diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e100.c')
-rw-r--r-- | drivers/net/ethernet/intel/e100.c | 3188 |
1 files changed, 3188 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e100.c b/drivers/net/ethernet/intel/e100.c new file mode 100644 index 000000000..ba5b515c8 --- /dev/null +++ b/drivers/net/ethernet/intel/e100.c @@ -0,0 +1,3188 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright(c) 1999 - 2006 Intel Corporation. */ + +/* + * e100.c: Intel(R) PRO/100 ethernet driver + * + * (Re)written 2003 by scott.feldman@intel.com. Based loosely on + * original e100 driver, but better described as a munging of + * e100, e1000, eepro100, tg3, 8139cp, and other drivers. + * + * References: + * Intel 8255x 10/100 Mbps Ethernet Controller Family, + * Open Source Software Developers Manual, + * http://sourceforge.net/projects/e1000 + * + * + * Theory of Operation + * + * I. General + * + * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet + * controller family, which includes the 82557, 82558, 82559, 82550, + * 82551, and 82562 devices. 82558 and greater controllers + * integrate the Intel 82555 PHY. The controllers are used in + * server and client network interface cards, as well as in + * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx + * configurations. 8255x supports a 32-bit linear addressing + * mode and operates at 33Mhz PCI clock rate. + * + * II. Driver Operation + * + * Memory-mapped mode is used exclusively to access the device's + * shared-memory structure, the Control/Status Registers (CSR). All + * setup, configuration, and control of the device, including queuing + * of Tx, Rx, and configuration commands is through the CSR. + * cmd_lock serializes accesses to the CSR command register. cb_lock + * protects the shared Command Block List (CBL). + * + * 8255x is highly MII-compliant and all access to the PHY go + * through the Management Data Interface (MDI). Consequently, the + * driver leverages the mii.c library shared with other MII-compliant + * devices. + * + * Big- and Little-Endian byte order as well as 32- and 64-bit + * archs are supported. Weak-ordered memory and non-cache-coherent + * archs are supported. + * + * III. Transmit + * + * A Tx skb is mapped and hangs off of a TCB. TCBs are linked + * together in a fixed-size ring (CBL) thus forming the flexible mode + * memory structure. A TCB marked with the suspend-bit indicates + * the end of the ring. The last TCB processed suspends the + * controller, and the controller can be restarted by issue a CU + * resume command to continue from the suspend point, or a CU start + * command to start at a given position in the ring. + * + * Non-Tx commands (config, multicast setup, etc) are linked + * into the CBL ring along with Tx commands. The common structure + * used for both Tx and non-Tx commands is the Command Block (CB). + * + * cb_to_use is the next CB to use for queuing a command; cb_to_clean + * is the next CB to check for completion; cb_to_send is the first + * CB to start on in case of a previous failure to resume. CB clean + * up happens in interrupt context in response to a CU interrupt. + * cbs_avail keeps track of number of free CB resources available. + * + * Hardware padding of short packets to minimum packet size is + * enabled. 82557 pads with 7Eh, while the later controllers pad + * with 00h. + * + * IV. Receive + * + * The Receive Frame Area (RFA) comprises a ring of Receive Frame + * Descriptors (RFD) + data buffer, thus forming the simplified mode + * memory structure. Rx skbs are allocated to contain both the RFD + * and the data buffer, but the RFD is pulled off before the skb is + * indicated. The data buffer is aligned such that encapsulated + * protocol headers are u32-aligned. Since the RFD is part of the + * mapped shared memory, and completion status is contained within + * the RFD, the RFD must be dma_sync'ed to maintain a consistent + * view from software and hardware. + * + * In order to keep updates to the RFD link field from colliding with + * hardware writes to mark packets complete, we use the feature that + * hardware will not write to a size 0 descriptor and mark the previous + * packet as end-of-list (EL). After updating the link, we remove EL + * and only then restore the size such that hardware may use the + * previous-to-end RFD. + * + * Under typical operation, the receive unit (RU) is start once, + * and the controller happily fills RFDs as frames arrive. If + * replacement RFDs cannot be allocated, or the RU goes non-active, + * the RU must be restarted. Frame arrival generates an interrupt, + * and Rx indication and re-allocation happen in the same context, + * therefore no locking is required. A software-generated interrupt + * is generated from the watchdog to recover from a failed allocation + * scenario where all Rx resources have been indicated and none re- + * placed. + * + * V. Miscellaneous + * + * VLAN offloading of tagging, stripping and filtering is not + * supported, but driver will accommodate the extra 4-byte VLAN tag + * for processing by upper layers. Tx/Rx Checksum offloading is not + * supported. Tx Scatter/Gather is not supported. Jumbo Frames is + * not supported (hardware limitation). + * + * MagicPacket(tm) WoL support is enabled/disabled via ethtool. + * + * Thanks to JC (jchapman@katalix.com) for helping with + * testing/troubleshooting the development driver. + * + * TODO: + * o several entry points race with dev->close + * o check for tx-no-resources/stop Q races with tx clean/wake Q + * + * FIXES: + * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> + * - Stratus87247: protect MDI control register manipulations + * 2009/06/01 - Andreas Mohr <andi at lisas dot de> + * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/hardirq.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/pci.h> +#include <linux/dma-mapping.h> +#include <linux/dmapool.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/mii.h> +#include <linux/if_vlan.h> +#include <linux/skbuff.h> +#include <linux/ethtool.h> +#include <linux/string.h> +#include <linux/firmware.h> +#include <linux/rtnetlink.h> +#include <asm/unaligned.h> + + +#define DRV_NAME "e100" +#define DRV_EXT "-NAPI" +#define DRV_VERSION "3.5.24-k2"DRV_EXT +#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" +#define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation" + +#define E100_WATCHDOG_PERIOD (2 * HZ) +#define E100_NAPI_WEIGHT 16 + +#define FIRMWARE_D101M "e100/d101m_ucode.bin" +#define FIRMWARE_D101S "e100/d101s_ucode.bin" +#define FIRMWARE_D102E "e100/d102e_ucode.bin" + +MODULE_DESCRIPTION(DRV_DESCRIPTION); +MODULE_AUTHOR(DRV_COPYRIGHT); +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); +MODULE_FIRMWARE(FIRMWARE_D101M); +MODULE_FIRMWARE(FIRMWARE_D101S); +MODULE_FIRMWARE(FIRMWARE_D102E); + +static int debug = 3; +static int eeprom_bad_csum_allow = 0; +static int use_io = 0; +module_param(debug, int, 0); +module_param(eeprom_bad_csum_allow, int, 0); +module_param(use_io, int, 0); +MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); +MODULE_PARM_DESC(eeprom_bad_csum_allow, "Allow bad eeprom checksums"); +MODULE_PARM_DESC(use_io, "Force use of i/o access mode"); + +#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ + PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ + PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } +static const struct pci_device_id e100_id_table[] = { + INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), + INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), + INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), + INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), + INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), + INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), + INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), + INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), + INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), + INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), + INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), + INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), + INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), + INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), + INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), + INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), + INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), + INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), + INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), + INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), + INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), + INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), + INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), + INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7), + INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), + INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), + INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), + INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), + INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), + INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), + { 0, } +}; +MODULE_DEVICE_TABLE(pci, e100_id_table); + +enum mac { + mac_82557_D100_A = 0, + mac_82557_D100_B = 1, + mac_82557_D100_C = 2, + mac_82558_D101_A4 = 4, + mac_82558_D101_B0 = 5, + mac_82559_D101M = 8, + mac_82559_D101S = 9, + mac_82550_D102 = 12, + mac_82550_D102_C = 13, + mac_82551_E = 14, + mac_82551_F = 15, + mac_82551_10 = 16, + mac_unknown = 0xFF, +}; + +enum phy { + phy_100a = 0x000003E0, + phy_100c = 0x035002A8, + phy_82555_tx = 0x015002A8, + phy_nsc_tx = 0x5C002000, + phy_82562_et = 0x033002A8, + phy_82562_em = 0x032002A8, + phy_82562_ek = 0x031002A8, + phy_82562_eh = 0x017002A8, + phy_82552_v = 0xd061004d, + phy_unknown = 0xFFFFFFFF, +}; + +/* CSR (Control/Status Registers) */ +struct csr { + struct { + u8 status; + u8 stat_ack; + u8 cmd_lo; + u8 cmd_hi; + u32 gen_ptr; + } scb; + u32 port; + u16 flash_ctrl; + u8 eeprom_ctrl_lo; + u8 eeprom_ctrl_hi; + u32 mdi_ctrl; + u32 rx_dma_count; +}; + +enum scb_status { + rus_no_res = 0x08, + rus_ready = 0x10, + rus_mask = 0x3C, +}; + +enum ru_state { + RU_SUSPENDED = 0, + RU_RUNNING = 1, + RU_UNINITIALIZED = -1, +}; + +enum scb_stat_ack { + stat_ack_not_ours = 0x00, + stat_ack_sw_gen = 0x04, + stat_ack_rnr = 0x10, + stat_ack_cu_idle = 0x20, + stat_ack_frame_rx = 0x40, + stat_ack_cu_cmd_done = 0x80, + stat_ack_not_present = 0xFF, + stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), + stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), +}; + +enum scb_cmd_hi { + irq_mask_none = 0x00, + irq_mask_all = 0x01, + irq_sw_gen = 0x02, +}; + +enum scb_cmd_lo { + cuc_nop = 0x00, + ruc_start = 0x01, + ruc_load_base = 0x06, + cuc_start = 0x10, + cuc_resume = 0x20, + cuc_dump_addr = 0x40, + cuc_dump_stats = 0x50, + cuc_load_base = 0x60, + cuc_dump_reset = 0x70, +}; + +enum cuc_dump { + cuc_dump_complete = 0x0000A005, + cuc_dump_reset_complete = 0x0000A007, +}; + +enum port { + software_reset = 0x0000, + selftest = 0x0001, + selective_reset = 0x0002, +}; + +enum eeprom_ctrl_lo { + eesk = 0x01, + eecs = 0x02, + eedi = 0x04, + eedo = 0x08, +}; + +enum mdi_ctrl { + mdi_write = 0x04000000, + mdi_read = 0x08000000, + mdi_ready = 0x10000000, +}; + +enum eeprom_op { + op_write = 0x05, + op_read = 0x06, + op_ewds = 0x10, + op_ewen = 0x13, +}; + +enum eeprom_offsets { + eeprom_cnfg_mdix = 0x03, + eeprom_phy_iface = 0x06, + eeprom_id = 0x0A, + eeprom_config_asf = 0x0D, + eeprom_smbus_addr = 0x90, +}; + +enum eeprom_cnfg_mdix { + eeprom_mdix_enabled = 0x0080, +}; + +enum eeprom_phy_iface { + NoSuchPhy = 0, + I82553AB, + I82553C, + I82503, + DP83840, + S80C240, + S80C24, + I82555, + DP83840A = 10, +}; + +enum eeprom_id { + eeprom_id_wol = 0x0020, +}; + +enum eeprom_config_asf { + eeprom_asf = 0x8000, + eeprom_gcl = 0x4000, +}; + +enum cb_status { + cb_complete = 0x8000, + cb_ok = 0x2000, +}; + +/** + * cb_command - Command Block flags + * @cb_tx_nc: 0: controller does CRC (normal), 1: CRC from skb memory + */ +enum cb_command { + cb_nop = 0x0000, + cb_iaaddr = 0x0001, + cb_config = 0x0002, + cb_multi = 0x0003, + cb_tx = 0x0004, + cb_ucode = 0x0005, + cb_dump = 0x0006, + cb_tx_sf = 0x0008, + cb_tx_nc = 0x0010, + cb_cid = 0x1f00, + cb_i = 0x2000, + cb_s = 0x4000, + cb_el = 0x8000, +}; + +struct rfd { + __le16 status; + __le16 command; + __le32 link; + __le32 rbd; + __le16 actual_size; + __le16 size; +}; + +struct rx { + struct rx *next, *prev; + struct sk_buff *skb; + dma_addr_t dma_addr; +}; + +#if defined(__BIG_ENDIAN_BITFIELD) +#define X(a,b) b,a +#else +#define X(a,b) a,b +#endif +struct config { +/*0*/ u8 X(byte_count:6, pad0:2); +/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); +/*2*/ u8 adaptive_ifs; +/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), + term_write_cache_line:1), pad3:4); +/*4*/ u8 X(rx_dma_max_count:7, pad4:1); +/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); +/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), + tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), + rx_save_overruns : 1), rx_save_bad_frames : 1); +/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), + pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), + tx_dynamic_tbd:1); +/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); +/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), + link_status_wake:1), arp_wake:1), mcmatch_wake:1); +/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), + loopback:2); +/*11*/ u8 X(linear_priority:3, pad11:5); +/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); +/*13*/ u8 ip_addr_lo; +/*14*/ u8 ip_addr_hi; +/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), + wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), + pad15_2:1), crs_or_cdt:1); +/*16*/ u8 fc_delay_lo; +/*17*/ u8 fc_delay_hi; +/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), + rx_long_ok:1), fc_priority_threshold:3), pad18:1); +/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), + fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), + full_duplex_force:1), full_duplex_pin:1); +/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); +/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); +/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); + u8 pad_d102[9]; +}; + +#define E100_MAX_MULTICAST_ADDRS 64 +struct multi { + __le16 count; + u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; +}; + +/* Important: keep total struct u32-aligned */ +#define UCODE_SIZE 134 +struct cb { + __le16 status; + __le16 command; + __le32 link; + union { + u8 iaaddr[ETH_ALEN]; + __le32 ucode[UCODE_SIZE]; + struct config config; + struct multi multi; + struct { + u32 tbd_array; + u16 tcb_byte_count; + u8 threshold; + u8 tbd_count; + struct { + __le32 buf_addr; + __le16 size; + u16 eol; + } tbd; + } tcb; + __le32 dump_buffer_addr; + } u; + struct cb *next, *prev; + dma_addr_t dma_addr; + struct sk_buff *skb; +}; + +enum loopback { + lb_none = 0, lb_mac = 1, lb_phy = 3, +}; + +struct stats { + __le32 tx_good_frames, tx_max_collisions, tx_late_collisions, + tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, + tx_multiple_collisions, tx_total_collisions; + __le32 rx_good_frames, rx_crc_errors, rx_alignment_errors, + rx_resource_errors, rx_overrun_errors, rx_cdt_errors, + rx_short_frame_errors; + __le32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; + __le16 xmt_tco_frames, rcv_tco_frames; + __le32 complete; +}; + +struct mem { + struct { + u32 signature; + u32 result; + } selftest; + struct stats stats; + u8 dump_buf[596]; +}; + +struct param_range { + u32 min; + u32 max; + u32 count; +}; + +struct params { + struct param_range rfds; + struct param_range cbs; +}; + +struct nic { + /* Begin: frequently used values: keep adjacent for cache effect */ + u32 msg_enable ____cacheline_aligned; + struct net_device *netdev; + struct pci_dev *pdev; + u16 (*mdio_ctrl)(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data); + + struct rx *rxs ____cacheline_aligned; + struct rx *rx_to_use; + struct rx *rx_to_clean; + struct rfd blank_rfd; + enum ru_state ru_running; + + spinlock_t cb_lock ____cacheline_aligned; + spinlock_t cmd_lock; + struct csr __iomem *csr; + enum scb_cmd_lo cuc_cmd; + unsigned int cbs_avail; + struct napi_struct napi; + struct cb *cbs; + struct cb *cb_to_use; + struct cb *cb_to_send; + struct cb *cb_to_clean; + __le16 tx_command; + /* End: frequently used values: keep adjacent for cache effect */ + + enum { + ich = (1 << 0), + promiscuous = (1 << 1), + multicast_all = (1 << 2), + wol_magic = (1 << 3), + ich_10h_workaround = (1 << 4), + } flags ____cacheline_aligned; + + enum mac mac; + enum phy phy; + struct params params; + struct timer_list watchdog; + struct mii_if_info mii; + struct work_struct tx_timeout_task; + enum loopback loopback; + + struct mem *mem; + dma_addr_t dma_addr; + + struct dma_pool *cbs_pool; + dma_addr_t cbs_dma_addr; + u8 adaptive_ifs; + u8 tx_threshold; + u32 tx_frames; + u32 tx_collisions; + u32 tx_deferred; + u32 tx_single_collisions; + u32 tx_multiple_collisions; + u32 tx_fc_pause; + u32 tx_tco_frames; + + u32 rx_fc_pause; + u32 rx_fc_unsupported; + u32 rx_tco_frames; + u32 rx_short_frame_errors; + u32 rx_over_length_errors; + + u16 eeprom_wc; + __le16 eeprom[256]; + spinlock_t mdio_lock; + const struct firmware *fw; +}; + +static inline void e100_write_flush(struct nic *nic) +{ + /* Flush previous PCI writes through intermediate bridges + * by doing a benign read */ + (void)ioread8(&nic->csr->scb.status); +} + +static void e100_enable_irq(struct nic *nic) +{ + unsigned long flags; + + spin_lock_irqsave(&nic->cmd_lock, flags); + iowrite8(irq_mask_none, &nic->csr->scb.cmd_hi); + e100_write_flush(nic); + spin_unlock_irqrestore(&nic->cmd_lock, flags); +} + +static void e100_disable_irq(struct nic *nic) +{ + unsigned long flags; + + spin_lock_irqsave(&nic->cmd_lock, flags); + iowrite8(irq_mask_all, &nic->csr->scb.cmd_hi); + e100_write_flush(nic); + spin_unlock_irqrestore(&nic->cmd_lock, flags); +} + +static void e100_hw_reset(struct nic *nic) +{ + /* Put CU and RU into idle with a selective reset to get + * device off of PCI bus */ + iowrite32(selective_reset, &nic->csr->port); + e100_write_flush(nic); udelay(20); + + /* Now fully reset device */ + iowrite32(software_reset, &nic->csr->port); + e100_write_flush(nic); udelay(20); + + /* Mask off our interrupt line - it's unmasked after reset */ + e100_disable_irq(nic); +} + +static int e100_self_test(struct nic *nic) +{ + u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); + + /* Passing the self-test is a pretty good indication + * that the device can DMA to/from host memory */ + + nic->mem->selftest.signature = 0; + nic->mem->selftest.result = 0xFFFFFFFF; + + iowrite32(selftest | dma_addr, &nic->csr->port); + e100_write_flush(nic); + /* Wait 10 msec for self-test to complete */ + msleep(10); + + /* Interrupts are enabled after self-test */ + e100_disable_irq(nic); + + /* Check results of self-test */ + if (nic->mem->selftest.result != 0) { + netif_err(nic, hw, nic->netdev, + "Self-test failed: result=0x%08X\n", + nic->mem->selftest.result); + return -ETIMEDOUT; + } + if (nic->mem->selftest.signature == 0) { + netif_err(nic, hw, nic->netdev, "Self-test failed: timed out\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, __le16 data) +{ + u32 cmd_addr_data[3]; + u8 ctrl; + int i, j; + + /* Three cmds: write/erase enable, write data, write/erase disable */ + cmd_addr_data[0] = op_ewen << (addr_len - 2); + cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | + le16_to_cpu(data); + cmd_addr_data[2] = op_ewds << (addr_len - 2); + + /* Bit-bang cmds to write word to eeprom */ + for (j = 0; j < 3; j++) { + + /* Chip select */ + iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + for (i = 31; i >= 0; i--) { + ctrl = (cmd_addr_data[j] & (1 << i)) ? + eecs | eedi : eecs; + iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + } + /* Wait 10 msec for cmd to complete */ + msleep(10); + + /* Chip deselect */ + iowrite8(0, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + } +}; + +/* General technique stolen from the eepro100 driver - very clever */ +static __le16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) +{ + u32 cmd_addr_data; + u16 data = 0; + u8 ctrl; + int i; + + cmd_addr_data = ((op_read << *addr_len) | addr) << 16; + + /* Chip select */ + iowrite8(eecs | eesk, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + /* Bit-bang to read word from eeprom */ + for (i = 31; i >= 0; i--) { + ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; + iowrite8(ctrl, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + iowrite8(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + /* Eeprom drives a dummy zero to EEDO after receiving + * complete address. Use this to adjust addr_len. */ + ctrl = ioread8(&nic->csr->eeprom_ctrl_lo); + if (!(ctrl & eedo) && i > 16) { + *addr_len -= (i - 16); + i = 17; + } + + data = (data << 1) | (ctrl & eedo ? 1 : 0); + } + + /* Chip deselect */ + iowrite8(0, &nic->csr->eeprom_ctrl_lo); + e100_write_flush(nic); udelay(4); + + return cpu_to_le16(data); +}; + +/* Load entire EEPROM image into driver cache and validate checksum */ +static int e100_eeprom_load(struct nic *nic) +{ + u16 addr, addr_len = 8, checksum = 0; + + /* Try reading with an 8-bit addr len to discover actual addr len */ + e100_eeprom_read(nic, &addr_len, 0); + nic->eeprom_wc = 1 << addr_len; + + for (addr = 0; addr < nic->eeprom_wc; addr++) { + nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); + if (addr < nic->eeprom_wc - 1) + checksum += le16_to_cpu(nic->eeprom[addr]); + } + + /* The checksum, stored in the last word, is calculated such that + * the sum of words should be 0xBABA */ + if (cpu_to_le16(0xBABA - checksum) != nic->eeprom[nic->eeprom_wc - 1]) { + netif_err(nic, probe, nic->netdev, "EEPROM corrupted\n"); + if (!eeprom_bad_csum_allow) + return -EAGAIN; + } + + return 0; +} + +/* Save (portion of) driver EEPROM cache to device and update checksum */ +static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) +{ + u16 addr, addr_len = 8, checksum = 0; + + /* Try reading with an 8-bit addr len to discover actual addr len */ + e100_eeprom_read(nic, &addr_len, 0); + nic->eeprom_wc = 1 << addr_len; + + if (start + count >= nic->eeprom_wc) + return -EINVAL; + + for (addr = start; addr < start + count; addr++) + e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); + + /* The checksum, stored in the last word, is calculated such that + * the sum of words should be 0xBABA */ + for (addr = 0; addr < nic->eeprom_wc - 1; addr++) + checksum += le16_to_cpu(nic->eeprom[addr]); + nic->eeprom[nic->eeprom_wc - 1] = cpu_to_le16(0xBABA - checksum); + e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, + nic->eeprom[nic->eeprom_wc - 1]); + + return 0; +} + +#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ +#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ +static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) +{ + unsigned long flags; + unsigned int