diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
commit | f8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch) | |
tree | 26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/PGMAllBth.h | |
parent | Initial commit. (diff) | |
download | virtualbox-upstream.tar.xz virtualbox-upstream.zip |
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/PGMAllBth.h')
-rw-r--r-- | src/VBox/VMM/VMMAll/PGMAllBth.h | 4982 |
1 files changed, 4982 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/PGMAllBth.h b/src/VBox/VMM/VMMAll/PGMAllBth.h new file mode 100644 index 00000000..9b28950e --- /dev/null +++ b/src/VBox/VMM/VMMAll/PGMAllBth.h @@ -0,0 +1,4982 @@ +/* $Id: PGMAllBth.h $ */ +/** @file + * VBox - Page Manager, Shadow+Guest Paging Template - All context code. + * + * @remarks Extended page tables (intel) are built with PGM_GST_TYPE set to + * PGM_TYPE_PROT (and PGM_SHW_TYPE set to PGM_TYPE_EPT). + * bird: WTF does this mean these days? Looking at PGMAll.cpp it's + * + * @remarks This file is one big \#ifdef-orgy! + * + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + +#ifdef _MSC_VER +/** @todo we're generating unnecessary code in nested/ept shadow mode and for + * real/prot-guest+RC mode. */ +# pragma warning(disable: 4505) +#endif + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +RT_C_DECLS_BEGIN +PGM_BTH_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3); +#ifndef IN_RING3 +PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken); +#endif +PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage); +static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr); +static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, RTGCPTR GCPtrPage); +static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPD, PGSTPD pPDSrc, RTGCPTR GCPtrPage); +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, PPGMPOOLPAGE pShwPage, unsigned iPTDst); +# else +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, PPGMPOOLPAGE pShwPage, unsigned iPTDst); +#endif +PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR Addr, unsigned fPage, unsigned uErr); +PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage); +PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal); +#ifdef VBOX_STRICT +PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr = 0, RTGCPTR cb = ~(RTGCPTR)0); +#endif +PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3); +PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu); + +#ifdef IN_RING3 +PGM_BTH_DECL(int, Relocate)(PVMCPU pVCpu, RTGCPTR offDelta); +#endif +RT_C_DECLS_END + + + + +/* + * Filter out some illegal combinations of guest and shadow paging, so we can + * remove redundant checks inside functions. + */ +#if PGM_GST_TYPE == PGM_TYPE_PAE && PGM_SHW_TYPE != PGM_TYPE_PAE \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE +# error "Invalid combination; PAE guest implies PAE shadow" +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 \ + || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) +# error "Invalid combination; real or protected mode without paging implies 32 bits or PAE shadow paging." +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) \ + && !( PGM_SHW_TYPE == PGM_TYPE_32BIT || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE) +# error "Invalid combination; 32 bits guest paging or PAE implies 32 bits or PAE shadow paging." +#endif + +#if (PGM_GST_TYPE == PGM_TYPE_AMD64 && PGM_SHW_TYPE != PGM_TYPE_AMD64 && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE) \ + || (PGM_SHW_TYPE == PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PROT) +# error "Invalid combination; AMD64 guest implies AMD64 shadow and vice versa" +#endif + + +/** + * Enters the shadow+guest mode. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysCR3 The physical address from the CR3 register. + */ +PGM_BTH_DECL(int, Enter)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3) +{ + /* Here we deal with allocation of the root shadow page table for real and protected mode during mode switches; + * Other modes rely on MapCR3/UnmapCR3 to setup the shadow root page tables. + */ +#if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ + && ( PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT)) + + PVM pVM = pVCpu->CTX_SUFF(pVM); + + Assert((HMIsNestedPagingActive(pVM) || VM_IS_NEM_ENABLED(pVM)) == pVM->pgm.s.fNestedPaging); + Assert(!pVM->pgm.s.fNestedPaging); + + pgmLock(pVM); + /* Note: we only really need shadow paging in real and protected mode for VT-x and AMD-V (excluding nested paging/EPT modes), + * but any calls to GC need a proper shadow page setup as well. + */ + /* Free the previous root mapping if still active. */ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + if (pOldShwPageCR3) + { + Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); + + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + +# ifndef PGM_WITHOUT_MAPPINGS + /* Remove the hypervisor mappings from the shadow page table. */ + pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); +# endif + + pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); + pVCpu->pgm.s.pShwPageCR3R3 = NIL_RTR3PTR; + pVCpu->pgm.s.pShwPageCR3RC = NIL_RTRCPTR; + pVCpu->pgm.s.pShwPageCR3R0 = NIL_RTR0PTR; + } + + /* construct a fake address. */ + GCPhysCR3 = RT_BIT_64(63); + PPGMPOOLPAGE pNewShwPageCR3; + int rc = pgmPoolAlloc(pVM, GCPhysCR3, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), + NIL_PGMPOOL_IDX, UINT32_MAX, false /*fLockPage*/, + &pNewShwPageCR3); + AssertRCReturn(rc, rc); + + pVCpu->pgm.s.pShwPageCR3R3 = (R3PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR3(pVM, pNewShwPageCR3); + pVCpu->pgm.s.pShwPageCR3RC = (RCPTRTYPE(PPGMPOOLPAGE))MMHyperCCToRC(pVM, pNewShwPageCR3); + pVCpu->pgm.s.pShwPageCR3R0 = (R0PTRTYPE(PPGMPOOLPAGE))MMHyperCCToR0(pVM, pNewShwPageCR3); + + /* Mark the page as locked; disallow flushing. */ + pgmPoolLockPage(pPool, pNewShwPageCR3); + + /* Set the current hypervisor CR3. */ + CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); + +# ifndef PGM_WITHOUT_MAPPINGS + /* Apply all hypervisor mappings to the new CR3. */ + rc = pgmMapActivateCR3(pVM, pNewShwPageCR3); +# endif + + pgmUnlock(pVM); + return rc; +#else + NOREF(pVCpu); NOREF(GCPhysCR3); + return VINF_SUCCESS; +#endif +} + + +#ifndef IN_RING3 + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +/** + * Deal with a guest page fault. + * + * @returns Strict VBox status code. + * @retval VINF_EM_RAW_GUEST_TRAP + * @retval VINF_EM_RAW_EMULATE_INSTR + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pGstWalk The guest page table walk result. + * @param uErr The error code. + */ +PGM_BTH_DECL(VBOXSTRICTRC, Trap0eHandlerGuestFault)(PVMCPU pVCpu, PGSTPTWALK pGstWalk, RTGCUINT uErr) +{ +# if !defined(PGM_WITHOUT_MAPPINGS) && (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) + /* + * Check for write conflicts with our hypervisor mapping. + * + * If the guest happens to access a non-present page, where our hypervisor + * is currently mapped, then we'll create a #PF storm in the guest. + */ + if ( (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW) + && pgmMapAreMappingsEnabled(pVCpu->CTX_SUFF(pVM)) + && MMHyperIsInsideArea(pVCpu->CTX_SUFF(pVM), pGstWalk->Core.GCPtr)) + { + /* Force a CR3 sync to check for conflicts and emulate the instruction. */ + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; }); + return VINF_EM_RAW_EMULATE_INSTR; + } +# endif + + /* + * Calc the error code for the guest trap. + */ + uint32_t uNewErr = GST_IS_NX_ACTIVE(pVCpu) + ? uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID) + : uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US); + if ( pGstWalk->Core.fRsvdError + || pGstWalk->Core.fBadPhysAddr) + { + uNewErr |= X86_TRAP_PF_RSVD | X86_TRAP_PF_P; + Assert(!pGstWalk->Core.fNotPresent); + } + else if (!pGstWalk->Core.fNotPresent) + uNewErr |= X86_TRAP_PF_P; + TRPMSetErrorCode(pVCpu, uNewErr); + + LogFlow(("Guest trap; cr2=%RGv uErr=%RGv lvl=%d\n", pGstWalk->Core.GCPtr, uErr, pGstWalk->Core.uLevel)); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; }); + return VINF_EM_RAW_GUEST_TRAP; +} +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + +#if !