diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
commit | f8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch) | |
tree | 26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c | |
parent | Initial commit. (diff) | |
download | virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip |
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c')
-rw-r--r-- | src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c | 664 |
1 files changed, 664 insertions, 0 deletions
diff --git a/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c b/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c new file mode 100644 index 00000000..0f7889e3 --- /dev/null +++ b/src/VBox/Runtime/r0drv/haiku/memobj-r0drv-haiku.c @@ -0,0 +1,664 @@ +/* $Id: memobj-r0drv-haiku.c $ */ +/** @file + * IPRT - Ring-0 Memory Objects, Haiku. + */ + +/* + * Copyright (C) 2012-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include "the-haiku-kernel.h" + +#include <iprt/memobj.h> +#include <iprt/mem.h> +#include <iprt/err.h> +#include <iprt/assert.h> +#include <iprt/log.h> +#include <iprt/param.h> +#include <iprt/process.h> +#include "internal/memobj.h" + + +/********************************************************************************************************************************* +* Structures and Typedefs * +*********************************************************************************************************************************/ +/** + * The Haiku version of the memory object structure. + */ +typedef struct RTR0MEMOBJHAIKU +{ + /** The core structure. */ + RTR0MEMOBJINTERNAL Core; + /** Area identifier */ + area_id AreaId; +} RTR0MEMOBJHAIKU, *PRTR0MEMOBJHAIKU; + + +//MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj"); +#if 0 +/** + * Gets the virtual memory map the specified object is mapped into. + * + * @returns VM map handle on success, NULL if no map. + * @param pMem The memory object. + */ +static vm_map_t rtR0MemObjHaikuGetMap(PRTR0MEMOBJINTERNAL pMem) +{ + switch (pMem->enmType) + { + case RTR0MEMOBJTYPE_PAGE: + case RTR0MEMOBJTYPE_LOW: + case RTR0MEMOBJTYPE_CONT: + return kernel_map; + + case RTR0MEMOBJTYPE_PHYS: + case RTR0MEMOBJTYPE_PHYS_NC: + return NULL; /* pretend these have no mapping atm. */ + + case RTR0MEMOBJTYPE_LOCK: + return pMem->u.Lock.R0Process == NIL_RTR0PROCESS + ? kernel_map + : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map; + + case RTR0MEMOBJTYPE_RES_VIRT: + return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS + ? kernel_map + : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map; + + case RTR0MEMOBJTYPE_MAPPING: + return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS + ? kernel_map + : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map; + + default: + return NULL; + } +} +#endif + + +int rtR0MemObjNativeFree(RTR0MEMOBJ pMem) +{ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem; + int rc = B_OK; + + switch (pMemHaiku->Core.enmType) + { + case RTR0MEMOBJTYPE_PAGE: + case RTR0MEMOBJTYPE_LOW: + case RTR0MEMOBJTYPE_CONT: + case RTR0MEMOBJTYPE_MAPPING: + case RTR0MEMOBJTYPE_PHYS: + case RTR0MEMOBJTYPE_PHYS_NC: + { + if (pMemHaiku->AreaId > -1) + rc = delete_area(pMemHaiku->AreaId); + + AssertMsg(rc == B_OK, ("%#x", rc)); + break; + } + + case RTR0MEMOBJTYPE_LOCK: + { + team_id team = B_SYSTEM_TEAM; + + if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS) + team = ((team_id)pMemHaiku->Core.u.Lock.R0Process); + + rc = unlock_memory_etc(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb, B_READ_DEVICE); + AssertMsg(rc == B_OK, ("%#x", rc)); + break; + } + + case RTR0MEMOBJTYPE_RES_VIRT: + { + team_id team = B_SYSTEM_TEAM; + if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS) + team = ((team_id)pMemHaiku->Core.u.Lock.R0Process); + + rc = vm_unreserve_address_range(team, pMemHaiku->Core.pv, pMemHaiku->Core.cb); + AssertMsg(rc == B_OK, ("%#x", rc)); + break; + } + + default: + AssertMsgFailed(("enmType=%d\n", pMemHaiku->Core.enmType)); + return VERR_INTERNAL_ERROR; + } + + return VINF_SUCCESS; +} + + +static int rtR0MemObjNativeAllocArea(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, + bool fExecutable, RTR0MEMOBJTYPE type, RTHCPHYS PhysHighest, size_t uAlignment) +{ + NOREF(fExecutable); + + int rc; + void *pvMap = NULL; + const char *pszName = NULL; + uint32 addressSpec = B_ANY_KERNEL_ADDRESS; + uint32 fLock = ~0U; + LogFlowFunc(("ppMem=%p cb=%u, fExecutable=%s, type=%08x, PhysHighest=%RX64 uAlignment=%u\n", ppMem,(unsigned)cb, + fExecutable ? "true" : "false", type, PhysHighest,(unsigned)uAlignment)); + + switch (type) + { + case RTR0MEMOBJTYPE_PAGE: + pszName = "IPRT R0MemObj Alloc"; + fLock = B_FULL_LOCK; + break; + case RTR0MEMOBJTYPE_LOW: + pszName = "IPRT R0MemObj AllocLow"; + fLock = B_32_BIT_FULL_LOCK; + break; + case RTR0MEMOBJTYPE_CONT: + pszName = "IPRT R0MemObj AllocCont"; + fLock = B_32_BIT_CONTIGUOUS; + break; +#if 0 + case RTR0MEMOBJTYPE_MAPPING: + pszName = "IPRT R0MemObj Mapping"; + fLock = B_FULL_LOCK; + break; +#endif + case RTR0MEMOBJTYPE_PHYS: + /** @todo alignment */ + if (uAlignment != PAGE_SIZE) + return VERR_NOT_SUPPORTED; + /** @todo r=ramshankar: no 'break' here?? */ + case RTR0MEMOBJTYPE_PHYS_NC: + pszName = "IPRT R0MemObj AllocPhys"; + fLock = (PhysHighest < _4G ? B_LOMEM : B_32_BIT_CONTIGUOUS); + break; +#if 0 + case RTR0MEMOBJTYPE_LOCK: + break; +#endif + default: + return VERR_INTERNAL_ERROR; + } + + /* Create the object. */ + PRTR0MEMOBJHAIKU pMemHaiku; + pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), type, NULL, cb); + if (RT_UNLIKELY(!pMemHaiku)) + return VERR_NO_MEMORY; + + rc = pMemHaiku->AreaId = create_area(pszName, &pvMap, addressSpec, cb, fLock, B_READ_AREA | B_WRITE_AREA); + if (pMemHaiku->AreaId >= 0) + { + physical_entry physMap[2]; + pMemHaiku->Core.pv = pvMap; /* store start address */ + switch (type) + { + case RTR0MEMOBJTYPE_CONT: + rc = get_memory_map(pvMap, cb, physMap, 2); + if (rc == B_OK) + pMemHaiku->Core.u.Cont.Phys = physMap[0].address; + break; + + case RTR0MEMOBJTYPE_PHYS: + case RTR0MEMOBJTYPE_PHYS_NC: + rc = get_memory_map(pvMap, cb, physMap, 2); + if (rc == B_OK) + { + pMemHaiku->Core.u.Phys.PhysBase = physMap[0].address; + pMemHaiku->Core.u.Phys.fAllocated = true; + } + break; + + default: + break; + } + if (rc >= B_OK) + { + *ppMem = &pMemHaiku->Core; + return VINF_SUCCESS; + } + + delete_area(pMemHaiku->AreaId); + } + + rtR0MemObjDelete(&pMemHaiku->Core); + return RTErrConvertFromHaikuKernReturn(rc); +} + + +int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_PAGE, 0 /* PhysHighest */, 0 /* uAlignment */); +} + + +int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_LOW, 0 /* PhysHighest */, 0 /* uAlignment */); +} + + +int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) +{ + return rtR0MemObjNativeAllocArea(ppMem, cb, fExecutable, RTR0MEMOBJTYPE_CONT, 0 /* PhysHighest */, 0 /* uAlignment */); +} + +int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) +{ + return rtR0MemObjNativeAllocArea(ppMem, cb, false, RTR0MEMOBJTYPE_PHYS, PhysHighest, uAlignment); +} + + +int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) +{ + return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE); +} + + +int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) +{ + AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED); + LogFlowFunc(("ppMem=%p Phys=%08x cb=%u uCachePolicy=%x\n", ppMem, Phys,(unsigned)cb, uCachePolicy)); + + /* Create