i; + int err = 0; + + spin_lock_irqsave(&nic->cmd_lock, flags); + + /* Previous command is accepted when SCB clears */ + for (i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { + if (likely(!ioread8(&nic->csr->scb.cmd_lo))) + break; + cpu_relax(); + if (unlikely(i > E100_WAIT_SCB_FAST)) + udelay(5); + } + if (unlikely(i == E100_WAIT_SCB_TIMEOUT)) { + err = -EAGAIN; + goto err_unlock; + } + + if (unlikely(cmd != cuc_resume)) + iowrite32(dma_addr, &nic->csr->scb.gen_ptr); + iowrite8(cmd, &nic->csr->scb.cmd_lo); + +err_unlock: + spin_unlock_irqrestore(&nic->cmd_lock, flags); + + return err; +} + +static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, + int (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) +{ + struct cb *cb; + unsigned long flags; + int err; + + spin_lock_irqsave(&nic->cb_lock, flags); + + if (unlikely(!nic->cbs_avail)) { + err = -ENOMEM; + goto err_unlock; + } + + cb = nic->cb_to_use; + nic->cb_to_use = cb->next; + nic->cbs_avail--; + cb->skb = skb; + + err = cb_prepare(nic, cb, skb); + if (err) + goto err_unlock; + + if (unlikely(!nic->cbs_avail)) + err = -ENOSPC; + + + /* Order is important otherwise we'll be in a race with h/w: + * set S-bit in current first, then clear S-bit in previous. */ + cb->command |= cpu_to_le16(cb_s); + dma_wmb(); + cb->prev->command &= cpu_to_le16(~cb_s); + + while (nic->cb_to_send != nic->cb_to_use) { + if (unlikely(e100_exec_cmd(nic, nic->cuc_cmd, + nic->cb_to_send->dma_addr))) { + /* Ok, here's where things get sticky. It's + * possible that we can't schedule the command + * because the controller is too busy, so + * let's just queue the command and try again + * when another command is scheduled. */ + if (err == -ENOSPC) { + //request a reset + schedule_work(&nic->tx_timeout_task); + } + break; + } else { + nic->cuc_cmd = cuc_resume; + nic->cb_to_send = nic->cb_to_send->next; + } + } + +err_unlock: + spin_unlock_irqrestore(&nic->cb_lock, flags); + + return err; +} + +static int mdio_read(struct net_device *netdev, int addr, int reg) +{ + struct nic *nic = netdev_priv(netdev); + return nic->mdio_ctrl(nic, addr, mdi_read, reg, 0); +} + +static void mdio_write(struct net_device *netdev, int addr, int reg, int data) +{ + struct nic *nic = netdev_priv(netdev); + + nic->mdio_ctrl(nic, addr, mdi_write, reg, data); +} + +/* the standard mdio_ctrl() function for usual MII-compliant hardware */ +static u16 mdio_ctrl_hw(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) +{ + u32 data_out = 0; + unsigned int i; + unsigned long flags; + + + /* + * Stratus87247: we shouldn't be writing the MDI control + * register until the Ready bit shows True. Also, since + * manipulation of the MDI control registers is a multi-step + * procedure it should be done under lock. + */ + spin_lock_irqsave(&nic->mdio_lock, flags); + for (i = 100; i; --i) { + if (ioread32(&nic->csr->mdi_ctrl) & mdi_ready) + break; + udelay(20); + } + if (unlikely(!i)) { + netdev_err(nic->netdev, "e100.mdio_ctrl won't go Ready\n"); + spin_unlock_irqrestore(&nic->mdio_lock, flags); + return 0; /* No way to indicate timeout error */ + } + iowrite32((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); + + for (i = 0; i < 100; i++) { + udelay(20); + if ((data_out = ioread32(&nic->csr->mdi_ctrl)) & mdi_ready) + break; + } + spin_unlock_irqrestore(&nic->mdio_lock, flags); + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", + dir == mdi_read ? "READ" : "WRITE", + addr, reg, data, data_out); + return (u16)data_out; +} + +/* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */ +static u16 mdio_ctrl_phy_82552_v(struct nic *nic, + u32 addr, + u32 dir, + u32 reg, + u16 data) +{ + if ((reg == MII_BMCR) && (dir == mdi_write)) { + if (data & (BMCR_ANRESTART | BMCR_ANENABLE)) { + u16 advert = mdio_read(nic->netdev, nic->mii.phy_id, + MII_ADVERTISE); + + /* + * Workaround Si issue where sometimes the part will not + * autoneg to 100Mbps even when advertised. + */ + if (advert & ADVERTISE_100FULL) + data |= BMCR_SPEED100 | BMCR_FULLDPLX; + else if (advert & ADVERTISE_100HALF) + data |= BMCR_SPEED100; + } + } + return mdio_ctrl_hw(nic, addr, dir, reg, data); +} + +/* Fully software-emulated mdio_ctrl() function for cards without + * MII-compliant PHYs. + * For now, this is mainly geared towards 80c24 support; in case of further + * requirements for other types (i82503, ...?) either extend this mechanism + * or split it, whichever is cleaner. + */ +static u16 mdio_ctrl_phy_mii_emulated(struct nic *nic, + u32 addr, + u32 dir, + u32 reg, + u16 data) +{ + /* might need to allocate a netdev_priv'ed register array eventually + * to be able to record state changes, but for now + * some fully hardcoded register handling ought to be ok I guess. */ + + if (dir == mdi_read) { + switch (reg) { + case MII_BMCR: + /* Auto-negotiation, right? */ + return BMCR_ANENABLE | + BMCR_FULLDPLX; + case MII_BMSR: + return BMSR_LSTATUS /* for mii_link_ok() */ | + BMSR_ANEGCAPABLE | + BMSR_10FULL; + case MII_ADVERTISE: + /* 80c24 is a "combo card" PHY, right? */ + return ADVERTISE_10HALF | + ADVERTISE_10FULL; + default: + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", + dir == mdi_read ? "READ" : "WRITE", + addr, reg, data); + return 0xFFFF; + } + } else { + switch (reg) { + default: + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n", + dir == mdi_read ? "READ" : "WRITE", + addr, reg, data); + return 0xFFFF; + } + } +} +static inline int e100_phy_supports_mii(struct nic *nic) +{ + /* for now, just check it by comparing whether we + are using MII software emulation. + */ + return (nic->mdio_ctrl != mdio_ctrl_phy_mii_emulated); +} + +static void e100_get_defaults(struct nic *nic) +{ + struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; + struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; + + /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ + nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->pdev->revision; + if (nic->mac == mac_unknown) + nic->mac = mac_82557_D100_A; + + nic->params.rfds = rfds; + nic->params.cbs = cbs; + + /* Quadwords to DMA into FIFO before starting frame transmit */ + nic->tx_threshold = 0xE0; + + /* no interrupt for every tx completion, delay = 256us if not 557 */ + nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | + ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); + + /* Template for a freshly allocated RFD */ + nic->blank_rfd.command = 0; + nic->blank_rfd.rbd = cpu_to_le32(0xFFFFFFFF); + nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN); + + /* MII setup */ + nic->mii.phy_id_mask = 0x1F; + nic->mii.reg_num_mask = 0x1F; + nic->mii.dev = nic->netdev; + nic->mii.mdio_read = mdio_read; + nic->mii.mdio_write = mdio_write; +} + +static int e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) +{ + struct config *config = &cb->u.config; + u8 *c = (u8 *)config; + struct net_device *netdev = nic->netdev; + + cb->command = cpu_to_le16(cb_config); + + memset(config, 0, sizeof(struct config)); + + config->byte_count = 0x16; /* bytes in this struct */ + config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ + config->direct_rx_dma = 0x1; /* reserved */ + config->standard_tcb = 0x1; /* 1=standard, 0=extended */ + config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ + config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ + config->tx_underrun_retry = 0x3; /* # of underrun retries */ + if (e100_phy_supports_mii(nic)) + config->mii_mode = 1; /* 1=MII mode, 0=i82503 mode */ + config->pad10 = 0x6; + config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ + config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ + config->ifs = 0x6; /* x16 = inter frame spacing */ + config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ + config->pad15_1 = 0x1; + config->pad15_2 = 0x1; + config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ + config->fc_delay_hi = 0x40; /* time delay for fc frame */ + config->tx_padding = 0x1; /* 1=pad short frames */ + config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ + config->pad18 = 0x1; + config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ + config->pad20_1 = 0x1F; + config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ + config->pad21_1 = 0x5; + + config->adaptive_ifs = nic->adaptive_ifs; + config->loopback = nic->loopback; + + if (nic->mii.force_media && nic->mii.full_duplex) + config->full_duplex_force = 0x1; /* 1=force, 0=auto */ + + if (nic->flags & promiscuous || nic->loopback) { + config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ + config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ + config->promiscuous_mode = 0x1; /* 1=on, 0=off */ + } + + if (unlikely(netdev->features & NETIF_F_RXFCS)) + config->rx_crc_transfer = 0x1; /* 1=save, 0=discard */ + + if (nic->flags & multicast_all) + config->multicast_all = 0x1; /* 1=accept, 0=no */ + + /* disable WoL when up */ + if (netif_running(nic->netdev) || !(nic->flags & wol_magic)) + config->magic_packet_disable = 0x1; /* 1=off, 0=on */ + + if (nic->mac >= mac_82558_D101_A4) { + config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ + config->mwi_enable = 0x1; /* 1=enable, 0=disable */ + config->standard_tcb = 0x0; /* 1=standard, 0=extended */ + config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ + if (nic->mac >= mac_82559_D101M) { + config->tno_intr = 0x1; /* TCO stats enable */ + /* Enable TCO in extended config */ + if (nic->mac >= mac_82551_10) { + config->byte_count = 0x20; /* extended bytes */ + config->rx_d102_mode = 0x1; /* GMRC for TCO */ + } + } else { + config->standard_stat_counter = 0x0; + } + } + + if (netdev->features & NETIF_F_RXALL) { + config->rx_save_overruns = 0x1; /* 1=save, 0=discard */ + config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ + config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ + } + + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[00-07]=%8ph\n", + c + 0); + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[08-15]=%8ph\n", + c + 8); + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, "[16-23]=%8ph\n", + c + 16); + return 0; +} + +/************************************************************************* +* CPUSaver parameters +* +* All CPUSaver parameters are 16-bit literals that are part of a +* "move immediate value" instruction. By changing the value of +* the literal in the instruction before the code is loaded, the +* driver can change the algorithm. +* +* INTDELAY - This loads the dead-man timer with its initial value. +* When this timer expires the interrupt is asserted, and the +* timer is reset each time a new packet is received. (see +* BUNDLEMAX below to set the limit on number of chained packets) +* The current default is 0x600 or 1536. Experiments show that +* the value should probably stay within the 0x200 - 0x1000. +* +* BUNDLEMAX - +* This sets the maximum number of frames that will be bundled. In +* some situations, such as the TCP windowing algorithm, it may be +* better to limit the growth of the bundle size than let it go as +* high as it can, because that could cause too much added latency. +* The default is six, because this is the number of packets in the +* default TCP window size. A value of 1 would make CPUSaver indicate +* an interrupt for every frame received. If you do not want to put +* a limit on the bundle size, set this value to xFFFF. +* +* BUNDLESMALL - +* This contains a bit-mask describing the minimum size frame that +* will be bundled. The default masks the lower 7 bits, which means +* that any frame less than 128 bytes in length will not be bundled, +* but will instead