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE +/** + * Deal with a guest page fault. + * + * The caller has taken the PGM lock. + * + * @returns Strict VBox status code. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uErr The error code. + * @param pRegFrame The register frame. + * @param pvFault The fault address. + * @param pPage The guest page at @a pvFault. + * @param pGstWalk The guest page table walk result. + * @param pfLockTaken PGM lock taken here or not (out). This is true + * when we're called. + */ +static VBOXSTRICTRC PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, + RTGCPTR pvFault, PPGMPAGE pPage, bool *pfLockTaken +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) + , PGSTPTWALK pGstWalk +# endif + ) +{ +# if !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A }; +# endif + PVM pVM = pVCpu->CTX_SUFF(pVM); + VBOXSTRICTRC rcStrict; + + if (PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage)) + { + /* + * Physical page access handler. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + const RTGCPHYS GCPhysFault = pGstWalk->Core.GCPhys; +# else + const RTGCPHYS GCPhysFault = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault); +# endif + PPGMPHYSHANDLER pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault); + if (pCur) + { + PPGMPHYSHANDLERTYPEINT pCurType = PGMPHYSHANDLER_GET_TYPE(pVM, pCur); + +# ifdef PGM_SYNC_N_PAGES + /* + * If the region is write protected and we got a page not present fault, then sync + * the pages. If the fault was caused by a read, then restart the instruction. + * In case of write access continue to the GC write handler. + * + * ASSUMES that there is only one handler per page or that they have similar write properties. + */ + if ( !(uErr & X86_TRAP_PF_P) + && pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || !(uErr & X86_TRAP_PF_RW) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } +# endif +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS + /* + * If the access was not thru a #PF(RSVD|...) resync the page. + */ + if ( !(uErr & X86_TRAP_PF_RSVD) + && pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + && pGstWalk->Core.fEffectiveRW + && !pGstWalk->Core.fEffectiveUS /** @todo Remove pGstWalk->Core.fEffectiveUS and X86_PTE_US further down in the sync code. */ +# endif + ) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } +# endif + + AssertMsg( pCurType->enmKind != PGMPHYSHANDLERKIND_WRITE + || (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW)), + ("Unexpected trap for physical handler: %08X (phys=%08x) pPage=%R[pgmpage] uErr=%X, enmKind=%d\n", + pvFault, GCPhysFault, pPage, uErr, pCurType->enmKind)); + if (pCurType->enmKind == PGMPHYSHANDLERKIND_WRITE) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysWrite); + else + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAll); + if (uErr & X86_TRAP_PF_RSVD) STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersPhysAllOpt); + } + + if (pCurType->CTX_SUFF(pfnPfHandler)) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + void *pvUser = pCur->CTX_SUFF(pvUser); + + STAM_PROFILE_START(&pCur->Stat, h); + if (pCur->hType != pPool->hAccessHandlerType) + { + pgmUnlock(pVM); + *pfLockTaken = false; + } + + rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPhysFault, pvUser); + +# ifdef VBOX_WITH_STATISTICS + pgmLock(pVM); + pCur = pgmHandlerPhysicalLookup(pVM, GCPhysFault); + if (pCur) + STAM_PROFILE_STOP(&pCur->Stat, h); + pgmUnlock(pVM); +# endif + } + else + rcStrict = VINF_EM_RAW_EMULATE_INSTR; + + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndPhys; }); + return rcStrict; + } + } +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) + else + { +# ifdef PGM_SYNC_N_PAGES + /* + * If the region is write protected and we got a page not present fault, then sync + * the pages. If the fault was caused by a read, then restart the instruction. + * In case of write access continue to the GC write handler. + */ + if ( PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) < PGM_PAGE_HNDL_PHYS_STATE_ALL + && !(uErr & X86_TRAP_PF_P)) + { + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); + if ( RT_FAILURE(rcStrict) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE + || !(uErr & X86_TRAP_PF_RW)) + { + AssertRC(rcStrict); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndVirt; }); + return rcStrict; + } + } +# endif + /* + * Ok, it's an virtual page access handler. + * + * Since it's faster to search by address, we'll do that first + * and then retry by GCPhys if that fails. + */ + /** @todo r=bird: perhaps we should consider looking up by physical address directly now? + * r=svl: true, but lookup on virtual address should remain as a fallback as phys & virt trees might be + * out of sync, because the page was changed without us noticing it (not-present -> present + * without invlpg or mov cr3, xxx). + */ + PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault); + if (pCur) + { + PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur); + AssertMsg(!(pvFault - pCur->Core.Key < pCur->cb) + || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE + || !(uErr & X86_TRAP_PF_P) + || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))), + ("Unexpected trap for virtual handler: %RGv (phys=%RGp) pPage=%R[pgmpage] uErr=%X, enumKind=%d\n", + pvFault, pGstWalk->Core.GCPhys, pPage, uErr, pCurType->enmKind)); + + if ( pvFault - pCur->Core.Key < pCur->cb + && ( uErr & X86_TRAP_PF_RW + || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) ) + { +# ifdef IN_RC + STAM_PROFILE_START(&pCur->Stat, h); + RTGCPTR GCPtrStart = pCur->Core.Key; + void *pvUser = pCur->CTX_SUFF(pvUser); + pgmUnlock(pVM); + *pfLockTaken = false; + + rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, + pvFault - GCPtrStart, pvUser); + +# ifdef VBOX_WITH_STATISTICS + pgmLock(pVM); + pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault); + if (pCur) + STAM_PROFILE_STOP(&pCur->Stat, h); + pgmUnlock(pVM); +# endif +# else + rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ +# endif + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtual); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; }); + return rcStrict; + } + /* Unhandled part of a monitored page */ + Log(("Unhandled part of monitored page %RGv\n", pvFault)); + } + else + { + /* Check by physical address. */ + unsigned iPage; + pCur = pgmHandlerVirtualFindByPhysAddr(pVM, pGstWalk->Core.GCPhys, &iPage); + if (pCur) + { + PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur); + if ( uErr & X86_TRAP_PF_RW + || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) + { + Assert( (pCur->aPhysToVirt[iPage].Core.Key & X86_PTE_PAE_PG_MASK) + == (pGstWalk->Core.GCPhys & X86_PTE_PAE_PG_MASK)); +# ifdef IN_RC + STAM_PROFILE_START(&pCur->Stat, h); + RTGCPTR GCPtrStart = pCur->Core.Key; + void *pvUser = pCur->CTX_SUFF(pvUser); + pgmUnlock(pVM); + *pfLockTaken = false; + + RTGCPTR off = (iPage << PAGE_SHIFT) + + (pvFault & PAGE_OFFSET_MASK) + - (GCPtrStart & PAGE_OFFSET_MASK); + Assert(off < pCur->cb); + rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, GCPtrStart, off, pvUser); + +# ifdef VBOX_WITH_STATISTICS + pgmLock(pVM); + pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, GCPtrStart); + if (pCur) + STAM_PROFILE_STOP(&pCur->Stat, h); + pgmUnlock(pVM); +# endif +# else + rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ +# endif + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersVirtualByPhys); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; }); + return rcStrict; + } + } + } + } +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* + * There is a handled area of the page, but this fault doesn't belong to it. + * We must emulate the instruction. + * + * To avoid crashing (non-fatal) in the interpreter and go back to the recompiler + * we first check if this was a page-not-present fault for a page with only + * write access handlers. Restart the instruction if it wasn't a write access. + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersUnhandled); + + if ( !PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) + && !