the object. */ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_PHYS, NULL, cb); + if (!pMemHaiku) + return VERR_NO_MEMORY; + + /* There is no allocation here, it needs to be mapped somewhere first. */ + pMemHaiku->AreaId = -1; + pMemHaiku->Core.u.Phys.fAllocated = false; + pMemHaiku->Core.u.Phys.PhysBase = Phys; + pMemHaiku->Core.u.Phys.uCachePolicy = uCachePolicy; + *ppMem = &pMemHaiku->Core; + return VINF_SUCCESS; +} + + +/** + * Worker locking the memory in either kernel or user maps. + * + * @returns IPRT status code. + * @param ppMem Where to store the allocated memory object. + * @param pvStart The starting address. + * @param cb The size of the block. + * @param fAccess The mapping protection to apply. + * @param R0Process The process to map the memory to (use NIL_RTR0PROCESS + * for the kernel) + * @param fFlags Memory flags (B_READ_DEVICE indicates the memory is + * intended to be written from a "device"). + */ +static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvStart, size_t cb, uint32_t fAccess, + RTR0PROCESS R0Process, int fFlags) +{ + NOREF(fAccess); + int rc; + team_id TeamId = B_SYSTEM_TEAM; + + LogFlowFunc(("ppMem=%p pvStart=%p cb=%u fAccess=%x R0Process=%d fFlags=%x\n", ppMem, pvStart, cb, fAccess, R0Process, + fFlags)); + + /* Create the object. */ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_LOCK, pvStart, cb); + if (RT_UNLIKELY(!pMemHaiku)) + return VERR_NO_MEMORY; + + if (R0Process != NIL_RTR0PROCESS) + TeamId = (team_id)R0Process; + rc = lock_memory_etc(TeamId, pvStart, cb, fFlags); + if (rc == B_OK) + { + pMemHaiku->AreaId = -1; + pMemHaiku->Core.u.Lock.R0Process = R0Process; + *ppMem = &pMemHaiku->Core; + return VINF_SUCCESS; + } + rtR0MemObjDelete(&pMemHaiku->Core); + return RTErrConvertFromHaikuKernReturn(rc); +} + + +int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) +{ + return rtR0MemObjNativeLockInMap(ppMem, (void *)R3Ptr, cb, fAccess, R0Process, B_READ_DEVICE); +} + + +int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) +{ + return rtR0MemObjNativeLockInMap(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS, B_READ_DEVICE); +} + + +#if 0 +/** @todo Reserve address space */ +/** + * Worker for the two virtual address space reservers. + * + * We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here. + */ +static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment, + RTR0PROCESS R0Process) +{ + int rc; + team_id TeamId = B_SYSTEM_TEAM; + + LogFlowFunc(("ppMem=%p pvFixed=%p cb=%u uAlignment=%u R0Process=%d\n", ppMem, pvFixed, (unsigned)cb, uAlignment, R0Process)); + + if (R0Process != NIL_RTR0PROCESS) + team = (team_id)R0Process; + + /* Check that the specified alignment is supported. */ + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + /* Create the object. */ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(*pMemHaiku), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb); + if (!pMemHaiku) + return VERR_NO_MEMORY; + + /* Ask the kernel to reserve the address range. */ + //XXX: vm_reserve_address_range ? + return VERR_NOT_SUPPORTED; +} +#endif + + +int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) +{ + return VERR_NOT_SUPPORTED; +} + + +int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) +{ + return VERR_NOT_SUPPORTED; +} + + +int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, + unsigned fProt, size_t offSub, size_t cbSub) +{ + PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap; + PRTR0MEMOBJHAIKU pMemHaiku; + area_id area = -1; + void *pvMap = pvFixed; + uint32 uAddrSpec = B_EXACT_ADDRESS; + uint32 fProtect = 0; + int rc = VERR_MAP_FAILED; + AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED); + AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); +#if 