immediately generate an interrupt. This does +* not affect the current bundle in any way. Any frame that is 128 +* bytes or large will be bundled normally. This feature is meant +* to provide immediate indication of ACK frames in a TCP environment. +* Customers were seeing poor performance when a machine with CPUSaver +* enabled was sending but not receiving. The delay introduced when +* the ACKs were received was enough to reduce total throughput, because +* the sender would sit idle until the ACK was finally seen. +* +* The current default is 0xFF80, which masks out the lower 7 bits. +* This means that any frame which is x7F (127) bytes or smaller +* will cause an immediate interrupt. Because this value must be a +* bit mask, there are only a few valid values that can be used. To +* turn this feature off, the driver can write the value xFFFF to the +* lower word of this instruction (in the same way that the other +* parameters are used). Likewise, a value of 0xF800 (2047) would +* cause an interrupt to be generated for every frame, because all +* standard Ethernet frames are <= 2047 bytes in length. +*************************************************************************/ + +/* if you wish to disable the ucode functionality, while maintaining the + * workarounds it provides, set the following defines to: + * BUNDLESMALL 0 + * BUNDLEMAX 1 + * INTDELAY 1 + */ +#define BUNDLESMALL 1 +#define BUNDLEMAX (u16)6 +#define INTDELAY (u16)1536 /* 0x600 */ + +/* Initialize firmware */ +static const struct firmware *e100_request_firmware(struct nic *nic) +{ + const char *fw_name; + const struct firmware *fw = nic->fw; + u8 timer, bundle, min_size; + int err = 0; + bool required = false; + + /* do not load u-code for ICH devices */ + if (nic->flags & ich) + return NULL; + + /* Search for ucode match against h/w revision + * + * Based on comments in the source code for the FreeBSD fxp + * driver, the FIRMWARE_D102E ucode includes both CPUSaver and + * + * "fixes for bugs in the B-step hardware (specifically, bugs + * with Inline Receive)." + * + * So we must fail if it cannot be loaded. + * + * The other microcode files are only required for the optional + * CPUSaver feature. Nice to have, but no reason to fail. + */ + if (nic->mac == mac_82559_D101M) { + fw_name = FIRMWARE_D101M; + } else if (nic->mac == mac_82559_D101S) { + fw_name = FIRMWARE_D101S; + } else if (nic->mac == mac_82551_F || nic->mac == mac_82551_10) { + fw_name = FIRMWARE_D102E; + required = true; + } else { /* No ucode on other devices */ + return NULL; + } + + /* If the firmware has not previously been loaded, request a pointer + * to it. If it was previously loaded, we are reinitializing the + * adapter, possibly in a resume from hibernate, in which case + * request_firmware() cannot be used. + */ + if (!fw) + err = request_firmware(&fw, fw_name, &nic->pdev->dev); + + if (err) { + if (required) { + netif_err(nic, probe, nic->netdev, + "Failed to load firmware \"%s\": %d\n", + fw_name, err); + return ERR_PTR(err); + } else { + netif_info(nic, probe, nic->netdev, + "CPUSaver disabled. Needs \"%s\": %d\n", + fw_name, err); + return NULL; + } + } + + /* Firmware should be precisely UCODE_SIZE (words) plus three bytes + indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */ + if (fw->size != UCODE_SIZE * 4 + 3) { + netif_err(nic, probe, nic->netdev, + "Firmware \"%s\" has wrong size %zu\n", + fw_name, fw->size); + release_firmware(fw); + return ERR_PTR(-EINVAL); + } + + /* Read timer, bundle and min_size from end of firmware blob */ + timer = fw->data[UCODE_SIZE * 4]; + bundle = fw->data[UCODE_SIZE * 4 + 1]; + min_size = fw->data[UCODE_SIZE * 4 + 2]; + + if (timer >= UCODE_SIZE || bundle >= UCODE_SIZE || + min_size >= UCODE_SIZE) { + netif_err(nic, probe, nic->netdev, + "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n", + fw_name, timer, bundle, min_size); + release_firmware(fw); + return ERR_PTR(-EINVAL); + } + + /* OK, firmware is validated and ready to use. Save a pointer + * to it in the nic */ + nic->fw = fw; + return fw; +} + +static int e100_setup_ucode(struct nic *nic, struct cb *cb, + struct sk_buff *skb) +{ + const struct firmware *fw = (void *)skb; + u8 timer, bundle, min_size; + + /* It's not a real skb; we just abused the fact that e100_exec_cb + will pass it through to here... */ + cb->skb = NULL; + + /* firmware is stored as little endian already */ + memcpy(cb->u.ucode, fw->data, UCODE_SIZE * 4); + + /* Read timer, bundle and min_size from end of firmware blob */ + timer = fw->data[UCODE_SIZE * 4]; + bundle = fw->data[UCODE_SIZE * 4 + 1]; + min_size = fw->data[UCODE_SIZE * 4 + 2]; + + /* Insert user-tunable settings in cb->u.ucode */ + cb->u.ucode[timer] &= cpu_to_le32(0xFFFF0000); + cb->u.ucode[timer] |= cpu_to_le32(INTDELAY); + cb->u.ucode[bundle] &= cpu_to_le32(0xFFFF0000); + cb->u.ucode[bundle] |= cpu_to_le32(BUNDLEMAX); + cb->u.ucode[min_size] &= cpu_to_le32(0xFFFF0000); + cb->u.ucode[min_size] |= cpu_to_le32((BUNDLESMALL) ? 0xFFFF : 0xFF80); + + cb->command = cpu_to_le16(cb_ucode | cb_el); + return 0; +} + +static inline int e100_load_ucode_wait(struct nic *nic) +{ + const struct firmware *fw; + int err = 0, counter = 50; + struct cb *cb = nic->cb_to_clean; + + fw = e100_request_firmware(nic); + /* If it's NULL, then no ucode is required */ + if (IS_ERR_OR_NULL(fw)) + return PTR_ERR_OR_ZERO(fw); + + if ((err = e100_exec_cb(nic, (void *)fw, e100_setup_ucode))) + netif_err(nic, probe, nic->netdev, + "ucode cmd failed with error %d\n", err); + + /* must restart cuc */ + nic->cuc_cmd = cuc_start; + + /* wait for completion */ + e100_write_flush(nic); + udelay(10); + + /* wait for possibly (ouch) 500ms */ + while (!(cb->status & cpu_to_le16(cb_complete))) { + msleep(10); + if (!--counter) break; + } + + /* ack any interrupts, something could have been set */ + iowrite8(~0, &nic->csr->scb.stat_ack); + + /* if the command failed, or is not OK, notify and return */ + if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { + netif_err(nic, probe, nic->netdev, "ucode load failed\n"); + err = -EPERM; + } + + return err; +} + +static int e100_setup_iaaddr(struct nic *nic, struct cb *cb, + struct sk_buff *skb) +{ + cb->command = cpu_to_le16(cb_iaaddr); + memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); + return 0; +} + +static int e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) +{ + cb->command = cpu_to_le16(cb_dump); + cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + + offsetof(struct mem, dump_buf)); + return 0; +} + +static int e100_phy_check_without_mii(struct nic *nic) +{ + u8 phy_type; + int without_mii; + + phy_type = (le16_to_cpu(nic->eeprom[eeprom_phy_iface]) >> 8) & 0x0f; + + switch (phy_type) { + case NoSuchPhy: /* Non-MII PHY; UNTESTED! */ + case I82503: /* Non-MII PHY; UNTESTED! */ + case S80C24: /* Non-MII PHY; tested and working */ + /* paragraph from the FreeBSD driver, "FXP_PHY_80C24": + * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter + * doesn't have a programming interface of any sort. The + * media is sensed automatically based on how the link partner + * is configured. This is, in essence, manual configuration. + */ + netif_info(nic, probe, nic->netdev, + "found MII-less i82503 or 80c24 or other PHY\n"); + + nic->mdio_ctrl = mdio_ctrl_phy_mii_emulated; + nic->mii.phy_id = 0; /* is this ok for an MII-less PHY? */ + + /* these might be needed for certain MII-less cards... + * nic->flags |= ich; + * nic->flags |= ich_10h_workaround; */ + + without_mii = 1; + break; + default: + without_mii = 0; + break; + } + return without_mii; +} + +#define NCONFIG_AUTO_SWITCH 0x0080 +#define MII_NSC_CONG MII_RESV1 +#define NSC_CONG_ENABLE 0x0100 +#define NSC_CONG_TXREADY 0x0400 +#define ADVERTISE_FC_SUPPORTED 0x0400 +static int e100_phy_init(struct nic *nic) +{ + struct net_device *netdev = nic->netdev; + u32 addr; + u16 bmcr, stat, id_lo, id_hi, cong; + + /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ + for (addr = 0; addr < 32; addr++) { + nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; + bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); + stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); + stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); + if (!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) + break; + } + if (addr == 32) { + /* uhoh, no PHY detected: check whether we seem to be some + * weird, rare variant which is *known* to not have any MII. + * But do this AFTER MII checking only, since this does + * lookup of EEPROM values which may easily be unreliable. */ + if (e100_phy_check_without_mii(nic)) + return 0; /* simply return and hope for the best */ + else { + /* for unknown cases log a fatal error */ + netif_err(nic, hw, nic->netdev, + "Failed to locate any known PHY, aborting\n"); + return -EAGAIN; + } + } else + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "phy_addr = %d\n", nic->mii.phy_id); + + /* Get phy ID */ + id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); + id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); + nic->phy = (u32)id_hi << 16 | (u32)id_lo; + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "phy ID = 0x%08X\n", nic->phy); + + /* Select the phy and isolate the rest */ + for (addr = 0; addr < 32; addr++) { + if (addr != nic->mii.phy_id) { + mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); + } else if (nic->phy != phy_82552_v) { + bmcr = mdio_read(netdev, addr, MII_BMCR); + mdio_write(netdev, addr, MII_BMCR, + bmcr & ~BMCR_ISOLATE); + } + } + /* + * Workaround for 82552: + * Clear the ISOLATE bit on selected phy_id last (mirrored on all + * other phy_id's) using bmcr value from addr discovery loop above. + */ + if (nic->phy == phy_82552_v) + mdio_write(netdev, nic->mii.phy_id, MII_BMCR, + bmcr & ~BMCR_ISOLATE); + + /* Handle National tx phys */ +#define NCS_PHY_MODEL_MASK 0xFFF0FFFF + if ((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { + /* Disable congestion control */ + cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); + cong |= NSC_CONG_TXREADY; + cong &= ~NSC_CONG_ENABLE; + mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); + } + + if (nic->phy == phy_82552_v) { + u16 advert = mdio_read(netdev, nic->mii.phy_id, MII_ADVERTISE); + + /* assign special tweaked mdio_ctrl() function */ + nic->mdio_ctrl = mdio_ctrl_phy_82552_v; + + /* Workaround Si not advertising flow-control during autoneg */ + advert |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; + mdio_write(netdev, nic->mii.phy_id, MII_ADVERTISE, advert); + + /* Reset for the above changes to take effect */ + bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); + bmcr |= BMCR_RESET; + mdio_write(netdev, nic->mii.phy_id, MII_BMCR, bmcr); + } else if ((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && + (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000) && + (le16_to_cpu(nic->eeprom[eeprom_cnfg_mdix]) & eeprom_mdix_enabled))) { + /* enable/disable MDI/MDI-X auto-switching. */ + mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, + nic->mii.force_media ? 