(uErr & X86_TRAP_PF_P)) + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, pGstWalk->Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rcStrict = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if ( RT_FAILURE(rcStrict) + || rcStrict == VINF_PGM_SYNCPAGE_MODIFIED_PDE + || !(uErr & X86_TRAP_PF_RW)) + { + AssertMsgRC(rcStrict, ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict))); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersOutOfSync); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndPhys; }); + return rcStrict; + } + } + + /** @todo This particular case can cause quite a lot of overhead. E.g. early stage of kernel booting in Ubuntu 6.06 + * It's writing to an unhandled part of the LDT page several million times. + */ + rcStrict = PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault); + LogFlow(("PGM: PGMInterpretInstruction -> rcStrict=%d pPage=%R[pgmpage]\n", VBOXSTRICTRC_VAL(rcStrict), pPage)); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndUnhandled; }); + return rcStrict; +} /* if any kind of handler */ +# endif /* !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE*/ + + +/** + * \#PF Handler for raw-mode guest execution. + * + * @returns VBox status code (appropriate for trap handling and GC return). + * + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The trap error code. + * @param pRegFrame Trap register frame. + * @param pvFault The fault address. + * @param pfLockTaken PGM lock taken here or not (out) + */ +PGM_BTH_DECL(int, Trap0eHandler)(PVMCPU pVCpu, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, bool *pfLockTaken) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + *pfLockTaken = false; + +# if ( PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc; + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Walk the guest page translation tables and check if it's a guest fault. + */ + GSTPTWALK GstWalk; + rc = PGM_GST_NAME(Walk)(pVCpu, pvFault, &GstWalk); + if (RT_FAILURE_NP(rc)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr)); + + /* assert some GstWalk sanity. */ +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /*AssertMsg(GstWalk.Pml4e.u == GstWalk.pPml4e->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pml4e.u, (uint64_t)GstWalk.pPml4e->u)); - not always true with SMP guests. */ +# endif +# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE + /*AssertMsg(GstWalk.Pdpe.u == GstWalk.pPdpe->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pdpe.u, (uint64_t)GstWalk.pPdpe->u)); - ditto */ +# endif + /*AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); - ditto */ + /*AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); - ditto */ + Assert(GstWalk.Core.fSucceeded); + + if (uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID)) + { + if ( ( (uErr & X86_TRAP_PF_RW) + && !GstWalk.Core.fEffectiveRW + && ( (uErr & X86_TRAP_PF_US) + || CPUMIsGuestR0WriteProtEnabled(pVCpu)) ) + || ((uErr & X86_TRAP_PF_US) && !GstWalk.Core.fEffectiveUS) + || ((uErr & X86_TRAP_PF_ID) && GstWalk.Core.fEffectiveNX) + ) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerGuestFault)(pVCpu, &GstWalk, uErr)); + } + + /* + * Set the accessed and dirty flags. + */ +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + GstWalk.Pml4e.u |= X86_PML4E_A; + GstWalk.pPml4e->u |= X86_PML4E_A; + GstWalk.Pdpe.u |= X86_PDPE_A; + GstWalk.pPdpe->u |= X86_PDPE_A; +# endif + if (GstWalk.Core.fBigPage) + { + Assert(GstWalk.Pde.b.u1Size); + if (uErr & X86_TRAP_PF_RW) + { + GstWalk.Pde.u |= X86_PDE4M_A | X86_PDE4M_D; + GstWalk.pPde->u |= X86_PDE4M_A | X86_PDE4M_D; + } + else + { + GstWalk.Pde.u |= X86_PDE4M_A; + GstWalk.pPde->u |= X86_PDE4M_A; + } + } + else + { + Assert(!GstWalk.Pde.b.u1Size); + GstWalk.Pde.u |= X86_PDE_A; + GstWalk.pPde->u |= X86_PDE_A; + if (uErr & X86_TRAP_PF_RW) + { +# ifdef VBOX_WITH_STATISTICS + if (!GstWalk.Pte.n.u1Dirty) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtiedPage)); + else + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageAlreadyDirty)); +# endif + GstWalk.Pte.u |= X86_PTE_A | X86_PTE_D; + GstWalk.pPte->u |= X86_PTE_A | X86_PTE_D; + } + else + { + GstWalk.Pte.u |= X86_PTE_A; + GstWalk.pPte->u |= X86_PTE_A; + } + Assert(GstWalk.Pte.u == GstWalk.pPte->u); + } + AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u, + ("%RX64 %RX64 pPte=%p pPde=%p Pte=%RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u, GstWalk.pPte, GstWalk.pPde, (uint64_t)GstWalk.pPte->u)); +# else /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + GSTPDE const PdeSrcDummy = { X86_PDE_P | X86_PDE_US | X86_PDE_RW | X86_PDE_A}; /** @todo eliminate this */ +# endif /* !PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* Take the big lock now. */ + *pfLockTaken = true; + pgmLock(pVM); + +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS + /* + * If it is a reserved bit fault we know that it is an MMIO (access + * handler) related fault and can skip some 200 lines of code. + */ + if (uErr & X86_TRAP_PF_RSVD) + { + Assert(uErr & X86_TRAP_PF_P); + PPGMPAGE pPage; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = pgmPhysGetPageEx(pVM, GstWalk.Core.GCPhys, &pPage); + if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, + pfLockTaken, &GstWalk)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); +# else + rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault), &pPage); + if (RT_SUCCESS(rc) && PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, + pfLockTaken)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); +# endif + AssertRC(rc); + PGM_INVL_PG(pVCpu, pvFault); + return rc; /* Restart with the corrected entry. */ + } +# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ + + /* + * Fetch the guest PDE, PDPE and PML4E. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = pvFault >> SHW_PD_SHIFT; + PX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK; /* pPDDst index, not used with the pool. */ + PX86PDPAE pPDDst; +# if PGM_GST_TYPE == PGM_TYPE_PAE + rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, GstWalk.Pdpe.u, &pPDDst); +# else + rc = pgmShwSyncPaePDPtr(pVCpu, pvFault, X86_PDPE_P, &pPDDst); /* RW, US and A are reserved in PAE mode. */ +# endif + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; +# if PGM_GST_TYPE == PGM_TYPE_PROT /* (AMD-V nested paging) */ + rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A, + X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A, &pPDDst); +# else + rc = pgmShwSyncLongModePDPtr(pVCpu, pvFault, GstWalk.Pml4e.u, GstWalk.Pdpe.u, &pPDDst); +# endif + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPDDst = ((pvFault >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + rc = pgmShwGetEPTPDPtr(pVCpu, pvFault, NULL, &pPDDst); + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); +# endif + Assert(pPDDst); + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Dirty page handling. + * + * If we successfully correct the write protection fault due to dirty bit + * tracking, then return immediately. + */ + if (uErr & X86_TRAP_PF_RW) /* write fault? */ + { + STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a); + rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, &pPDDst->a[iPDDst], GstWalk.pPde, pvFault); + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyBitTracking), a); + if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) + { + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) + = rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT + ? &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2DirtyAndAccessed + : &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2GuestTrap; }); + Log8(("Trap0eHandler: returns VINF_SUCCESS\n")); + return VINF_SUCCESS; + } +#ifdef DEBUG_bird + AssertMsg(GstWalk.Pde.u == GstWalk.pPde->u || GstWalk.pPte->u == GstWalk.pPde->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pde.u, (uint64_t)GstWalk.pPde->u)); // - triggers with smp w7 guests. + AssertMsg(GstWalk.Core.fBigPage || GstWalk.Pte.u == GstWalk.pPte->u || pVM->cCpus > 1, ("%RX64 %RX64\n", (uint64_t)GstWalk.Pte.u, (uint64_t)GstWalk.pPte->u)); // - ditto. +#endif + } + +# if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZTrap0ePD[iPDSrc]); +# endif +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* + * A common case is the not-present error caused by lazy page table syncing. + * + * It is IMPORTANT that we weed out any access to non-present shadow PDEs + * here so we can safely assume that the shadow PT is present when calling + * SyncPage later. + * + * On failure, we ASSUME that SyncPT is out of memory or detected some kind + * of mapping conflict and defer to SyncCR3 in R3. + * (Again, we do NOT support access handlers for non-present guest pages.) + * + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + Assert(GstWalk.Pde.n.u1Present); +# endif + if ( !(uErr & X86_TRAP_PF_P) /* not set means page not present instead of page protection violation */ + && !pPDDst->a[iPDDst].n.u1Present) + { + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2SyncPT; }); +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + LogFlow(("=>SyncPT %04x = %08RX64\n", (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, (uint64_t)GstWalk.Pde.u)); + rc = PGM_BTH_NAME(SyncPT)(pVCpu, (pvFault >> GST_PD_SHIFT) & GST_PD_MASK, GstWalk.pPd, pvFault); +# else + LogFlow(("=>SyncPT pvFault=%RGv\n", pvFault)); + rc = PGM_BTH_NAME(SyncPT)(pVCpu, 0, NULL, pvFault); +# endif + if (RT_SUCCESS(rc)) + return rc; + Log(("SyncPT: %RGv failed!! rc=%Rrc\n", pvFault, rc)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ + return VINF_PGM_SYNC_CR3; + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(PGM_WITHOUT_MAPPINGS) + /* + * Check if this address is within any of our mappings. + * + * This is *very* fast and it's gonna save us a bit of effort below and prevent + * us from screwing ourself with MMIO2 pages which have a GC Mapping (VRam). + * (BTW, it's impossible to have physical access handlers in a mapping.) + */ + if (pgmMapAreMappingsEnabled(pVM)) + { + PPGMMAPPING pMapping = pVM->pgm.s.CTX_SUFF(pMappings); + for ( ; pMapping; pMapping = pMapping->CTX_SUFF(pNext)) + { + if (pvFault < pMapping->GCPtr) + break; + if (pvFault - pMapping->GCPtr < pMapping->cb) + { + /* + * The first thing we check is if we've got an undetected conflict. + */ + if (pgmMapAreMappingsFloating(pVM)) + { + unsigned iPT = pMapping->cb >> GST_PD_SHIFT; + while (iPT-- > 0) + if (GstWalk.pPde[iPT].n.u1Present) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eConflicts); + Log(("Trap0e: Detected Conflict %RGv-%RGv\n", pMapping->GCPtr, pMapping->GCPtrLast)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync,right? */ + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; }); + return VINF_PGM_SYNC_CR3; + } + } + + /* + * Check if the fault address is in a virtual page access handler range. + */ + PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->HyperVirtHandlers, + pvFault); + if ( pCur + && pvFault - pCur->Core.Key < pCur->cb + && uErr & X86_TRAP_PF_RW) + { + VBOXSTRICTRC rcStrict; +# ifdef IN_RC + STAM_PROFILE_START(&pCur->Stat, h); + PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur); + void *pvUser = pCur->CTX_SUFF(pvUser); + pgmUnlock(pVM); + rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key, + pvFault - pCur->Core.Key, pvUser); + pgmLock(pVM); + STAM_PROFILE_STOP(&pCur->Stat, h); +# else + AssertFailed(); + rcStrict = VINF_EM_RAW_EMULATE_INSTR; /* can't happen with VMX */ +# endif + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersMapping); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; }); + return VBOXSTRICTRC_TODO(rcStrict); + } + + /* + * Pretend we're not here and let the guest handle the trap. + */ + TRPMSetErrorCode(pVCpu, uErr & ~X86_TRAP_PF_P); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eGuestPFMapping); + LogFlow(("PGM: Mapping access -> route trap to recompiler!\n")); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Mapping; }); + return VINF_EM_RAW_GUEST_TRAP; + } + } + } /* pgmAreMappingsEnabled(&pVM->pgm.s) */ +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* + * Check if this fault address is flagged for special treatment, + * which means we'll have to figure out the physical address and + * check flags associated with it. + * + * ASSUME that we can limit any special access handling to pages + * in page tables which the guest believes to be present. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + RTGCPHYS GCPhys = GstWalk.Core.GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; +# else + RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, (RTGCPHYS)pvFault & ~(RTGCPHYS)PAGE_OFFSET_MASK); +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); + if (RT_FAILURE(rc)) + { + /* + * When the guest accesses invalid physical memory (e.g. probing + * of RAM or accessing a remapped MMIO range), then we'll fall + * back to the recompiler to emulate the instruction. + */ + LogFlow(("PGM #PF: pgmPhysGetPageEx(%RGp) failed with %Rrc\n", GCPhys, rc)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eHandlersInvalid); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2InvalidPhys; }); + return VINF_EM_RAW_EMULATE_INSTR; + } + + /* + * Any handlers for this page? + */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken, + &GstWalk)); +# else + return VBOXSTRICTRC_TODO(PGM_BTH_NAME(Trap0eHandlerDoAccessHandlers)(pVCpu, uErr, pRegFrame, pvFault, pPage, pfLockTaken)); +# endif + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) + if (uErr & X86_TRAP_PF_P) + { + /* + * The page isn't marked, but it might still be monitored by a virtual page access handler. + * (ASSUMES no temporary disabling of virtual handlers.) + */ + /** @todo r=bird: Since the purpose is to catch out of sync pages with virtual handler(s) here, + * we should correct both the shadow page table and physical memory flags, and not only check for + * accesses within the handler region but for access to pages with virtual handlers. */ + PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)RTAvlroGCPtrRangeGet(&pVM->pgm.s.CTX_SUFF(pTrees)->VirtHandlers, pvFault); + if (pCur) + { + PPGMVIRTHANDLERTYPEINT pCurType = PGMVIRTANDLER_GET_TYPE(pVM, pCur); + AssertMsg( !(pvFault - pCur->Core.Key < pCur->cb) + || ( pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE + || !(uErr & X86_TRAP_PF_P) + || (pCurType->enmKind == PGMVIRTHANDLERKIND_WRITE && (uErr & X86_TRAP_PF_RW))), + ("Unexpected trap for virtual handler: %08X (phys=%08x) %R[pgmpage] uErr=%X, enumKind=%d\n", + pvFault, GCPhys, pPage, uErr, pCurType->enmKind)); + + if ( pvFault - pCur->Core.Key < pCur->cb + && ( uErr & X86_TRAP_PF_RW + || pCurType->enmKind != PGMVIRTHANDLERKIND_WRITE ) ) + { + VBOXSTRICTRC rcStrict; +# ifdef IN_RC + STAM_PROFILE_START(&pCur->Stat, h); + void *pvUser = pCur->CTX_SUFF(pvUser); + pgmUnlock(pVM); + rcStrict = pCurType->CTX_SUFF(pfnPfHandler)(pVM, pVCpu, uErr, pRegFrame, pvFault, pCur->Core.Key, + pvFault - pCur->Core.Key, pvUser); + pgmLock(pVM); + STAM_PROFILE_STOP(&pCur->Stat, h); +# else + rcStrict = VINF_EM_RAW_EMULATE_INSTR; /** @todo for VMX */ +# endif + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2HndVirt; }); + return VBOXSTRICTRC_TODO(rcStrict); + } + } + } +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) */ + + /* + * We are here only if page is present in Guest page tables and + * trap is not handled by our handlers. + * + * Check it for page out-of-sync situation. + */ + if (!