0 + /** @todo r=ramshankar: Wrong format specifiers, fix later! */ + dprintf("%s(%p, %p, %p, %d, %x, %u, %u)\n", __FUNCTION__, ppMem, pMemToMap, pvFixed, uAlignment, + fProt, offSub, cbSub); +#endif + /* Check that the specified alignment is supported. */ + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + /* We can't map anything to the first page, sorry. */ + if (pvFixed == 0) + return VERR_NOT_SUPPORTED; + + if (fProt & RTMEM_PROT_READ) + fProtect |= B_KERNEL_READ_AREA; + if (fProt & RTMEM_PROT_WRITE) + fProtect |= B_KERNEL_WRITE_AREA; + + /* + * Either the object we map has an area associated with, which we can clone, + * or it's a physical address range which we must map. + */ + if (pMemToMapHaiku->AreaId > -1) + { + if (pvFixed == (void *)-1) + uAddrSpec = B_ANY_KERNEL_ADDRESS; + + rc = area = clone_area("IPRT R0MemObj MapKernel", &pvMap, uAddrSpec, fProtect, pMemToMapHaiku->AreaId); + LogFlow(("rtR0MemObjNativeMapKernel: clone_area uAddrSpec=%d fProtect=%x AreaId=%d rc=%d\n", uAddrSpec, fProtect, + pMemToMapHaiku->AreaId, rc)); + } + else if (pMemToMapHaiku->Core.enmType == RTR0MEMOBJTYPE_PHYS) + { + /* map_physical_memory() won't let you choose where. */ + if (pvFixed != (void *)-1) + return VERR_NOT_SUPPORTED; + uAddrSpec = B_ANY_KERNEL_ADDRESS; + + rc = area = map_physical_memory("IPRT R0MemObj MapKernelPhys", (phys_addr_t)pMemToMapHaiku->Core.u.Phys.PhysBase, + pMemToMapHaiku->Core.cb, uAddrSpec, fProtect, &pvMap); + } + else + return VERR_NOT_SUPPORTED; + + if (rc >= B_OK) + { + /* Create the object. */ + pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), RTR0MEMOBJTYPE_MAPPING, pvMap, + pMemToMapHaiku->Core.cb); + if (RT_UNLIKELY(!pMemHaiku)) + return VERR_NO_MEMORY; + + pMemHaiku->Core.u.Mapping.R0Process = NIL_RTR0PROCESS; + pMemHaiku->Core.pv = pvMap; + pMemHaiku->AreaId = area; + *ppMem = &pMemHaiku->Core; + return VINF_SUCCESS; + } + rc = VERR_MAP_FAILED; + + /** @todo finish the implementation. */ + + rtR0MemObjDelete(&pMemHaiku->Core); + return rc; +} + + +int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, + unsigned fProt, RTR0PROCESS R0Process) +{ +#if 0 + /* + * Check for unsupported stuff. + */ + AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED); + AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED); + if (uAlignment > PAGE_SIZE) + return VERR_NOT_SUPPORTED; + + int rc; + PRTR0MEMOBJHAIKU pMemToMapHaiku = (PRTR0MEMOBJHAIKU)pMemToMap; + struct proc *pProc = (struct proc *)R0Process; + struct vm_map *pProcMap = &pProc->p_vmspace->vm_map; + + /* calc protection */ + vm_prot_t ProtectionFlags = 0; + if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE) + ProtectionFlags = VM_PROT_NONE; + if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ) + ProtectionFlags |= VM_PROT_READ; + if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE) + ProtectionFlags |= VM_PROT_WRITE; + if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC) + ProtectionFlags |= VM_PROT_EXECUTE; + + /* calc mapping address */ + PROC_LOCK(pProc); + vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA)); + PROC_UNLOCK(pProc); + + /* Insert the object in the map. */ + rc = vm_map_find(pProcMap, /* Map to insert the object in */ + NULL, /* Object to map */ + 0, /* Start offset in the object */ + &AddrR3, /* Start address IN/OUT */ + pMemToMap->cb, /* Size of the mapping */ + TRUE, /* Whether a suitable address should be searched for first */ + ProtectionFlags, /* protection flags */ + VM_PROT_ALL, /* Maximum protection flags */ + 0); /* Copy on write */ + + /* Map the memory page by page into the destination map. */ + if (rc == KERN_SUCCESS) + { + size_t