0 : NCONFIG_AUTO_SWITCH); + } + + return 0; +} + +static int e100_hw_init(struct nic *nic) +{ + int err = 0; + + e100_hw_reset(nic); + + netif_err(nic, hw, nic->netdev, "e100_hw_init\n"); + if (!in_interrupt() && (err = e100_self_test(nic))) + return err; + + if ((err = e100_phy_init(nic))) + return err; + if ((err = e100_exec_cmd(nic, cuc_load_base, 0))) + return err; + if ((err = e100_exec_cmd(nic, ruc_load_base, 0))) + return err; + if ((err = e100_load_ucode_wait(nic))) + return err; + if ((err = e100_exec_cb(nic, NULL, e100_configure))) + return err; + if ((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) + return err; + if ((err = e100_exec_cmd(nic, cuc_dump_addr, + nic->dma_addr + offsetof(struct mem, stats)))) + return err; + if ((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) + return err; + + e100_disable_irq(nic); + + return 0; +} + +static int e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) +{ + struct net_device *netdev = nic->netdev; + struct netdev_hw_addr *ha; + u16 i, count = min(netdev_mc_count(netdev), E100_MAX_MULTICAST_ADDRS); + + cb->command = cpu_to_le16(cb_multi); + cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); + i = 0; + netdev_for_each_mc_addr(ha, netdev) { + if (i == count) + break; + memcpy(&cb->u.multi.addr[i++ * ETH_ALEN], &ha->addr, + ETH_ALEN); + } + return 0; +} + +static void e100_set_multicast_list(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + + netif_printk(nic, hw, KERN_DEBUG, nic->netdev, + "mc_count=%d, flags=0x%04X\n", + netdev_mc_count(netdev), netdev->flags); + + if (netdev->flags & IFF_PROMISC) + nic->flags |= promiscuous; + else + nic->flags &= ~promiscuous; + + if (netdev->flags & IFF_ALLMULTI || + netdev_mc_count(netdev) > E100_MAX_MULTICAST_ADDRS) + nic->flags |= multicast_all; + else + nic->flags &= ~multicast_all; + + e100_exec_cb(nic, NULL, e100_configure); + e100_exec_cb(nic, NULL, e100_multi); +} + +static void e100_update_stats(struct nic *nic) +{ + struct net_device *dev = nic->netdev; + struct net_device_stats *ns = &dev->stats; + struct stats *s = &nic->mem->stats; + __le32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : + (nic->mac < mac_82559_D101M) ? (__le32 *)&s->xmt_tco_frames : + &s->complete; + + /* Device's stats reporting may take several microseconds to + * complete, so we're always waiting for results of the + * previous command. */ + + if (*complete == cpu_to_le32(cuc_dump_reset_complete)) { + *complete = 0; + nic->tx_frames = le32_to_cpu(s->tx_good_frames); + nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); + ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); + ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); + ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); + ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); + ns->collisions += nic->tx_collisions; + ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + + le32_to_cpu(s->tx_lost_crs); + nic->rx_short_frame_errors += + le32_to_cpu(s->rx_short_frame_errors); + ns->rx_length_errors = nic->rx_short_frame_errors + + nic->rx_over_length_errors; + ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); + ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); + ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); + ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); + ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); + ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + + le32_to_cpu(s->rx_alignment_errors) + + le32_to_cpu(s->rx_short_frame_errors) + + le32_to_cpu(s->rx_cdt_errors); + nic->tx_deferred += le32_to_cpu(s->tx_deferred); + nic->tx_single_collisions += + le32_to_cpu(s->tx_single_collisions); + nic->tx_multiple_collisions += + le32_to_cpu(s->tx_multiple_collisions); + if (nic->mac >= mac_82558_D101_A4) { + nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); + nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); + nic->rx_fc_unsupported += + le32_to_cpu(s->fc_rcv_unsupported); + if (nic->mac >= mac_82559_D101M) { + nic->tx_tco_frames += + le16_to_cpu(s->xmt_tco_frames); + nic->rx_tco_frames += + le16_to_cpu(s->rcv_tco_frames); + } + } + } + + + if (e100_exec_cmd(nic, cuc_dump_reset, 0)) + netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, + "exec cuc_dump_reset failed\n"); +} + +static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) +{ + /* Adjust inter-frame-spacing (IFS) between two transmits if + * we're getting collisions on a half-duplex connection. */ + + if (duplex == DUPLEX_HALF) { + u32 prev = nic->adaptive_ifs; + u32 min_frames = (speed == SPEED_100) ? 1000 : 100; + + if ((nic->tx_frames / 32 < nic->tx_collisions) && + (nic->tx_frames > min_frames)) { + if (nic->adaptive_ifs < 60) + nic->adaptive_ifs += 5; + } else if (nic->tx_frames < min_frames) { + if (nic->adaptive_ifs >= 5) + nic->adaptive_ifs -= 5; + } + if (nic->adaptive_ifs != prev) + e100_exec_cb(nic, NULL, e100_configure); + } +} + +static void e100_watchdog(struct timer_list *t) +{ + struct nic *nic = from_timer(nic, t, watchdog); + struct ethtool_cmd cmd = { .cmd = ETHTOOL_GSET }; + u32 speed; + + netif_printk(nic, timer, KERN_DEBUG, nic->netdev, + "right now = %ld\n", jiffies); + + /* mii library handles link maintenance tasks */ + + mii_ethtool_gset(&nic->mii, &cmd); + speed = ethtool_cmd_speed(&cmd); + + if (mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { + netdev_info(nic->netdev, "NIC Link is Up %u Mbps %s Duplex\n", + speed == SPEED_100 ? 100 : 10, + cmd.duplex == DUPLEX_FULL ? "Full" : "Half"); + } else if (!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { + netdev_info(nic->netdev, "NIC Link is Down\n"); + } + + mii_check_link(&nic->mii); + + /* Software generated interrupt to recover from (rare) Rx + * allocation failure. + * Unfortunately have to use a spinlock to not re-enable interrupts + * accidentally, due to hardware that shares a register between the + * interrupt mask bit and the SW Interrupt generation bit */ + spin_lock_irq(&nic->cmd_lock); + iowrite8(ioread8(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); + e100_write_flush(nic); + spin_unlock_irq(&nic->cmd_lock); + + e100_update_stats(nic); + e100_adjust_adaptive_ifs(nic, speed, cmd.duplex); + + if (nic->mac <= mac_82557_D100_C) + /* Issue a multicast command to workaround a 557 lock up */ + e100_set_multicast_list(nic->netdev); + + if (nic->flags & ich && speed == SPEED_10 && cmd.duplex == DUPLEX_HALF) + /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ + nic->flags |= ich_10h_workaround; + else + nic->flags &= ~ich_10h_workaround; + + mod_timer(&nic->watchdog, + round_jiffies(jiffies + E100_WATCHDOG_PERIOD)); +} + +static int e100_xmit_prepare(struct nic *nic, struct cb *cb, + struct sk_buff *skb) +{ + dma_addr_t dma_addr; + cb->command = nic->tx_command; + + dma_addr = pci_map_single(nic->pdev, + skb->data, skb->len, PCI_DMA_TODEVICE); + /* If we can't map the skb, have the upper layer try later */ + if (pci_dma_mapping_error(nic->pdev, dma_addr)) { + dev_kfree_skb_any(skb); + skb = NULL; + return -ENOMEM; + } + + /* + * Use the last 4 bytes of the SKB payload packet as the CRC, used for + * testing, ie sending frames with bad CRC. + */ + if (unlikely(skb->no_fcs)) + cb->command |= cpu_to_le16(cb_tx_nc); + else + cb->command &= ~cpu_to_le16(cb_tx_nc); + + /* interrupt every 16 packets regardless of delay */ + if ((nic->cbs_avail & ~15) == nic->cbs_avail) + cb->command |= cpu_to_le16(cb_i); + cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); + cb->u.tcb.tcb_byte_count = 0; + cb->u.tcb.threshold = nic->tx_threshold; + cb->u.tcb.tbd_count = 1; + cb->u.tcb.tbd.buf_addr = cpu_to_le32(dma_addr); + cb->u.tcb.tbd.size = cpu_to_le16(skb->len); + skb_tx_timestamp(skb); + return 0; +} + +static netdev_tx_t e100_xmit_frame(struct sk_buff *skb, + struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + int err; + + if (nic->flags & ich_10h_workaround) { + /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. + Issue a NOP command followed by a 1us delay before + issuing the Tx command. */ + if (e100_exec_cmd(nic, cuc_nop, 0)) + netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, + "exec cuc_nop failed\n"); + udelay(1); + } + + err = e100_exec_cb(nic, skb, e100_xmit_prepare); + + switch (err) { + case -ENOSPC: + /* We queued the skb, but now we're out of space. */ + netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, + "No space for CB\n"); + netif_stop_queue(netdev); + break; + case -ENOMEM: + /* This is a hard error - log it. */ + netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, + "Out of Tx resources, returning skb\n"); + netif_stop_queue(netdev); + return NETDEV_TX_BUSY; + } + + return NETDEV_TX_OK; +} + +static int e100_tx_clean(struct nic *nic) +{ + struct net_device *dev = nic->netdev; + struct cb *cb; + int tx_cleaned = 0; + + spin_lock(&nic->cb_lock); + + /* Clean CBs marked complete */ + for (cb = nic->cb_to_clean; + cb->status & cpu_to_le16(cb_complete); + cb = nic->cb_to_clean = cb->next) { + dma_rmb(); /* read skb after status */ + netif_printk(nic, tx_done, KERN_DEBUG, nic->netdev, + "cb[%d]->status = 0x%04X\n", + (int)(((void*)cb - (void*)nic->cbs)/sizeof(struct cb)), + cb->status); + + if (likely(cb->skb != NULL)) { + dev->stats.tx_packets++; + dev->stats.tx_bytes += cb->skb->len; + + pci_unmap_single(nic->pdev, + le32_to_cpu(cb->u.tcb.tbd.buf_addr), + le16_to_cpu(cb->u.tcb.tbd.size), + PCI_DMA_TODEVICE); + dev_kfree_skb_any(cb->skb); + cb->skb = NULL; + tx_cleaned = 1; + } + cb->status = 0; + nic->cbs_avail++; + } + + spin_unlock(&nic->cb_lock); + + /* Recover from running out of Tx resources in xmit_frame */ + if (unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) + netif_wake_queue(nic->netdev); + + return tx_cleaned; +} + +static void e100_clean_cbs(struct nic *nic) +{ + if (nic->cbs) { + while (nic->cbs_avail != nic->params.cbs.count) { + struct cb *cb = nic->cb_to_clean; + if (cb->skb) { + pci_unmap_single(nic->pdev, + le32_to_cpu(cb->u.tcb.tbd.buf_addr), + le16_to_cpu(cb->u.tcb.tbd.size), + PCI_DMA_TODEVICE); + dev_kfree_skb(cb->skb); + } + nic->cb_to_clean = nic->cb_to_clean->next; + nic->cbs_avail++; + } + dma_pool_free(nic->cbs_pool, nic->cbs, nic->cbs_dma_addr); + nic->cbs = NULL; + nic->cbs_avail = 0; + } + nic->cuc_cmd = cuc_start; + nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = + nic->cbs; +} + +static int e100_alloc_cbs(struct nic *nic) +{ + struct cb *cb; + unsigned int i, count = nic->params.cbs.count; + + nic->cuc_cmd = cuc_start; + nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; + nic->cbs_avail = 0; + + nic->cbs = dma_pool_zalloc(nic->cbs_pool, GFP_KERNEL, + &nic->cbs_dma_addr); + if (!nic->cbs) + return -ENOMEM; + + for (cb = nic->cbs, i = 0; i < count; cb++, i++) { + cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; + cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; + + cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); + cb->link = cpu_to_le32(nic->cbs_dma_addr + + ((i+1) % count) * sizeof(struct cb)); + } + + nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; + nic->cbs_avail = count; + + return 0; +} + +static inline void e100_start_receiver(struct nic *nic, struct rx *rx) +{ + if (!nic->rxs) return; + if (RU_SUSPENDED != nic->ru_running) return; + + /* handle init time starts */ + if (!rx) rx = nic->rxs; + + /* (Re)start RU if suspended or idle and RFA is non-NULL */ + if (rx->skb) { + e100_exec_cmd(nic, ruc_start, rx->dma_addr); + nic->ru_running = RU_RUNNING; + } +} + +#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) +static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) +{ + if (!