(uErr & X86_TRAP_PF_P)) + { + /* + * Page is not present in our page tables. Try to sync it! + */ + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); + + if (PGM_PAGE_IS_BALLOONED(pPage)) + { + /* Emulate reads from ballooned pages as they are not present in + our shadow page tables. (Required for e.g. Solaris guests; soft + ecc, random nr generator.) */ + rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault)); + LogFlow(("PGM: PGMInterpretInstruction balloon -> rc=%d pPage=%R[pgmpage]\n", rc, pPage)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncBallloon)); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Ballooned; }); + return rc; + } + +# if defined(LOG_ENABLED) && !defined(IN_RING0) + RTGCPHYS GCPhys2; + uint64_t fPageGst2; + PGMGstGetPage(pVCpu, pvFault, &fPageGst2, &GCPhys2); +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + Log(("Page out of sync: %RGv eip=%08x PdeSrc.US=%d fPageGst2=%08llx GCPhys2=%RGp scan=%d\n", + pvFault, pRegFrame->eip, GstWalk.Pde.n.u1User, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip))); +# else + Log(("Page out of sync: %RGv eip=%08x fPageGst2=%08llx GCPhys2=%RGp scan=%d\n", + pvFault, pRegFrame->eip, fPageGst2, GCPhys2, CSAMDoesPageNeedScanning(pVM, pRegFrame->eip))); +# endif +# endif /* LOG_ENABLED */ + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) + if ( !GstWalk.Core.fEffectiveUS + && CSAMIsEnabled(pVM) + && CPUMGetGuestCPL(pVCpu) == 0) + { + /* Note: Can't check for X86_TRAP_ID bit, because that requires execute disable support on the CPU. */ + if ( pvFault == (RTGCPTR)pRegFrame->eip + || pvFault - pRegFrame->eip < 8 /* instruction crossing a page boundary */ +# ifdef CSAM_DETECT_NEW_CODE_PAGES + || ( !PATMIsPatchGCAddr(pVM, pRegFrame->eip) + && CSAMDoesPageNeedScanning(pVM, pRegFrame->eip)) /* any new code we encounter here */ +# endif /* CSAM_DETECT_NEW_CODE_PAGES */ + ) + { + LogFlow(("CSAMExecFault %RX32\n", pRegFrame->eip)); + rc = CSAMExecFault(pVM, (RTRCPTR)pRegFrame->eip); + if (rc != VINF_SUCCESS) + { + /* + * CSAM needs to perform a job in ring 3. + * + * Sync the page before going to the host context; otherwise we'll end up in a loop if + * CSAM fails (e.g. instruction crosses a page boundary and the next page is not present) + */ + LogFlow(("CSAM ring 3 job\n")); + int rc2 = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); + AssertRC(rc2); + + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2CSAM; }); + return rc; + } + } +# ifdef CSAM_DETECT_NEW_CODE_PAGES + else if ( uErr == X86_TRAP_PF_RW + && pRegFrame->ecx >= 0x100 /* early check for movswd count */ + && pRegFrame->ecx < 0x10000) + { + /* In case of a write to a non-present supervisor shadow page, we'll take special precautions + * to detect loading of new code pages. + */ + + /* + * Decode the instruction. + */ + PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState; + uint32_t cbOp; + rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, &cbOp); + + /* For now we'll restrict this to rep movsw/d instructions */ + if ( rc == VINF_SUCCESS + && pDis->pCurInstr->opcode == OP_MOVSWD + && (pDis->prefix & DISPREFIX_REP)) + { + CSAMMarkPossibleCodePage(pVM, pvFault); + } + } +# endif /* CSAM_DETECT_NEW_CODE_PAGES */ + + /* + * Mark this page as safe. + */ + /** @todo not correct for pages that contain both code and data!! */ + Log2(("CSAMMarkPage %RGv; scanned=%d\n", pvFault, true)); + CSAMMarkPage(pVM, pvFault, true); + } +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && !defined(IN_RING0) */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, PGM_SYNC_NR_PAGES, uErr); +# else + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, PGM_SYNC_NR_PAGES, uErr); +# endif + if (RT_SUCCESS(rc)) + { + /* The page was successfully synced, return to the guest. */ + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSync; }); + return VINF_SUCCESS; + } + } + else /* uErr & X86_TRAP_PF_P: */ + { + /* + * Write protected pages are made writable when the guest makes the + * first write to it. This happens for pages that are shared, write + * monitored or not yet allocated. + * + * We may also end up here when CR0.WP=0 in the guest. + * + * Also, a side effect of not flushing global PDEs are out of sync + * pages due to physical monitored regions, that are no longer valid. + * Assume for now it only applies to the read/write flag. + */ + if (uErr & X86_TRAP_PF_RW) + { + /* + * Check if it is a read-only page. + */ + if (PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + Log(("PGM #PF: Make writable: %RGp %R[pgmpage] pvFault=%RGp uErr=%#x\n", GCPhys, pPage, pvFault, uErr)); + Assert(!PGM_PAGE_IS_ZERO(pPage)); + AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2MakeWritable; }); + + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VINF_PGM_SYNC_CR3 || RT_FAILURE(rc), ("%Rrc\n", rc)); + return rc; + } + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + return VINF_EM_NO_MEMORY; + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Check to see if we need to emulate the instruction if CR0.WP=0. + */ + if ( !GstWalk.Core.fEffectiveRW + && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG + && CPUMGetGuestCPL(pVCpu) < 3) + { + Assert((uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_P)) == (X86_TRAP_PF_RW | X86_TRAP_PF_P)); + + /* + * The Netware WP0+RO+US hack. + * + * Netware sometimes(/always?) runs with WP0. It has been observed doing + * excessive write accesses to pages which are mapped with US=1 and RW=0 + * while WP=0. This causes a lot of exits and extremely slow execution. + * To avoid trapping and emulating every write here, we change the shadow + * page table entry to map it as US=0 and RW=1 until user mode tries to + * access it again (see further below). We count these shadow page table + * changes so we can avoid having to clear the page pool every time the WP + * bit changes to 1 (see PGMCr0WpEnabled()). + */ +# if (PGM_GST_TYPE == PGM_TYPE_32BIT || PGM_GST_TYPE == PGM_TYPE_PAE) && 1 + if ( GstWalk.Core.fEffectiveUS + && !GstWalk.Core.fEffectiveRW + && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write) + && pVM->cCpus == 1 /* Sorry, no go on SMP. Add CFGM option? */) + { + Log(("PGM #PF: Netware WP0+RO+US hack: pvFault=%RGp uErr=%#x (big=%d)\n", pvFault, uErr, GstWalk.Core.fBigPage)); + rc = pgmShwMakePageSupervisorAndWritable(pVCpu, pvFault, GstWalk.Core.fBigPage, PGM_MK_PG_IS_WRITE_FAULT); + if (rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3) + { + PGM_INVL_PG(pVCpu, pvFault); + pVCpu->pgm.s.cNetwareWp0Hacks++; + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsHack; }); + return rc; + } + AssertMsg(RT_FAILURE_NP(rc), ("%Rrc\n", rc)); + Log(("pgmShwMakePageSupervisorAndWritable(%RGv) failed with rc=%Rrc - ignored\n", pvFault, rc)); + } +# endif + + /* Interpret the access. */ + rc = VBOXSTRICTRC_TODO(PGMInterpretInstruction(pVM, pVCpu, pRegFrame, pvFault)); + Log(("PGM #PF: WP0 emulation (pvFault=%RGp uErr=%#x cpl=%d fBig=%d fEffUs=%d)\n", pvFault, uErr, CPUMGetGuestCPL(pVCpu), GstWalk.Core.fBigPage, GstWalk.Core.fEffectiveUS)); + if (RT_SUCCESS(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulInRZ); + else + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eWPEmulToR3); + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2WPEmulation; }); + return rc; + } +# endif + /// @todo count the above case; else + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUserWrite)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisorWrite)); + + /* + * Sync the page. + * + * Note: Do NOT use PGM_SYNC_NR_PAGES here. That only works if the + * page is not present, which is not true in this case. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); +# else + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrcDummy, pvFault, 1, uErr); +# endif + if (RT_SUCCESS(rc)) + { + /* + * Page was successfully synced, return to guest but invalidate + * the TLB first as the page is very likely to be in it. + */ +# if PGM_SHW_TYPE == PGM_TYPE_EPT + HMInvalidatePhysPage(pVM, (RTGCPHYS)pvFault); +# else + PGM_INVL_PG(pVCpu, pvFault); +# endif +# ifdef VBOX_STRICT + RTGCPHYS GCPhys2 = RTGCPHYS_MAX; + uint64_t fPageGst = UINT64_MAX; + if (!pVM->pgm.s.fNestedPaging) + { + rc = PGMGstGetPage(pVCpu, pvFault, &fPageGst, &GCPhys2); + AssertMsg(RT_SUCCESS(rc) && ((fPageGst & X86_PTE_RW) || ((CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG && CPUMGetGuestCPL(pVCpu) < 3)), ("rc=%Rrc fPageGst=%RX64\n", rc, fPageGst)); + LogFlow(("Obsolete physical monitor page out of sync %RGv - phys %RGp flags=%08llx\n", pvFault, GCPhys2, (uint64_t)fPageGst)); + } +# if 0 /* Bogus! Triggers incorrectly with w7-64 and later for the SyncPage case: "Pde at %RGv changed behind our back?" */ + uint64_t fPageShw = 0; + rc = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); + AssertMsg((RT_SUCCESS(rc) && (fPageShw & X86_PTE_RW)) || pVM->cCpus > 1 /* new monitor can be installed/page table flushed between the trap exit and PGMTrap0eHandler */, + ("rc=%Rrc fPageShw=%RX64 GCPhys2=%RGp fPageGst=%RX64 pvFault=%RGv\n", rc, fPageShw, GCPhys2, fPageGst, pvFault)); +# endif +# endif /* VBOX_STRICT */ + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2OutOfSyncHndObs; }); + return VINF_SUCCESS; + } + } +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * Check for Netware WP0+RO+US hack from above and undo it when user + * mode accesses the page again. + */ + else if ( GstWalk.Core.fEffectiveUS + && !GstWalk.Core.fEffectiveRW + && (GstWalk.Core.fBigPage || GstWalk.Pde.n.u1Write) + && pVCpu->pgm.s.cNetwareWp0Hacks > 0 + && (CPUMGetGuestCR0(pVCpu) & (X86_CR0_WP | X86_CR0_PG)) == X86_CR0_PG + && CPUMGetGuestCPL(pVCpu) == 3 + && pVM->cCpus == 1 + ) + { + Log(("PGM #PF: Undo netware WP0+RO+US hack: pvFault=%RGp uErr=%#x\n", pvFault, uErr)); + rc = PGM_BTH_NAME(SyncPage)(pVCpu, GstWalk.Pde, pvFault, 1, uErr); + if (RT_SUCCESS(rc)) + { + PGM_INVL_PG(pVCpu, pvFault); + pVCpu->pgm.s.cNetwareWp0Hacks--; + STAM_STATS({ pVCpu->pgm.s.CTX_SUFF(pStatTrap0eAttribution) = &pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZTrap0eTime2Wp0RoUsUnhack; }); + return VINF_SUCCESS; + } + } +# endif /* PGM_WITH_PAGING */ + + /** @todo else: why are we here? */ + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && defined(VBOX_STRICT) + /* + * Check for VMM page flags vs. Guest page flags consistency. + * Currently only for debug purposes. + */ + if (RT_SUCCESS(rc)) + { + /* Get guest page flags. */ + uint64_t fPageGst; + int rc2 = PGMGstGetPage(pVCpu, pvFault, &fPageGst, NULL); + if (RT_SUCCESS(rc2)) + { + uint64_t fPageShw = 0; + rc2 = PGMShwGetPage(pVCpu, pvFault, &fPageShw, NULL); + +#if 0 + /* + * Compare page flags. + * Note: we have AVL, A, D bits desynced. + */ + AssertMsg( (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) + == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) + || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 + && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) + == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) + && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW + && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US), + ("Page flags mismatch! pvFault=%RGv uErr=%x GCPhys=%RGp fPageShw=%RX64 fPageGst=%RX64 rc=%d\n", + pvFault, (uint32_t)uErr, GCPhys, fPageShw, fPageGst, rc)); +01:01:15.623511 00:08:43.266063 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) +01:01:15.623511 00:08:43.266064 Location : e:\vbox\svn\trunk\srcPage flags mismatch! pvFault=fffff801b0d7b000 uErr=11 GCPhys=0000000019b52000 fPageShw=0 fPageGst=77b0000000000121 rc=0 + +01:01:15.625516 00:08:43.268051 Expression: (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK)) || ( pVCpu->pgm.s.cNetwareWp0Hacks > 0 && (fPageShw & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) == (fPageGst & ~(X86_PTE_A | X86_PTE_D | X86_PTE_AVL_MASK | X86_PTE_RW | X86_PTE_US)) && (fPageShw & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW && (fPageGst & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_US) +01:01:15.625516 00:08:43.268051 Location : +e:\vbox\svn\trunk\srcPage flags mismatch! +pvFault=fffff801b0d7b000 + uErr=11 X86_TRAP_PF_ID | X86_TRAP_PF_P +GCPhys=0000000019b52000 +fPageShw=0 +fPageGst=77b0000000000121 +rc=0 +#endif + + } + else + AssertMsgFailed(("PGMGstGetPage rc=%Rrc\n", rc)); + } + else + AssertMsgFailed(("PGMGCGetPage rc=%Rrc\n", rc)); +# endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && VBOX_STRICT */ + } + + + /* + * If we get here it is because something failed above, i.e. most like guru + * meditiation time. + */ + LogRel(("%s: returns rc=%Rrc pvFault=%RGv uErr=%RX64 cs:rip=%04x:%08RX64\n", + __PRETTY_FUNCTION__, rc, pvFault, (uint64_t)uErr, pRegFrame->cs.Sel, pRegFrame->rip)); + return rc; + +# else /* Nested paging, EPT except PGM_GST_TYPE = PROT, NONE. */ + NOREF(uErr); NOREF(pRegFrame); NOREF(pvFault); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} +#endif /* !IN_RING3 */ + + +/** + * Emulation of the invlpg instruction. + * + * + * @returns VBox status code. + * + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage Page to invalidate. + * + * @remark ASSUMES that the guest is updating before invalidating. This order + * isn't required by the CPU, so this is speculative and could cause + * trouble. + * @remark No TLB shootdown is done on any other VCPU as we assume that + * invlpg emulation is the *only* reason for calling this function. + * (The guest has to shoot down TLB entries on other CPUs itself) + * Currently true, but keep in mind! + * + * @todo Clean this up! Most of it is (or should be) no longer necessary as we catch all page table accesses. + * Should only be required when PGMPOOL_WITH_OPTIMIZED_DIRTY_PT is active (PAE or AMD64 (for now)) + */ +PGM_BTH_DECL(int, InvalidatePage)(PVMCPU pVCpu, RTGCPTR GCPtrPage) +{ +#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc; + PVM pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + PGM_LOCK_ASSERT_OWNER(pVM); + + LogFlow(("InvalidatePage %RGv\n", GCPtrPage)); + + /* + * Get the shadow PD entry and skip out if this PD isn't present. + * (Guessing that it is frequent for a shadow PDE to not be present, do this first.) + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (uint32_t)GCPtrPage >> SHW_PD_SHIFT; + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); +# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ + if (!pShwPde) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + return VINF_SUCCESS; + } +# else + Assert(pShwPde); +# endif + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPdpt = (uint32_t)GCPtrPage >> X86_PDPT_SHIFT; + PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); + + /* If the shadow PDPE isn't present, then skip the invalidate. */ +# ifdef IN_RING3 /* Possible we didn't resync yet when called from REM. */ + if (!pPdptDst || !pPdptDst->a[iPdpt].n.u1Present) +# else + if (!pPdptDst->a[iPdpt].n.u1Present) +# endif + { + Assert(!pPdptDst || !