cPages = pMemToMap->cb >> PAGE_SHIFT;; + pmap_t pPhysicalMap = pProcMap->pmap; + vm_offset_t AddrR3Dst = AddrR3; + + if ( pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS + || pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC + || pMemToMap->enmType == RTR0MEMOBJTYPE_PAGE) + { + /* Mapping physical allocations */ + Assert(cPages == pMemToMapHaiku->u.Phys.cPages); + + /* Insert the memory page by page into the mapping. */ + for (uint32_t iPage = 0; iPage < cPages; iPage++) + { + vm_page_t pPage = pMemToMapHaiku->u.Phys.apPages[iPage]; + + MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE); + AddrR3Dst += PAGE_SIZE; + } + } + else + { + /* Mapping cont or low memory types */ + vm_offset_t AddrToMap = (vm_offset_t)pMemToMap->pv; + + for (uint32_t iPage = 0; iPage < cPages; iPage++) + { + vm_page_t pPage = PHYS_TO_VM_PAGE(vtophys(AddrToMap)); + + MY_PMAP_ENTER(pPhysicalMap, AddrR3Dst, pPage, ProtectionFlags, TRUE); + AddrR3Dst += PAGE_SIZE; + AddrToMap += PAGE_SIZE; + } + } + } + + if (RT_SUCCESS(rc)) + { + /* + * Create a mapping object for it. + */ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)rtR0MemObjNew(sizeof(RTR0MEMOBJHAIKU), + RTR0MEMOBJTYPE_MAPPING, + (void *)AddrR3, + pMemToMap->cb); + if (pMemHaiku) + { + Assert((vm_offset_t)pMemHaiku->Core.pv == AddrR3); + pMemHaiku->Core.u.Mapping.R0Process = R0Process; + *ppMem = &pMemHaiku->Core; + return VINF_SUCCESS; + } + + rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb); + AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n")); + } +#endif + return VERR_NOT_SUPPORTED; +} + + +int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) +{ + return VERR_NOT_SUPPORTED; +} + + +RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) +{ + PRTR0MEMOBJHAIKU pMemHaiku = (PRTR0MEMOBJHAIKU)pMem; + status_t rc; + + /** @todo r=ramshankar: Validate objects */ + + LogFlow(("rtR0MemObjNativeGetPagePhysAddr: pMem=%p enmType=%x iPage=%u\n", pMem, pMemHaiku->Core.enmType,(unsigned)iPage)); + + switch (pMemHaiku->Core.enmType) + { + case RTR0MEMOBJTYPE_LOCK: + { + team_id TeamId = B_SYSTEM_TEAM; + physical_entry aPhysMap[2]; + int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */ + + if (pMemHaiku->Core.u.Lock.R0Process != NIL_RTR0PROCESS) + TeamId = (team_id)pMemHaiku->Core.u.Lock.R0Process; + void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT); + + rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap); + if (rc < B_OK || cPhysMap < 1) + return NIL_RTHCPHYS; + + return aPhysMap[0].address; + } + +#if 0 + case RTR0MEMOBJTYPE_MAPPING: + { + vm_offset_t pb = (vm_offset_t)pMemHaiku->Core.pv + (iPage << PAGE_SHIFT); + + if (pMemHaiku->Core.u.Mapping.R0Process != NIL_RTR0PROCESS) + { + struct proc *pProc = (struct proc *)pMemHaiku->Core.u.Mapping.R0Process; + struct vm_map *pProcMap = &pProc->p_vmspace->vm_map; + pmap_t pPhysicalMap = pProcMap->pmap; + + return pmap_extract(pPhysicalMap, pb); + } + return vtophys(pb); + } +#endif + case RTR0MEMOBJTYPE_CONT: + return pMemHaiku->Core.u.Cont.Phys + (iPage << PAGE_SHIFT); + + case RTR0MEMOBJTYPE_PHYS: + return pMemHaiku->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT); + + case RTR0MEMOBJTYPE_LOW: + case RTR0MEMOBJTYPE_PAGE: + case RTR0MEMOBJTYPE_PHYS_NC: + { + team_id TeamId = B_SYSTEM_TEAM; + physical_entry aPhysMap[2]; + int32 cPhysMap = 2; /** @todo r=ramshankar: why not use RT_ELEMENTS? */ + + void *pb = pMemHaiku->Core.pv + (iPage << PAGE_SHIFT); + rc = get_memory_map_etc(TeamId, pb, B_PAGE_SIZE, aPhysMap, &cPhysMap); + if (rc < B_OK || cPhysMap < 1) + return NIL_RTHCPHYS; + + return aPhysMap[0].address; + } + + case RTR0MEMOBJTYPE_RES_VIRT: + default: + return NIL_RTHCPHYS; + } +} + |