(rx->skb = netdev_alloc_skb_ip_align(nic->netdev, RFD_BUF_LEN))) + return -ENOMEM; + + /* Init, and map the RFD. */ + skb_copy_to_linear_data(rx->skb, &nic->blank_rfd, sizeof(struct rfd)); + rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, + RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); + + if (pci_dma_mapping_error(nic->pdev, rx->dma_addr)) { + dev_kfree_skb_any(rx->skb); + rx->skb = NULL; + rx->dma_addr = 0; + return -ENOMEM; + } + + /* Link the RFD to end of RFA by linking previous RFD to + * this one. We are safe to touch the previous RFD because + * it is protected by the before last buffer's el bit being set */ + if (rx->prev->skb) { + struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; + put_unaligned_le32(rx->dma_addr, &prev_rfd->link); + pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, + sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); + } + + return 0; +} + +static int e100_rx_indicate(struct nic *nic, struct rx *rx, + unsigned int *work_done, unsigned int work_to_do) +{ + struct net_device *dev = nic->netdev; + struct sk_buff *skb = rx->skb; + struct rfd *rfd = (struct rfd *)skb->data; + u16 rfd_status, actual_size; + u16 fcs_pad = 0; + + if (unlikely(work_done && *work_done >= work_to_do)) + return -EAGAIN; + + /* Need to sync before taking a peek at cb_complete bit */ + pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, + sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); + rfd_status = le16_to_cpu(rfd->status); + + netif_printk(nic, rx_status, KERN_DEBUG, nic->netdev, + "status=0x%04X\n", rfd_status); + dma_rmb(); /* read size after status bit */ + + /* If data isn't ready, nothing to indicate */ + if (unlikely(!(rfd_status & cb_complete))) { + /* If the next buffer has the el bit, but we think the receiver + * is still running, check to see if it really stopped while + * we had interrupts off. + * This allows for a fast restart without re-enabling + * interrupts */ + if ((le16_to_cpu(rfd->command) & cb_el) && + (RU_RUNNING == nic->ru_running)) + + if (ioread8(&nic->csr->scb.status) & rus_no_res) + nic->ru_running = RU_SUSPENDED; + pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, + sizeof(struct rfd), + PCI_DMA_FROMDEVICE); + return -ENODATA; + } + + /* Get actual data size */ + if (unlikely(dev->features & NETIF_F_RXFCS)) + fcs_pad = 4; + actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; + if (unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) + actual_size = RFD_BUF_LEN - sizeof(struct rfd); + + /* Get data */ + pci_unmap_single(nic->pdev, rx->dma_addr, + RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); + + /* If this buffer has the el bit, but we think the receiver + * is still running, check to see if it really stopped while + * we had interrupts off. + * This allows for a fast restart without re-enabling interrupts. + * This can happen when the RU sees the size change but also sees + * the el bit set. */ + if ((le16_to_cpu(rfd->command) & cb_el) && + (RU_RUNNING == nic->ru_running)) { + + if (ioread8(&nic->csr->scb.status) & rus_no_res) + nic->ru_running = RU_SUSPENDED; + } + + /* Pull off the RFD and put the actual data (minus eth hdr) */ + skb_reserve(skb, sizeof(struct rfd)); + skb_put(skb, actual_size); + skb->protocol = eth_type_trans(skb, nic->netdev); + + /* If we are receiving all frames, then don't bother + * checking for errors. + */ + if (unlikely(dev->features & NETIF_F_RXALL)) { + if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) + /* Received oversized frame, but keep it. */ + nic->rx_over_length_errors++; + goto process_skb; + } + + if (unlikely(!(rfd_status & cb_ok))) { + /* Don't indicate if hardware indicates errors */ + dev_kfree_skb_any(skb); + } else if (actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN + fcs_pad) { + /* Don't indicate oversized frames */ + nic->rx_over_length_errors++; + dev_kfree_skb_any(skb); + } else { +process_skb: + dev->stats.rx_packets++; + dev->stats.rx_bytes += (actual_size - fcs_pad); + netif_receive_skb(skb); + if (work_done) + (*work_done)++; + } + + rx->skb = NULL; + + return 0; +} + +static void e100_rx_clean(struct nic *nic, unsigned int *work_done, + unsigned int work_to_do) +{ + struct rx *rx; + int restart_required = 0, err = 0; + struct rx *old_before_last_rx, *new_before_last_rx; + struct rfd *old_before_last_rfd, *new_before_last_rfd; + + /* Indicate newly arrived packets */ + for (rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { + err = e100_rx_indicate(nic, rx, work_done, work_to_do); + /* Hit quota or no more to clean */ + if (-EAGAIN == err || -ENODATA == err) + break; + } + + + /* On EAGAIN, hit quota so have more work to do, restart once + * cleanup is complete. + * Else, are we already rnr? then pay attention!!! this ensures that + * the state machine progression never allows a start with a + * partially cleaned list, avoiding a race between hardware + * and rx_to_clean when in NAPI mode */ + if (-EAGAIN != err && RU_SUSPENDED == nic->ru_running) + restart_required = 1; + + old_before_last_rx = nic->rx_to_use->prev->prev; + old_before_last_rfd = (struct rfd *)old_before_last_rx->skb->data; + + /* Alloc new skbs to refill list */ + for (rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { + if (unlikely(e100_rx_alloc_skb(nic, rx))) + break; /* Better luck next time (see watchdog) */ + } + + new_before_last_rx = nic->rx_to_use->prev->prev; + if (new_before_last_rx != old_before_last_rx) { + /* Set the el-bit on the buffer that is before the last buffer. + * This lets us update the next pointer on the last buffer + * without worrying about hardware touching it. + * We set the size to 0 to prevent hardware from touching this + * buffer. + * When the hardware hits the before last buffer with el-bit + * and size of 0, it will RNR interrupt, the RUS will go into + * the No Resources state. It will not complete nor write to + * this buffer. */ + new_before_last_rfd = + (struct rfd *)new_before_last_rx->skb->data; + new_before_last_rfd->size = 0; + new_before_last_rfd->command |= cpu_to_le16(cb_el); + pci_dma_sync_single_for_device(nic->pdev, + new_before_last_rx->dma_addr, sizeof(struct rfd), + PCI_DMA_BIDIRECTIONAL); + + /* Now that we have a new stopping point, we can clear the old + * stopping point. We must sync twice to get the proper + * ordering on the hardware side of things. */ + old_before_last_rfd->command &= ~cpu_to_le16(cb_el); + pci_dma_sync_single_for_device(nic->pdev, + old_before_last_rx->dma_addr, sizeof(struct rfd), + PCI_DMA_BIDIRECTIONAL); + old_before_last_rfd->size = cpu_to_le16(VLAN_ETH_FRAME_LEN + + ETH_FCS_LEN); + pci_dma_sync_single_for_device(nic->pdev, + old_before_last_rx->dma_addr, sizeof(struct rfd), + PCI_DMA_BIDIRECTIONAL); + } + + if (restart_required) { + // ack the rnr? + iowrite8(stat_ack_rnr, &nic->csr->scb.stat_ack); + e100_start_receiver(nic, nic->rx_to_clean); + if (work_done) + (*work_done)++; + } +} + +static void e100_rx_clean_list(struct nic *nic) +{ + struct rx *rx; + unsigned int i, count = nic->params.rfds.count; + + nic->ru_running = RU_UNINITIALIZED; + + if (nic->rxs) { + for (rx = nic->rxs, i = 0; i < count; rx++, i++) { + if (rx->skb) { + pci_unmap_single(nic->pdev, rx->dma_addr, + RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); + dev_kfree_skb(rx->skb); + } + } + kfree(nic->rxs); + nic->rxs = NULL; + } + + nic->rx_to_use = nic->rx_to_clean = NULL; +} + +static int e100_rx_alloc_list(struct nic *nic) +{ + struct rx *rx; + unsigned int i, count = nic->params.rfds.count; + struct rfd *before_last; + + nic->rx_to_use = nic->rx_to_clean = NULL; + nic->ru_running = RU_UNINITIALIZED; + + if (!(nic->rxs = kcalloc(count, sizeof(struct rx), GFP_ATOMIC))) + return -ENOMEM; + + for (rx = nic->rxs, i = 0; i < count; rx++, i++) { + rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; + rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; + if (e100_rx_alloc_skb(nic, rx)) { + e100_rx_clean_list(nic); + return -ENOMEM; + } + } + /* Set the el-bit on the buffer that is before the last buffer. + * This lets us update the next pointer on the last buffer without + * worrying about hardware touching it. + * We set the size to 0 to prevent hardware from touching this buffer. + * When the hardware hits the before last buffer with el-bit and size + * of 0, it will RNR interrupt, the RU will go into the No Resources + * state. It will not complete nor write to this buffer. */ + rx = nic->rxs->prev->prev; + before_last = (struct rfd *)rx->skb->data; + before_last->command |= cpu_to_le16(cb_el); + before_last->size = 0; + pci_dma_sync_single_for_device(nic->pdev, rx->dma_addr, + sizeof(struct rfd), PCI_DMA_BIDIRECTIONAL); + + nic->rx_to_use = nic->rx_to_clean = nic->rxs; + nic->ru_running = RU_SUSPENDED; + + return 0; +} + +static irqreturn_t e100_intr(int irq, void *dev_id) +{ + struct net_device *netdev = dev_id; + struct nic *nic = netdev_priv(netdev); + u8 stat_ack = ioread8(&nic->csr->scb.stat_ack); + + netif_printk(nic, intr, KERN_DEBUG, nic->netdev, + "stat_ack = 0x%02X\n", stat_ack); + + if (stat_ack == stat_ack_not_ours || /* Not our interrupt */ + stat_ack == stat_ack_not_present) /* Hardware is ejected */ + return IRQ_NONE; + + /* Ack interrupt(s) */ + iowrite8(stat_ack, &nic->csr->scb.stat_ack); + + /* We hit Receive No Resource (RNR); restart RU after cleaning */ + if (stat_ack & stat_ack_rnr) + nic->ru_running = RU_SUSPENDED; + + if (likely(napi_schedule_prep(&nic->napi))) { + e100_disable_irq(nic); + __napi_schedule(&nic->napi); + } + + return IRQ_HANDLED; +} + +static int e100_poll(struct napi_struct *napi, int budget) +{ + struct nic *nic = container_of(napi, struct nic, napi); + unsigned int work_done = 0; + + e100_rx_clean(nic, &work_done, budget); + e100_tx_clean(nic); + + /* If budget not fully consumed, exit the polling mode */ + if (work_done < budget) { + napi_complete_done(napi, work_done); + e100_enable_irq(nic); + } + + return work_done; +} + +#ifdef CONFIG_NET_POLL_CONTROLLER +static void e100_netpoll(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + + e100_disable_irq(nic); + e100_intr(nic->pdev->irq, netdev); + e100_tx_clean(nic); + e100_enable_irq(nic); +} +#endif + +static int e100_set_mac_address(struct net_device *netdev, void *p) +{ + struct nic *nic = netdev_priv(netdev); + struct sockaddr *addr = p; + + if (!is_valid_ether_addr(addr->sa_data)) + return -EADDRNOTAVAIL; + + memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); + e100_exec_cb(nic, NULL, e100_setup_iaaddr); + + return 0; +} + +static int e100_asf(struct nic *nic) +{ + /* ASF can be enabled from eeprom */ + return (nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && + (le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_asf) && + !