(pPdptDst->a[iPdpt].u & PGM_PLXFLAGS_MAPPING)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPAE pPDDst; + + /* Fetch the pgm pool shadow descriptor. */ + rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc, rc); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + +# else /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ + /* PML4 */ + /*const unsigned iPml4 = (GCPtrPage >> X86_PML4_SHIFT) & X86_PML4_MASK;*/ + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst; + PX86PDPT pPdptDst; + PX86PML4E pPml4eDst; + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eDst, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT || rc == VERR_PAGE_MAP_LEVEL4_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + Assert(pPDDst); + + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + PX86PDPE pPdpeDst = &pPdptDst->a[iPdpt]; + + if (!pPdpeDst->n.u1Present) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & SHW_PDPE_PG_MASK); + Assert(pShwPde); + +# endif /* PGM_SHW_TYPE == PGM_TYPE_AMD64 */ + + const SHWPDE PdeDst = *pPdeDst; + if (!PdeDst.n.u1Present) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; + } + + /* + * Get the guest PD entry and calc big page. + */ +# if PGM_GST_TYPE == PGM_TYPE_32BIT + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else /* PGM_GST_TYPE != PGM_TYPE_32BIT */ + unsigned iPDSrc = 0; +# if PGM_GST_TYPE == PGM_TYPE_PAE + X86PDPE PdpeSrcIgn; + PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrcIgn); +# else /* AMD64 */ + PX86PML4E pPml4eSrcIgn; + X86PDPE PdpeSrcIgn; + PX86PDPAE pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrcIgn, &PdpeSrcIgn, &iPDSrc); +# endif + GSTPDE PdeSrc; + + if (pPDSrc) + PdeSrc = pPDSrc->a[iPDSrc]; + else + PdeSrc.u = 0; +# endif /* PGM_GST_TYPE != PGM_TYPE_32BIT */ + const bool fWasBigPage = RT_BOOL(PdeDst.u & PGM_PDFLAGS_BIG_PAGE); + const bool fIsBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu); + if (fWasBigPage != fIsBigPage) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + +# ifdef IN_RING3 + /* + * If a CR3 Sync is pending we may ignore the invalidate page operation + * depending on the kind of sync and if it's a global page or not. + * This doesn't make sense in GC/R0 so we'll skip it entirely there. + */ +# ifdef PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3) + || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) + && fIsBigPage + && PdeSrc.b.u1Global + ) + ) +# else + if (VM_FF_IS_ANY_SET(pVM, VM_FF_PGM_SYNC_CR3 | VM_FF_PGM_SYNC_CR3_NON_GLOBAL) ) +# endif + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePageSkipped)); + return VINF_SUCCESS; + } +# endif /* IN_RING3 */ + + /* + * Deal with the Guest PDE. + */ + rc = VINF_SUCCESS; + if (PdeSrc.n.u1Present) + { + Assert( PdeSrc.n.u1User == PdeDst.n.u1User + && (PdeSrc.n.u1Write || !PdeDst.n.u1Write || pVCpu->pgm.s.cNetwareWp0Hacks > 0)); +# ifndef PGM_WITHOUT_MAPPING + if (PdeDst.u & PGM_PDFLAGS_MAPPING) + { + /* + * Conflict - Let SyncPT deal with it to avoid duplicate code. + */ + Assert(pgmMapAreMappingsEnabled(pVM)); + Assert(PGMGetGuestMode(pVCpu) <= PGMMODE_PAE); + rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); + } + else +# endif /* !PGM_WITHOUT_MAPPING */ + if (!fIsBigPage) + { + /* + * 4KB - page. + */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + RTGCPHYS GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); + +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2))); +# endif + if (pShwPage->GCPhys == GCPhys) + { + /* Syncing it here isn't 100% safe and it's probably not worth spending time syncing it. */ + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + + PGSTPT pPTSrc; + rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { + const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; + GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", + GCPtrPage, PteSrc.n.u1Present, + PteSrc.n.u1Write & PdeSrc.n.u1Write, + PteSrc.n.u1User & PdeSrc.n.u1User, + (uint64_t)PteSrc.u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4KBPages)); + PGM_INVL_PG(pVCpu, GCPtrPage); + } + else + { + /* + * The page table address changed. + */ + LogFlow(("InvalidatePage: Out-of-sync at %RGp PdeSrc=%RX64 PdeDst=%RX64 ShwGCPhys=%RGp iPDDst=%#x\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, iPDDst)); + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + ASMAtomicWriteSize(pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDOutOfSync)); + PGM_INVL_VCPU_TLBS(pVCpu); + } + } + else + { + /* + * 2/4MB - page. + */ + /* Before freeing the page, check if anything really changed. */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + RTGCPHYS GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + if ( pShwPage->GCPhys == GCPhys + && pShwPage->enmKind == BTH_PGMPOOLKIND_PT_FOR_BIG) + { + /* ASSUMES a the given bits are identical for 4M and normal PDEs */ + /** @todo This test is wrong as it cannot check the G bit! + * FIXME */ + if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) + == (PdeDst.u & (X86_PDE_P | X86_PDE_RW | X86_PDE_US)) + && ( PdeSrc.b.u1Dirty /** @todo rainy day: What about read-only 4M pages? not very common, but still... */ + || (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY))) + { + LogFlow(("Skipping flush for big page containing %RGv (PD=%X .u=%RX64)-> nothing has changed!\n", GCPtrPage, iPDSrc, PdeSrc.u)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPagesSkip)); + return VINF_SUCCESS; + } + } + + /* + * Ok, the page table is present and it's been changed in the guest. + * If we're in host context, we'll just mark it as not present taking the lazy approach. + * We could do this for some flushes in GC too, but we need an algorithm for + * deciding which 4MB pages containing code likely to be executed very soon. + */ + LogFlow(("InvalidatePage: Out-of-sync PD at %RGp PdeSrc=%RX64 PdeDst=%RX64\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + ASMAtomicWriteSize(pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePage4MBPages)); + PGM_INVL_BIG_PG(pVCpu, GCPtrPage); + } + } + else + { + /* + * Page directory is not present, mark shadow PDE not present. + */ + if (!(PdeDst.u & PGM_PDFLAGS_MAPPING)) + { + pgmPoolFree(pVM, PdeDst.u & SHW_PDE_PG_MASK, pShwPde->idx, iPDDst); + ASMAtomicWriteSize(pPdeDst, 0); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDNPs)); + PGM_INVL_PG(pVCpu, GCPtrPage); + } + else + { + Assert(pgmMapAreMappingsEnabled(pVM)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,InvalidatePagePDMappings)); + } + } + return rc; + +#else /* guest real and protected mode, nested + ept, none. */ + /* There's no such thing as InvalidatePage when paging is disabled, so just ignore. */ + NOREF(pVCpu); NOREF(GCPtrPage); + return VINF_SUCCESS; +#endif +} + +#if PGM_SHW_TYPE != PGM_TYPE_NONE + +/** + * Update the tracking of shadowed pages. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pShwPage The shadow page. + * @param HCPhys The physical page we is being dereferenced. + * @param iPte Shadow PTE index + * @param GCPhysPage Guest physical address (only valid if pShwPage->fDirty is set) + */ +DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackDeref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, RTHCPHYS HCPhys, uint16_t iPte, + RTGCPHYS GCPhysPage) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + +# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ + && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) + + /* Use the hint we retrieved from the cached guest PT. */ + if (pShwPage->fDirty) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + Assert(pShwPage->cPresent); + Assert(pPool->cPresent); + pShwPage->cPresent--; + pPool->cPresent--; + + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysPage); + AssertRelease(pPhysPage); + pgmTrackDerefGCPhys(pPool, pShwPage, pPhysPage, iPte); + return; + } +# else + NOREF(GCPhysPage); +# endif + + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a); + LogFlow(("SyncPageWorkerTrackDeref: Damn HCPhys=%RHp pShwPage->idx=%#x!!!\n", HCPhys, pShwPage->idx)); + + /** @todo If this turns out to be a bottle neck (*very* likely) two things can be done: + * 1. have a medium sized HCPhys -> GCPhys TLB (hash?) + * 2. write protect all shadowed pages. I.e. implement caching. + */ + /** @todo duplicated in the 2nd half of pgmPoolTracDerefGCPhysHint */ + + /* + * Find the guest address. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); + pRam; + pRam = pRam->CTX_SUFF(pNext)) + { + unsigned iPage = pRam->cb >> PAGE_SHIFT; + while (iPage-- > 0) + { + if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + Assert(pShwPage->cPresent); + Assert(pPool->cPresent); + pShwPage->cPresent--; + pPool->cPresent--; + + pgmTrackDerefGCPhys(pPool, pShwPage, &pRam->aPages[iPage], iPte); + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackDeref, a); + return; + } + } + } + + for (;;) + AssertReleaseMsgFailed(("HCPhys=%RHp wasn't found!