summaryrefslogtreecommitdiffstats
path: root/openbsd-compat/md5.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 01:26:58 +0000
commit999ae6be3243c7b4a815247199447b53c39a3d65 (patch)
tree1f35b42b5e5f462d35ba452e4dcfa188ce0543fd /openbsd-compat/md5.c
parentInitial commit. (diff)
downloadopenssh-upstream.tar.xz
openssh-upstream.zip
Adding upstream version 1:7.9p1.upstream/1%7.9p1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'openbsd-compat/md5.c')
-rw-r--r--openbsd-compat/md5.c251
1 files changed, 251 insertions, 0 deletions
diff --git a/openbsd-compat/md5.c b/openbsd-compat/md5.c
new file mode 100644
index 0000000..195ab51
--- /dev/null
+++ b/openbsd-compat/md5.c
@@ -0,0 +1,251 @@
+/* $OpenBSD: md5.c,v 1.9 2014/01/08 06:14:57 tedu Exp $ */
+
+/*
+ * This code implements the MD5 message-digest algorithm.
+ * The algorithm is due to Ron Rivest. This code was
+ * written by Colin Plumb in 1993, no copyright is claimed.
+ * This code is in the public domain; do with it what you wish.
+ *
+ * Equivalent code is available from RSA Data Security, Inc.
+ * This code has been tested against that, and is equivalent,
+ * except that you don't need to include two pages of legalese
+ * with every copy.
+ *
+ * To compute the message digest of a chunk of bytes, declare an
+ * MD5Context structure, pass it to MD5Init, call MD5Update as
+ * needed on buffers full of bytes, and then call MD5Final, which
+ * will fill a supplied 16-byte array with the digest.
+ */
+
+#include "includes.h"
+
+#ifndef WITH_OPENSSL
+
+#include <sys/types.h>
+#include <string.h>
+#include "md5.h"
+
+#define PUT_64BIT_LE(cp, value) do { \
+ (cp)[7] = (value) >> 56; \
+ (cp)[6] = (value) >> 48; \
+ (cp)[5] = (value) >> 40; \
+ (cp)[4] = (value) >> 32; \
+ (cp)[3] = (value) >> 24; \
+ (cp)[2] = (value) >> 16; \
+ (cp)[1] = (value) >> 8; \
+ (cp)[0] = (value); } while (0)
+
+#define PUT_32BIT_LE(cp, value) do { \
+ (cp)[3] = (value) >> 24; \
+ (cp)[2] = (value) >> 16; \
+ (cp)[1] = (value) >> 8; \
+ (cp)[0] = (value); } while (0)
+
+static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*
+ * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
+ * initialization constants.
+ */
+void
+MD5Init(MD5_CTX *ctx)
+{
+ ctx->count = 0;
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xefcdab89;
+ ctx->state[2] = 0x98badcfe;
+ ctx->state[3] = 0x10325476;
+}
+
+/*
+ * Update context to reflect the concatenation of another buffer full
+ * of bytes.
+ */
+void
+MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
+{
+ size_t have, need;
+
+ /* Check how many bytes we already have and how many more we need. */
+ have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
+ need = MD5_BLOCK_LENGTH - have;
+
+ /* Update bitcount */
+ ctx->count += (u_int64_t)len << 3;
+
+ if (len >= need) {
+ if (have != 0) {
+ memcpy(ctx->buffer + have, input, need);
+ MD5Transform(ctx->state, ctx->buffer);
+ input += need;
+ len -= need;
+ have = 0;
+ }
+
+ /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
+ while (len >= MD5_BLOCK_LENGTH) {
+ MD5Transform(ctx->state, input);
+ input += MD5_BLOCK_LENGTH;
+ len -= MD5_BLOCK_LENGTH;
+ }
+ }
+
+ /* Handle any remaining bytes of data. */
+ if (len != 0)
+ memcpy(ctx->buffer + have, input, len);
+}
+
+/*
+ * Pad pad to 64-byte boundary with the bit pattern
+ * 1 0* (64-bit count of bits processed, MSB-first)
+ */
+void
+MD5Pad(MD5_CTX *ctx)
+{
+ u_int8_t count[8];
+ size_t padlen;
+
+ /* Convert count to 8 bytes in little endian order. */
+ PUT_64BIT_LE(count, ctx->count);
+
+ /* Pad out to 56 mod 64. */
+ padlen = MD5_BLOCK_LENGTH -
+ ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
+ if (padlen < 1 + 8)
+ padlen += MD5_BLOCK_LENGTH;
+ MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
+ MD5Update(ctx, count, 8);
+}
+
+/*
+ * Final wrapup--call MD5Pad, fill in digest and zero out ctx.
+ */
+void
+MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
+{
+ int i;
+
+ MD5Pad(ctx);
+ for (i = 0; i < 4; i++)
+ PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+
+/* The four core functions - F1 is optimized somewhat */
+
+/* #define F1(x, y, z) (x & y | ~x & z) */
+#define F1(x, y, z) (z ^ (x & (y ^ z)))
+#define F2(x, y, z) F1(z, x, y)
+#define F3(x, y, z) (x ^ y ^ z)
+#define F4(x, y, z) (y ^ (x | ~z))
+
+/* This is the central step in the MD5 algorithm. */
+#define MD5STEP(f, w, x, y, z, data, s) \
+ ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
+
+/*
+ * The core of the MD5 algorithm, this alters an existing MD5 hash to
+ * reflect the addition of 16 longwords of new data. MD5Update blocks
+ * the data and converts bytes into longwords for this routine.
+ */
+void
+MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
+{
+ u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
+
+#if BYTE_ORDER == LITTLE_ENDIAN
+ memcpy(in, block, sizeof(in));
+#else
+ for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
+ in[a] = (u_int32_t)(
+ (u_int32_t)(block[a * 4 + 0]) |
+ (u_int32_t)(block[a * 4 + 1]) << 8 |
+ (u_int32_t)(block[a * 4 + 2]) << 16 |
+ (u_int32_t)(block[a * 4 + 3]) << 24);
+ }
+#endif
+
+ a = state[0];
+ b = state[1];
+ c = state[2];
+ d = state[3];
+
+ MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
+ MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
+ MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
+ MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
+ MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
+ MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
+ MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
+ MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
+ MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
+ MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
+ MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
+ MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
+ MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
+ MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
+ MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
+ MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
+
+ MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
+ MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
+ MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
+ MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
+ MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
+ MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
+ MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
+ MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
+ MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
+ MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
+ MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
+ MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
+ MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
+ MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
+ MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
+ MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
+
+ MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
+ MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
+ MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
+ MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
+ MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
+ MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
+ MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
+ MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
+ MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
+ MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
+ MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
+ MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
+ MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
+ MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
+ MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
+ MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
+
+ MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
+ MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
+ MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
+ MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
+ MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
+ MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
+ MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
+ MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
+ MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
+ MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
+ MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
+ MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
+ MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
+ MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
+ MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
+ MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
+
+ state[0] += a;
+ state[1] += b;
+ state[2] += c;
+ state[3] += d;
+}
+#endif /* !WITH_OPENSSL */