(le16_to_cpu(nic->eeprom[eeprom_config_asf]) & eeprom_gcl) && + ((le16_to_cpu(nic->eeprom[eeprom_smbus_addr]) & 0xFF) != 0xFE); +} + +static int e100_up(struct nic *nic) +{ + int err; + + if ((err = e100_rx_alloc_list(nic))) + return err; + if ((err = e100_alloc_cbs(nic))) + goto err_rx_clean_list; + if ((err = e100_hw_init(nic))) + goto err_clean_cbs; + e100_set_multicast_list(nic->netdev); + e100_start_receiver(nic, NULL); + mod_timer(&nic->watchdog, jiffies); + if ((err = request_irq(nic->pdev->irq, e100_intr, IRQF_SHARED, + nic->netdev->name, nic->netdev))) + goto err_no_irq; + netif_wake_queue(nic->netdev); + napi_enable(&nic->napi); + /* enable ints _after_ enabling poll, preventing a race between + * disable ints+schedule */ + e100_enable_irq(nic); + return 0; + +err_no_irq: + del_timer_sync(&nic->watchdog); +err_clean_cbs: + e100_clean_cbs(nic); +err_rx_clean_list: + e100_rx_clean_list(nic); + return err; +} + +static void e100_down(struct nic *nic) +{ + /* wait here for poll to complete */ + napi_disable(&nic->napi); + netif_stop_queue(nic->netdev); + e100_hw_reset(nic); + free_irq(nic->pdev->irq, nic->netdev); + del_timer_sync(&nic->watchdog); + netif_carrier_off(nic->netdev); + e100_clean_cbs(nic); + e100_rx_clean_list(nic); +} + +static void e100_tx_timeout(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + + /* Reset outside of interrupt context, to avoid request_irq + * in interrupt context */ + schedule_work(&nic->tx_timeout_task); +} + +static void e100_tx_timeout_task(struct work_struct *work) +{ + struct nic *nic = container_of(work, struct nic, tx_timeout_task); + struct net_device *netdev = nic->netdev; + + netif_printk(nic, tx_err, KERN_DEBUG, nic->netdev, + "scb.status=0x%02X\n", ioread8(&nic->csr->scb.status)); + + rtnl_lock(); + if (netif_running(netdev)) { + e100_down(netdev_priv(netdev)); + e100_up(netdev_priv(netdev)); + } + rtnl_unlock(); +} + +static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) +{ + int err; + struct sk_buff *skb; + + /* Use driver resources to perform internal MAC or PHY + * loopback test. A single packet is prepared and transmitted + * in loopback mode, and the test passes if the received + * packet compares byte-for-byte to the transmitted packet. */ + + if ((err = e100_rx_alloc_list(nic))) + return err; + if ((err = e100_alloc_cbs(nic))) + goto err_clean_rx; + + /* ICH PHY loopback is broken so do MAC loopback instead */ + if (nic->flags & ich && loopback_mode == lb_phy) + loopback_mode = lb_mac; + + nic->loopback = loopback_mode; + if ((err = e100_hw_init(nic))) + goto err_loopback_none; + + if (loopback_mode == lb_phy) + mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, + BMCR_LOOPBACK); + + e100_start_receiver(nic, NULL); + + if (!(skb = netdev_alloc_skb(nic->netdev, ETH_DATA_LEN))) { + err = -ENOMEM; + goto err_loopback_none; + } + skb_put(skb, ETH_DATA_LEN); + memset(skb->data, 0xFF, ETH_DATA_LEN); + e100_xmit_frame(skb, nic->netdev); + + msleep(10); + + pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, + RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); + + if (memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), + skb->data, ETH_DATA_LEN)) + err = -EAGAIN; + +err_loopback_none: + mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); + nic->loopback = lb_none; + e100_clean_cbs(nic); + e100_hw_reset(nic); +err_clean_rx: + e100_rx_clean_list(nic); + return err; +} + +#define MII_LED_CONTROL 0x1B +#define E100_82552_LED_OVERRIDE 0x19 +#define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */ +#define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */ + +static int e100_get_link_ksettings(struct net_device *netdev, + struct ethtool_link_ksettings *cmd) +{ + struct nic *nic = netdev_priv(netdev); + + mii_ethtool_get_link_ksettings(&nic->mii, cmd); + + return 0; +} + +static int e100_set_link_ksettings(struct net_device *netdev, + const struct ethtool_link_ksettings *cmd) +{ + struct nic *nic = netdev_priv(netdev); + int err; + + mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); + err = mii_ethtool_set_link_ksettings(&nic->mii, cmd); + e100_exec_cb(nic, NULL, e100_configure); + + return err; +} + +static void e100_get_drvinfo(struct net_device *netdev, + struct ethtool_drvinfo *info) +{ + struct nic *nic = netdev_priv(netdev); + strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); + strlcpy(info->version, DRV_VERSION, sizeof(info->version)); + strlcpy(info->bus_info, pci_name(nic->pdev), + sizeof(info->bus_info)); +} + +#define E100_PHY_REGS 0x1D +static int e100_get_regs_len(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + + /* We know the number of registers, and the size of the dump buffer. + * Calculate the total size in bytes. + */ + return (1 + E100_PHY_REGS) * sizeof(u32) + sizeof(nic->mem->dump_buf); +} + +static void e100_get_regs(struct net_device *netdev, + struct ethtool_regs *regs, void *p) +{ + struct nic *nic = netdev_priv(netdev); + u32 *buff = p; + int i; + + regs->version = (1 << 24) | nic->pdev->revision; + buff[0] = ioread8(&nic->csr->scb.cmd_hi) << 24 | + ioread8(&nic->csr->scb.cmd_lo) << 16 | + ioread16(&nic->csr->scb.status); + for (i = 0; i < E100_PHY_REGS; i++) + /* Note that we read the registers in reverse order. This + * ordering is the ABI apparently used by ethtool and other + * applications. + */ + buff[1 + i] = mdio_read(netdev, nic->mii.phy_id, + E100_PHY_REGS - 1 - i); + memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); + e100_exec_cb(nic, NULL, e100_dump); + msleep(10); + memcpy(&buff[1 + E100_PHY_REGS], nic->mem->dump_buf, + sizeof(nic->mem->dump_buf)); +} + +static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) +{ + struct nic *nic = netdev_priv(netdev); + wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; + wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; +} + +static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) +{ + struct nic *nic = netdev_priv(netdev); + + if ((wol->wolopts && wol->wolopts != WAKE_MAGIC) || + !device_can_wakeup(&nic->pdev->dev)) + return -EOPNOTSUPP; + + if (wol->wolopts) + nic->flags |= wol_magic; + else + nic->flags &= ~wol_magic; + + device_set_wakeup_enable(&nic->pdev->dev, wol->wolopts); + + e100_exec_cb(nic, NULL, e100_configure); + + return 0; +} + +static u32 e100_get_msglevel(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + return nic->msg_enable; +} + +static void e100_set_msglevel(struct net_device *netdev, u32 value) +{ + struct nic *nic = netdev_priv(netdev); + nic->msg_enable = value; +} + +static int e100_nway_reset(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + return mii_nway_restart(&nic->mii); +} + +static u32 e100_get_link(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + return mii_link_ok(&nic->mii); +} + +static int e100_get_eeprom_len(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + return nic->eeprom_wc << 1; +} + +#define E100_EEPROM_MAGIC 0x1234 +static int e100_get_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, u8 *bytes) +{ + struct nic *nic = netdev_priv(netdev); + + eeprom->magic = E100_EEPROM_MAGIC; + memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); + + return 0; +} + +static int e100_set_eeprom(struct net_device *netdev, + struct ethtool_eeprom *eeprom, u8 *bytes) +{ + struct nic *nic = netdev_priv(netdev); + + if (eeprom->magic != E100_EEPROM_MAGIC) + return -EINVAL; + + memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); + + return e100_eeprom_save(nic, eeprom->offset >> 1, + (eeprom->len >> 1) + 1); +} + +static void e100_get_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct nic *nic = netdev_priv(netdev); + struct param_range *rfds = &nic->params.rfds; + struct param_range *cbs = &nic->params.cbs; + + ring->rx_max_pending = rfds->max; + ring->tx_max_pending = cbs->max; + ring->rx_pending = rfds->count; + ring->tx_pending = cbs->count; +} + +static int e100_set_ringparam(struct net_device *netdev, + struct ethtool_ringparam *ring) +{ + struct nic *nic = netdev_priv(netdev); + struct param_range *rfds = &nic->params.rfds; + struct param_range *cbs = &nic->params.cbs; + + if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) + return -EINVAL; + + if (netif_running(netdev)) + e100_down(nic); + rfds->count = max(ring->rx_pending, rfds->min); + rfds->count = min(rfds->count, rfds->max); + cbs->count = max(ring->tx_pending, cbs->min); + cbs->count = min(cbs->count, cbs->max); + netif_info(nic, drv, nic->netdev, "Ring Param settings: rx: %d, tx %d\n", + rfds->count, cbs->count); + if (netif_running(netdev)) + e100_up(nic); + + return 0; +} + +static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { + "Link test (on/offline)", + "Eeprom test (on/offline)", + "Self test (offline)", + "Mac loopback (offline)", + "Phy loopback (offline)", +}; +#define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test) + +static void e100_diag_test(struct net_device *netdev, + struct ethtool_test *test, u64 *data) +{ + struct ethtool_cmd cmd; + struct nic *nic = netdev_priv(netdev); + int i, err; + + memset(data, 0, E100_TEST_LEN * sizeof(u64)); + data[0] = !mii_link_ok(&nic->mii); + data[1] = e100_eeprom_load(nic); + if (test->flags & ETH_TEST_FL_OFFLINE) { + + /* save speed, duplex & autoneg settings */ + err = mii_ethtool_gset(&nic->mii, &cmd); + + if (netif_running(netdev)) + e100_down(nic); + data[2] = e100_self_test(nic); + data[3] = e100_loopback_test(nic, lb_mac); + data[4] = e100_loopback_test(nic, lb_phy); + + /* restore speed, duplex & autoneg settings */ + err = mii_ethtool_sset(&nic->mii, &cmd); + + if (netif_running(netdev)) + e100_up(nic); + } + for (i = 0; i < E100_TEST_LEN; i++) + test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; + + msleep_interruptible(4 * 1000); +} + +static int e100_set_phys_id(struct net_device *netdev, + enum ethtool_phys_id_state state) +{ + struct nic *nic = netdev_priv(netdev); + enum led_state { + led_on = 0x01, + led_off = 0x04, + led_on_559 = 0x05, + led_on_557 = 0x07, + }; + u16 led_reg = (nic->phy == phy_82552_v) ? E100_82552_LED_OVERRIDE : + MII_LED_CONTROL; + u16 leds = 0; + + switch (state) { + case ETHTOOL_ID_ACTIVE: + return 2; + + case ETHTOOL_ID_ON: + leds = (nic->phy == phy_82552_v) ? E100_82552_LED_ON : + (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; + break; + + case ETHTOOL_ID_OFF: + leds = (nic->phy == phy_82552_v) ? E100_82552_LED_OFF : led_off; + break; + + case ETHTOOL_ID_INACTIVE: + break; + } + + mdio_write(netdev, nic->mii.phy_id, led_reg, leds); + return 0; +} + +static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { + "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", + "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", + "rx_length_errors", "rx_over_errors", "rx_crc_errors", + "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", + "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", + "tx_heartbeat_errors", "tx_window_errors", + /* device-specific stats */ + "tx_deferred", "tx_single_collisions", "tx_multi_collisions", + "tx_flow_control_pause", "rx_flow_control_pause", + "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", + "rx_short_frame_errors", "rx_over_length_errors", +}; +#define E100_NET_STATS_LEN 21 +#define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats) + +static int e100_get_sset_count(struct net_device *netdev, int sset) +{ + switch (sset) { + case ETH_SS_TEST: + return E100_TEST_LEN; + case ETH_SS_STATS: + return E100_STATS_LEN; + default: + return -EOPNOTSUPP; + } +} + +static void e100_get_ethtool_stats(struct net_device *netdev, + struct ethtool_stats *stats, u64 *data) +{ + struct nic *nic = netdev_priv(netdev); + int i; + + for (i = 0; i < E100_NET_STATS_LEN; i++) + data[i] = ((unsigned long *)&netdev->stats)[i]; + + data[i++] = nic->tx_deferred; + data[i++] = nic->tx_single_collisions; + data[i++] = nic->tx_multiple_collisions; + data[i++] = nic->tx_fc_pause; + data[i++] = nic->rx_fc_pause; + data[i++] = nic->rx_fc_unsupported; + data[i++] = nic->tx_tco_frames; + data[i++] = nic->rx_tco_frames; + data[i++] = nic->rx_short_frame_errors; + data[i++] = nic->rx_over_length_errors; +} + +static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) +{ + switch (stringset) { + case ETH_SS_TEST: + memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); + break; + case ETH_SS_STATS: + memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); + break; + } +} + +static const struct ethtool_ops e100_ethtool_ops = { + .get_drvinfo = e100_get_drvinfo, + .get_regs_len = e100_get_regs_len, + .get_regs = e100_get_regs, + .get_wol = e100_get_wol, + .set_wol = e100_set_wol, + .get_msglevel = e100_get_msglevel, + .set_msglevel = e100_set_msglevel, + .nway_reset = e100_nway_reset, + .get_link = e100_get_link, + .get_eeprom_len = e100_get_eeprom_len, + .get_eeprom = e100_get_eeprom, + .set_eeprom = e100_set_eeprom, + .get_ringparam = e100_get_ringparam, + .set_ringparam = e100_set_ringparam, + .self_test = e100_diag_test, + .get_strings = e100_get_strings, + .set_phys_id = e100_set_phys_id, + .get_ethtool_stats = e100_get_ethtool_stats, + .get_sset_count = e100_get_sset_count, + .get_ts_info = ethtool_op_get_ts_info, + .get_link_ksettings = e100_get_link_ksettings, + .set_link_ksettings = e100_set_link_ksettings, +}; + +static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) +{ + struct nic *nic = netdev_priv(netdev); + + return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); +} + +static int e100_alloc(struct nic *nic) +{ + nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), + &nic->dma_addr); + return nic->mem ? 