diff options
Diffstat (limited to 'drivers/net/ethernet/intel/igb/e1000_nvm.c')
-rw-r--r-- | drivers/net/ethernet/intel/igb/e1000_nvm.c | 782 |
1 files changed, 782 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/igb/e1000_nvm.c b/drivers/net/ethernet/intel/igb/e1000_nvm.c new file mode 100644 index 000000000..09f4dcb09 --- /dev/null +++ b/drivers/net/ethernet/intel/igb/e1000_nvm.c @@ -0,0 +1,782 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright(c) 2007 - 2018 Intel Corporation. */ + +#include <linux/if_ether.h> +#include <linux/delay.h> + +#include "e1000_mac.h" +#include "e1000_nvm.h" + +/** + * igb_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + wr32(E1000_EECD, *eecd); + wrfl(); + udelay(hw->nvm.delay_usec); +} + +/** + * igb_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + wr32(E1000_EECD, *eecd); + wrfl(); + udelay(hw->nvm.delay_usec); +} + +/** + * igb_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = rd32(E1000_EECD); + u32 mask; + + mask = 1u << (count - 1); + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + wr32(E1000_EECD, eecd); + wrfl(); + + udelay(nvm->delay_usec); + + igb_raise_eec_clk(hw, &eecd); + igb_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + wr32(E1000_EECD, eecd); +} + +/** + * igb_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + eecd = rd32(E1000_EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + igb_raise_eec_clk(hw, &eecd); + + eecd = rd32(E1000_EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + igb_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + s32 ret_val = -E1000_ERR_NVM; + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = rd32(E1000_EERD); + else + reg = rd32(E1000_EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) { + ret_val = 0; + break; + } + + udelay(5); + } + + return ret_val; +} + +/** + * igb_acquire_nvm - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 igb_acquire_nvm(struct e1000_hw *hw) +{ + u32 eecd = rd32(E1000_EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + s32 ret_val = 0; + + + wr32(E1000_EECD, eecd | E1000_EECD_REQ); + eecd = rd32(E1000_EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + udelay(5); + eecd = rd32(E1000_EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + wr32(E1000_EECD, eecd); + hw_dbg("Could not acquire NVM grant\n"); + ret_val = -E1000_ERR_NVM; + } + + return ret_val; +} + +/** + * igb_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void igb_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = rd32(E1000_EECD); + + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + wr32(E1000_EECD, eecd); + wrfl(); + udelay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + wr32(E1000_EECD, eecd); + wrfl(); + udelay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +static void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + eecd = rd32(E1000_EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + igb_lower_eec_clk(hw, &eecd); + } +} + +/** + * igb_release_nvm - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void igb_release_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + e1000_stop_nvm(hw); + + eecd = rd32(E1000_EECD); + eecd &= ~E1000_EECD_REQ; + wr32(E1000_EECD, eecd); +} + +/** + * igb_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = rd32(E1000_EECD); + s32 ret_val = 0; + u16 timeout = 0; + u8 spi_stat_reg; + + + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + wr32(E1000_EECD, eecd); + wrfl(); + udelay(1); + timeout = NVM_MAX_RETRY_SPI; + + /* Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. + */ + while (timeout) { + igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + udelay(5); + igb_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + hw_dbg("SPI NVM Status error\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + } + +out: + return ret_val; +} + +/** + * igb_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + goto out; + + ret_val = igb_ready_nvm_eeprom(hw); + if (ret_val) + goto release; + + igb_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset + */ + for (i = 0; i < words; i++) { + word_in = igb_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + +release: + nvm->ops.release(hw); + +out: + return ret_val; +} + +/** + * igb_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = 0; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg("nvm parameter(s) out of bounds\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + wr32(E1000_EERD, eerd); + ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (rd32(E1000_EERD) >> + E1000_NVM_RW_REG_DATA); + } + +out: + return ret_val; +} + +/** + * igb_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000_update_nvm_checksum is not called after this function , the + * EEPROM will most likley contain an invalid checksum. + **/ +s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val = -E1000_ERR_NVM; + u16 widx = 0; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. + */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg("nvm parameter(s) out of bounds\n"); + return ret_val; + } + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = nvm->ops.acquire(hw); + if (ret_val) + return ret_val; + + ret_val = igb_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release(hw); + return ret_val; + } + + igb_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + igb_standby_nvm(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode + */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + + word_out = (word_out >> 8) | (word_out << 8); + igb_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + igb_standby_nvm(hw); + break; + } + } + usleep_range(1000, 2000); + nvm->ops.release(hw); + } + + return ret_val; +} + +/** + * igb_read_part_string - Read device part number + * @hw: pointer to the HW structure + * @part_num: pointer to device part number + * @part_num_size: size of part number buffer + * + * Reads the product board assembly (PBA) number from the EEPROM and stores + * the value in part_num. + **/ +s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) +{ + s32 ret_val; + u16 nvm_data; + u16 pointer; + u16 offset; + u16 length; + + if (part_num == NULL) { + hw_dbg("PBA string buffer was null\n"); + ret_val = E1000_ERR_INVALID_ARGUMENT; + goto out; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + /* if nvm_data is not ptr guard the PBA must be in legacy format which + * means pointer is actually our second data word for the PBA number + * and we can decode it into an ascii string + */ + if (nvm_data != NVM_PBA_PTR_GUARD) { + hw_dbg("NVM PBA number is not stored as string\n"); + + /* we will need 11 characters to store the PBA */ + if (part_num_size < 11) { + hw_dbg("PBA string buffer too small\n"); + return E1000_ERR_NO_SPACE; + } + + /* extract hex string from data and pointer */ + part_num[0] = (nvm_data >> 12) & 0xF; + part_num[1] = (nvm_data >> 8) & 0xF; + part_num[2] = (nvm_data >> 4) & 0xF; + part_num[3] = nvm_data & 0xF; + part_num[4] = (pointer >> 12) & 0xF; + part_num[5] = (pointer >> 8) & 0xF; + part_num[6] = '-'; + part_num[7] = 0; + part_num[8] = (pointer >> 4) & 0xF; + part_num[9] = pointer & 0xF; + + /* put a null character on the end of our string */ + part_num[10] = '\0'; + + /* switch all the data but the '-' to hex char */ + for (offset = 0; offset < 10; offset++) { + if (part_num[offset] < 0xA) + part_num[offset] += '0'; + else if (part_num[offset] < 0x10) + part_num[offset] += 'A' - 0xA; + } + + goto out; + } + + ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + + if (length == 0xFFFF || length == 0) { + hw_dbg("NVM PBA number section invalid length\n"); + ret_val = E1000_ERR_NVM_PBA_SECTION; + goto out; + } + /* check if part_num buffer is big enough */ + if (part_num_size < (((u32)length * 2) - 1)) { + hw_dbg("PBA string buffer too small\n"); + ret_val = E1000_ERR_NO_SPACE; + goto out; + } + + /* trim pba length from start of string */ + pointer++; + length--; + + for (offset = 0; offset < length; offset++) { + ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + part_num[offset * 2] = (u8)(nvm_data >> 8); + part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); + } + part_num[offset * 2] = '\0'; + +out: + return ret_val; +} + +/** + * igb_read_mac_addr - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 igb_read_mac_addr(struct e1000_hw *hw) +{ + u32 rar_high; + u32 rar_low; + u16 i; + + rar_high = rd32(E1000_RAH(0)); + rar_low = rd32(E1000_RAL(0)); + + for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); + + for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) + hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); + + for (i = 0; i < ETH_ALEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return 0; +} + +/** + * igb_validate_nvm_checksum - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 igb_validate_nvm_checksum(struct e1000_hw *hw) +{ + s32 ret_val = 0; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + hw_dbg("NVM Read Error\n"); + goto out; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + hw_dbg("NVM Checksum Invalid\n"); + ret_val = -E1000_ERR_NVM; + goto out; + } + +out: + return ret_val; +} + +/** + * igb_update_nvm_checksum - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 igb_update_nvm_checksum(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); + if (ret_val) { + hw_dbg("NVM Read Error while updating checksum.\n"); + goto out; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + hw_dbg("NVM Write Error while updating checksum.\n"); + +out: + return ret_val; +} + +/** + * igb_get_fw_version - Get firmware version information + * @hw: pointer to the HW structure + * @fw_vers: pointer to output structure + * + * unsupported MAC types will return all 0 version structure + **/ +void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) +{ + u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; + u8 q, hval, rem, result; + u16 comb_verh, comb_verl, comb_offset; + + memset(fw_vers, 0, sizeof(struct e1000_fw_version)); + + /* basic eeprom version numbers and bits used vary by part and by tool + * used to create the nvm images. Check which data format we have. + */ + hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); + switch (hw->mac.type) { + case e1000_i211: + igb_read_invm_version(hw, fw_vers); + return; + case e1000_82575: + case e1000_82576: + case e1000_82580: + /* Use this format, unless EETRACK ID exists, + * then use alternate format + */ + if ((etrack_test & NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); + goto etrack_id; + } + break; + case e1000_i210: + if (!(igb_get_flash_presence_i210(hw))) { + igb_read_invm_version(hw, fw_vers); + return; + } + /* fall through */ + case e1000_i350: + /* find combo image version */ + hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); + if ((comb_offset != 0x0) && + (comb_offset != NVM_VER_INVALID)) { + + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset + + 1), 1, &comb_verh); + hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), + 1, &comb_verl); + + /* get Option Rom version if it exists and is valid */ + if ((comb_verh && comb_verl) && + ((comb_verh != NVM_VER_INVALID) && + (comb_verl != NVM_VER_INVALID))) { + + fw_vers->or_valid = true; + fw_vers->or_major = + comb_verl >> NVM_COMB_VER_SHFT; + fw_vers->or_build = + (comb_verl << NVM_COMB_VER_SHFT) + | (comb_verh >> NVM_COMB_VER_SHFT); + fw_vers->or_patch = + comb_verh & NVM_COMB_VER_MASK; + } + } + break; + default: + return; + } + hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); + fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) + >> NVM_MAJOR_SHIFT; + + /* check for old style version format in newer images*/ + if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { + eeprom_verl = (fw_version & NVM_COMB_VER_MASK); + } else { + eeprom_verl = (fw_version & NVM_MINOR_MASK) + >> NVM_MINOR_SHIFT; + } + /* Convert minor value to hex before assigning to output struct + * Val to be converted will not be higher than 99, per tool output + */ + q = eeprom_verl / NVM_HEX_CONV; + hval = q * NVM_HEX_TENS; + rem = eeprom_verl % NVM_HEX_CONV; + result = hval + rem; + fw_vers->eep_minor = result; + +etrack_id: + if ((etrack_test & NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { + hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); + hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); + fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) + | eeprom_verl; + } +} |