + * The TX FIFO is 64 bytes in the Vybrid, but the Page Program + * may writes 265 bytes per time. The write is working in the + * unit of the TX FIFO, not in the unit of the SPI NOR's page + * size. + * + * So shrink the spi_nor->page_size if it is larger then the + * TX FIFO. + */ + if (nor->page_size > q->devtype_data->txfifo) + nor->page_size = q->devtype_data->txfifo; + + i++; + } + + /* finish the rest init. */ + ret = fsl_qspi_nor_setup_last(q); + if (ret) + goto last_init_failed; + + fsl_qspi_clk_disable_unprep(q); + return 0; + +last_init_failed: + for (i = 0; i < q->nor_num; i++) { + /* skip the holes */ + if (!q->has_second_chip) + i *= 2; + mtd_device_unregister(&q->nor[i].mtd); + } +mutex_failed: + mutex_destroy(&q->lock); +irq_failed: + fsl_qspi_clk_disable_unprep(q); +clk_failed: + dev_err(dev, "Freescale QuadSPI probe failed\n"); + return ret; +} + +static int fsl_qspi_remove(struct platform_device *pdev) +{ + struct fsl_qspi *q = platform_get_drvdata(pdev); + int i; + + for (i = 0; i < q->nor_num; i++) { + /* skip the holes */ + if (!q->has_second_chip) + i *= 2; + mtd_device_unregister(&q->nor[i].mtd); + } + + /* disable the hardware */ + qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR); + qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER); + + mutex_destroy(&q->lock); + + if (q->ahb_addr) + iounmap(q->ahb_addr); + + return 0; +} + +static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state) +{ + return 0; +} + +static int fsl_qspi_resume(struct platform_device *pdev) +{ + int ret; + struct fsl_qspi *q = platform_get_drvdata(pdev); + + ret = fsl_qspi_clk_prep_enable(q); + if (ret) + return ret; + + fsl_qspi_nor_setup(q); + fsl_qspi_set_map_addr(q); + fsl_qspi_nor_setup_last(q); + + fsl_qspi_clk_disable_unprep(q); + + return 0; +} + +static struct platform_driver fsl_qspi_driver = { + .driver = { + .name = "fsl-quadspi", + .of_match_table = fsl_qspi_dt_ids, + }, + .probe = fsl_qspi_probe, + .remove = fsl_qspi_remove, + .suspend = fsl_qspi_suspend, + .resume = fsl_qspi_resume, +}; +module_platform_driver(fsl_qspi_driver); + +MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver"); +MODULE_AUTHOR("Freescale Semiconductor Inc."); +MODULE_LICENSE("GPL v2"); |