0 : -ENOMEM; +} + +static void e100_free(struct nic *nic) +{ + if (nic->mem) { + pci_free_consistent(nic->pdev, sizeof(struct mem), + nic->mem, nic->dma_addr); + nic->mem = NULL; + } +} + +static int e100_open(struct net_device *netdev) +{ + struct nic *nic = netdev_priv(netdev); + int err = 0; + + netif_carrier_off(netdev); + if ((err = e100_up(nic))) + netif_err(nic, ifup, nic->netdev, "Cannot open interface, aborting\n"); + return err; +} + +static int e100_close(struct net_device *netdev) +{ + e100_down(netdev_priv(netdev)); + return 0; +} + +static int e100_set_features(struct net_device *netdev, + netdev_features_t features) +{ + struct nic *nic = netdev_priv(netdev); + netdev_features_t changed = features ^ netdev->features; + + if (!(changed & (NETIF_F_RXFCS | NETIF_F_RXALL))) + return 0; + + netdev->features = features; + e100_exec_cb(nic, NULL, e100_configure); + return 0; +} + +static const struct net_device_ops e100_netdev_ops = { + .ndo_open = e100_open, + .ndo_stop = e100_close, + .ndo_start_xmit = e100_xmit_frame, + .ndo_validate_addr = eth_validate_addr, + .ndo_set_rx_mode = e100_set_multicast_list, + .ndo_set_mac_address = e100_set_mac_address, + .ndo_do_ioctl = e100_do_ioctl, + .ndo_tx_timeout = e100_tx_timeout, +#ifdef CONFIG_NET_POLL_CONTROLLER + .ndo_poll_controller = e100_netpoll, +#endif + .ndo_set_features = e100_set_features, +}; + +static int e100_probe(struct pci_dev *pdev, const struct pci_device_id *ent) +{ + struct net_device *netdev; + struct nic *nic; + int err; + + if (!(netdev = alloc_etherdev(sizeof(struct nic)))) + return -ENOMEM; + + netdev->hw_features |= NETIF_F_RXFCS; + netdev->priv_flags |= IFF_SUPP_NOFCS; + netdev->hw_features |= NETIF_F_RXALL; + + netdev->netdev_ops = &e100_netdev_ops; + netdev->ethtool_ops = &e100_ethtool_ops; + netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; + strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); + + nic = netdev_priv(netdev); + netif_napi_add(netdev, &nic->napi, e100_poll, E100_NAPI_WEIGHT); + nic->netdev = netdev; + nic->pdev = pdev; + nic->msg_enable = (1 << debug) - 1; + nic->mdio_ctrl = mdio_ctrl_hw; + pci_set_drvdata(pdev, netdev); + + if ((err = pci_enable_device(pdev))) { + netif_err(nic, probe, nic->netdev, "Cannot enable PCI device, aborting\n"); + goto err_out_free_dev; + } + + if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { + netif_err(nic, probe, nic->netdev, "Cannot find proper PCI device base address, aborting\n"); + err = -ENODEV; + goto err_out_disable_pdev; + } + + if ((err = pci_request_regions(pdev, DRV_NAME))) { + netif_err(nic, probe, nic->netdev, "Cannot obtain PCI resources, aborting\n"); + goto err_out_disable_pdev; + } + + if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { + netif_err(nic, probe, nic->netdev, "No usable DMA configuration, aborting\n"); + goto err_out_free_res; + } + + SET_NETDEV_DEV(netdev, &pdev->dev); + + if (use_io) + netif_info(nic, probe, nic->netdev, "using i/o access mode\n"); + + nic->csr = pci_iomap(pdev, (use_io ? 1 : 0), sizeof(struct csr)); + if (!nic->csr) { + netif_err(nic, probe, nic->netdev, "Cannot map device registers, aborting\n"); + err = -ENOMEM; + goto err_out_free_res; + } + + if (ent->driver_data) + nic->flags |= ich; + else + nic->flags &= ~ich; + + e100_get_defaults(nic); + + /* D100 MAC doesn't allow rx of vlan packets with normal MTU */ + if (nic->mac < mac_82558_D101_A4) + netdev->features |= NETIF_F_VLAN_CHALLENGED; + + /* locks must be initialized before calling hw_reset */ + spin_lock_init(&nic->cb_lock); + spin_lock_init(&nic->cmd_lock); + spin_lock_init(&nic->mdio_lock); + + /* Reset the device before pci_set_master() in case device is in some + * funky state and has an interrupt pending - hint: we don't have the + * interrupt handler registered yet. */ + e100_hw_reset(nic); + + pci_set_master(pdev); + + timer_setup(&nic->watchdog, e100_watchdog, 0); + + INIT_WORK(&nic->tx_timeout_task, e100_tx_timeout_task); + + if ((err = e100_alloc(nic))) { + netif_err(nic, probe, nic->netdev, "Cannot alloc driver memory, aborting\n"); + goto err_out_iounmap; + } + + if ((err = e100_eeprom_load(nic))) + goto err_out_free; + + e100_phy_init(nic); + + memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); + if (!is_valid_ether_addr(netdev->dev_addr)) { + if (!eeprom_bad_csum_allow) { + netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, aborting\n"); + err = -EAGAIN; + goto err_out_free; + } else { + netif_err(nic, probe, nic->netdev, "Invalid MAC address from EEPROM, you MUST configure one.\n"); + } + } + + /* Wol magic packet can be enabled from eeprom */ + if ((nic->mac >= mac_82558_D101_A4) && + (le16_to_cpu(nic->eeprom[eeprom_id]) & eeprom_id_wol)) { + nic->flags |= wol_magic; + device_set_wakeup_enable(&pdev->dev, true); + } + + /* ack any pending wake events, disable PME */ + pci_pme_active(pdev, false); + + strcpy(netdev->name, "eth%d"); + if ((err = register_netdev(netdev))) { + netif_err(nic, probe, nic->netdev, "Cannot register net device, aborting\n"); + goto err_out_free; + } + nic->cbs_pool = dma_pool_create(netdev->name, + &nic->pdev->dev, + nic->params.cbs.max * sizeof(struct cb), + sizeof(u32), + 0); + if (!nic->cbs_pool) { + netif_err(nic, probe, nic->netdev, "Cannot create DMA pool, aborting\n"); + err = -ENOMEM; + goto err_out_pool; + } + netif_info(nic, probe, nic->netdev, + "addr 0x%llx, irq %d, MAC addr %pM\n", + (unsigned long long)pci_resource_start(pdev, use_io ? 1 : 0), + pdev->irq, netdev->dev_addr); + + return 0; + +err_out_pool: + unregister_netdev(netdev); +err_out_free: + e100_free(nic); +err_out_iounmap: + pci_iounmap(pdev, nic->csr); +err_out_free_res: + pci_release_regions(pdev); +err_out_disable_pdev: + pci_disable_device(pdev); +err_out_free_dev: + free_netdev(netdev); + return err; +} + +static void e100_remove(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + + if (netdev) { + struct nic *nic = netdev_priv(netdev); + unregister_netdev(netdev); + e100_free(nic); + pci_iounmap(pdev, nic->csr); + dma_pool_destroy(nic->cbs_pool); + free_netdev(netdev); + pci_release_regions(pdev); + pci_disable_device(pdev); + } +} + +#define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */ +#define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */ +#define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */ +static void __e100_shutdown(struct pci_dev *pdev, bool *enable_wake) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct nic *nic = netdev_priv(netdev); + + if (netif_running(netdev)) + e100_down(nic); + netif_device_detach(netdev); + + pci_save_state(pdev); + + if ((nic->flags & wol_magic) | e100_asf(nic)) { + /* enable reverse auto-negotiation */ + if (nic->phy == phy_82552_v) { + u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, + E100_82552_SMARTSPEED); + + mdio_write(netdev, nic->mii.phy_id, + E100_82552_SMARTSPEED, smartspeed | + E100_82552_REV_ANEG | E100_82552_ANEG_NOW); + } + *enable_wake = true; + } else { + *enable_wake = false; + } + + pci_clear_master(pdev); +} + +static int __e100_power_off(struct pci_dev *pdev, bool wake) +{ + if (wake) + return pci_prepare_to_sleep(pdev); + + pci_wake_from_d3(pdev, false); + pci_set_power_state(pdev, PCI_D3hot); + + return 0; +} + +#ifdef CONFIG_PM +static int e100_suspend(struct pci_dev *pdev, pm_message_t state) +{ + bool wake; + __e100_shutdown(pdev, &wake); + return __e100_power_off(pdev, wake); +} + +static int e100_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct nic *nic = netdev_priv(netdev); + + pci_set_power_state(pdev, PCI_D0); + pci_restore_state(pdev); + /* ack any pending wake events, disable PME */ + pci_enable_wake(pdev, PCI_D0, 0); + + /* disable reverse auto-negotiation */ + if (nic->phy == phy_82552_v) { + u16 smartspeed = mdio_read(netdev, nic->mii.phy_id, + E100_82552_SMARTSPEED); + + mdio_write(netdev, nic->mii.phy_id, + E100_82552_SMARTSPEED, + smartspeed & ~(E100_82552_REV_ANEG)); + } + + netif_device_attach(netdev); + if (netif_running(netdev)) + e100_up(nic); + + return 0; +} +#endif /* CONFIG_PM */ + +static void e100_shutdown(struct pci_dev *pdev) +{ + bool wake; + __e100_shutdown(pdev, &wake); + if (system_state == SYSTEM_POWER_OFF) + __e100_power_off(pdev, wake); +} + +/* ------------------ PCI Error Recovery infrastructure -------------- */ +/** + * e100_io_error_detected - called when PCI error is detected. + * @pdev: Pointer to PCI device + * @state: The current pci connection state + */ +static pci_ers_result_t e100_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct nic *nic = netdev_priv(netdev); + + netif_device_detach(netdev); + + if (state == pci_channel_io_perm_failure) + return PCI_ERS_RESULT_DISCONNECT; + + if (netif_running(netdev)) + e100_down(nic); + pci_disable_device(pdev); + + /* Request a slot reset. */ + return PCI_ERS_RESULT_NEED_RESET; +} + +/** + * e100_io_slot_reset - called after the pci bus has been reset. + * @pdev: Pointer to PCI device + * + * Restart the card from scratch. + */ +static pci_ers_result_t e100_io_slot_reset(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct nic *nic = netdev_priv(netdev); + + if (pci_enable_device(pdev)) { + pr_err("Cannot re-enable PCI device after reset\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + pci_set_master(pdev); + + /* Only one device per card can do a reset */ + if (0 != PCI_FUNC(pdev->devfn)) + return PCI_ERS_RESULT_RECOVERED; + e100_hw_reset(nic); + e100_phy_init(nic); + + return PCI_ERS_RESULT_RECOVERED; +} + +/** + * e100_io_resume - resume normal operations + * @pdev: Pointer to PCI device + * + * Resume normal operations after an error recovery + * sequence has been completed. + */ +static void e100_io_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct nic *nic = netdev_priv(netdev); + + /* ack any pending wake events, disable PME */ + pci_enable_wake(pdev, PCI_D0, 0); + + netif_device_attach(netdev); + if (netif_running(netdev)) { + e100_open(netdev); + mod_timer(&nic->watchdog, jiffies); + } +} + +static const struct pci_error_handlers e100_err_handler = { + .error_detected = e100_io_error_detected, + .slot_reset = e100_io_slot_reset, + .resume = e100_io_resume, +}; + +static struct pci_driver e100_driver = { + .name = DRV_NAME, + .id_table = e100_id_table, + .probe = e100_probe, + .remove = e100_remove, +#ifdef CONFIG_PM + /* Power Management hooks */ + .suspend = e100_suspend, + .resume = e100_resume, +#endif + .shutdown = e100_shutdown, + .err_handler = &e100_err_handler, +}; + +static int __init e100_init_module(void) +{ + if (((1 << debug) - 1) & NETIF_MSG_DRV) { + pr_info("%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); + pr_info("%s\n", DRV_COPYRIGHT); + } + return pci_register_driver(&e100_driver); +} + +static void __exit e100_cleanup_module(void) +{ + pci_unregister_driver(&e100_driver); +} + +module_init(e100_init_module); +module_exit(e100_cleanup_module); |