\n", HCPhys)); +} + + +/** + * Update the tracking of shadowed pages. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pShwPage The shadow page. + * @param u16 The top 16-bit of the pPage->HCPhys. + * @param pPage Pointer to the guest page. this will be modified. + * @param iPTDst The index into the shadow table. + */ +DECLINLINE(void) PGM_BTH_NAME(SyncPageWorkerTrackAddref)(PVMCPU pVCpu, PPGMPOOLPAGE pShwPage, uint16_t u16, PPGMPAGE pPage, const unsigned iPTDst) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + + /* + * Just deal with the simple first time here. + */ + if (!u16) + { + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackVirgin); + u16 = PGMPOOL_TD_MAKE(1, pShwPage->idx); + /* Save the page table index. */ + PGM_PAGE_SET_PTE_INDEX(pVM, pPage, iPTDst); + } + else + u16 = pgmPoolTrackPhysExtAddref(pVM, pPage, u16, pShwPage->idx, iPTDst); + + /* write back */ + Log2(("SyncPageWorkerTrackAddRef: u16=%#x->%#x iPTDst=%#x\n", u16, PGM_PAGE_GET_TRACKING(pPage), iPTDst)); + PGM_PAGE_SET_TRACKING(pVM, pPage, u16); + + /* update statistics. */ + pVM->pgm.s.CTX_SUFF(pPool)->cPresent++; + pShwPage->cPresent++; + if (pShwPage->iFirstPresent > iPTDst) + pShwPage->iFirstPresent = iPTDst; +} + + +/** + * Modifies a shadow PTE to account for access handlers. + * + * @param pVM The cross context VM structure. + * @param pPage The page in question. + * @param fPteSrc The shadowed flags of the source PTE. Must include the + * A (accessed) bit so it can be emulated correctly. + * @param pPteDst The shadow PTE (output). This is temporary storage and + * does not need to be set atomically. + */ +DECLINLINE(void) PGM_BTH_NAME(SyncHandlerPte)(PVM pVM, PCPGMPAGE pPage, uint64_t fPteSrc, PSHWPTE pPteDst) +{ + NOREF(pVM); RT_NOREF_PV(fPteSrc); + + /** @todo r=bird: Are we actually handling dirty and access bits for pages with access handlers correctly? No. + * Update: \#PF should deal with this before or after calling the handlers. It has all the info to do the job efficiently. */ + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) + { + LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark read-only\n", pPage)); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + pPteDst->u = PGM_PAGE_GET_HCPHYS(pPage); + pPteDst->n.u1Present = 1; + pPteDst->n.u1Execute = 1; + pPteDst->n.u1IgnorePAT = 1; + pPteDst->n.u3EMT = VMX_EPT_MEMTYPE_WB; + /* PteDst.n.u1Write = 0 && PteDst.n.u1Size = 0 */ +# else + if (fPteSrc & X86_PTE_A) + { + SHW_PTE_SET(*pPteDst, fPteSrc | PGM_PAGE_GET_HCPHYS(pPage)); + SHW_PTE_SET_RO(*pPteDst); + } + else + SHW_PTE_SET(*pPteDst, 0); +# endif + } +# ifdef PGM_WITH_MMIO_OPTIMIZATIONS +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + else if ( PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) + && ( BTH_IS_NP_ACTIVE(pVM) + || (fPteSrc & (X86_PTE_RW | X86_PTE_US)) == X86_PTE_RW) /** @todo Remove X86_PTE_US here and pGstWalk->Core.fEffectiveUS before the sync page test. */ +# if PGM_SHW_TYPE == PGM_TYPE_AMD64 + && pVM->pgm.s.fLessThan52PhysicalAddressBits +# endif + ) + { + LogFlow(("SyncHandlerPte: MMIO page -> invalid \n")); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + /* 25.2.3.1: Reserved physical address bit -> EPT Misconfiguration (exit 49) */ + pPteDst->u = pVM->pgm.s.HCPhysInvMmioPg; + /* 25.2.3.1: bits 2:0 = 010b -> EPT Misconfiguration (exit 49) */ + pPteDst->n.u1Present = 0; + pPteDst->n.u1Write = 1; + pPteDst->n.u1Execute = 0; + /* 25.2.3.1: leaf && 2:0 != 0 && u3Emt in {2, 3, 7} -> EPT Misconfiguration */ + pPteDst->n.u3EMT = 7; +# else + /* Set high page frame bits that MBZ (bankers on PAE, CPU dependent on AMD64). */ + SHW_PTE_SET(*pPteDst, pVM->pgm.s.HCPhysInvMmioPg | X86_PTE_PAE_MBZ_MASK_NO_NX | X86_PTE_P); +# endif + } +# endif +# endif /* PGM_WITH_MMIO_OPTIMIZATIONS */ + else + { + LogFlow(("SyncHandlerPte: monitored page (%R[pgmpage]) -> mark not present\n", pPage)); + SHW_PTE_SET(*pPteDst, 0); + } + /** @todo count these kinds of entries. */ +} + + +/** + * Creates a 4K shadow page for a guest page. + * + * For 4M pages the caller must convert the PDE4M to a PTE, this includes adjusting the + * physical address. The PdeSrc argument only the flags are used. No page + * structured will be mapped in this function. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pPteDst Destination page table entry. + * @param PdeSrc Source page directory entry (i.e. Guest OS page directory entry). + * Can safely assume that only the flags are being used. + * @param PteSrc Source page table entry (i.e. Guest OS page table entry). + * @param pShwPage Pointer to the shadow page. + * @param iPTDst The index into the shadow table. + * + * @remark Not used for 2/4MB pages! + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) || defined(DOXYGEN_RUNNING) +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, GSTPDE PdeSrc, GSTPTE PteSrc, + PPGMPOOLPAGE pShwPage, unsigned iPTDst) +# else +static void PGM_BTH_NAME(SyncPageWorker)(PVMCPU pVCpu, PSHWPTE pPteDst, RTGCPHYS GCPhysPage, + PPGMPOOLPAGE pShwPage, unsigned iPTDst) +# endif +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + RTGCPHYS GCPhysOldPage = NIL_RTGCPHYS; + +# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) \ + && PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) \ + && (PGM_GST_TYPE == PGM_TYPE_PAE || PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_SHW_TYPE == PGM_TYPE_PAE /* pae/32bit combo */) + + if (pShwPage->fDirty) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGSTPT pGstPT; + + /* Note that iPTDst can be used to index the guest PT even in the pae/32bit combo as we copy only half the table; see pgmPoolAddDirtyPage. */ + pGstPT = (PGSTPT)&pPool->aDirtyPages[pShwPage->idxDirtyEntry].aPage[0]; + GCPhysOldPage = GST_GET_PTE_GCPHYS(pGstPT->a[iPTDst]); + pGstPT->a[iPTDst].u = PteSrc.u; + } +# else + Assert(!pShwPage->fDirty); +# endif + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + if ( PteSrc.n.u1Present + && GST_IS_PTE_VALID(pVCpu, PteSrc)) +# endif + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + RTGCPHYS GCPhysPage = GST_GET_PTE_GCPHYS(PteSrc); +# endif + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysPage); + + /* + * Find the ram range. + */ + PPGMPAGE pPage; + int rc = pgmPhysGetPageEx(pVM, GCPhysPage, &pPage); + if (RT_SUCCESS(rc)) + { + /* Ignore ballooned pages. + Don't return errors or use a fatal assert here as part of a + shadow sync range might included ballooned pages. */ + if (PGM_PAGE_IS_BALLOONED(pPage)) + { + Assert(!SHW_PTE_IS_P(*pPteDst)); /** @todo user tracking needs updating if this triggers. */ + return; + } + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + || ( PteSrc.n.u1Write +# else + || ( 1 +# endif + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + ) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhysPage); + AssertRC(rc); + } +# endif + + /* + * Make page table entry. + */ + SHWPTE PteDst; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + uint64_t fGstShwPteFlags = GST_GET_PTE_SHW_FLAGS(pVCpu, PteSrc); +# else + uint64_t fGstShwPteFlags = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_A | X86_PTE_D; +# endif + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, fGstShwPteFlags, &PteDst); + else + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* + * If the page or page directory entry is not marked accessed, + * we mark the page not present. + */ + if (!PteSrc.n.u1Accessed || !PdeSrc.n.u1Accessed) + { + LogFlow(("SyncPageWorker: page and or page directory not accessed -> mark not present\n")); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,AccessedPage)); + SHW_PTE_SET(PteDst, 0); + } + /* + * If the page is not flagged as dirty and is writable, then make it read-only, so we can set the dirty bit + * when the page is modified. + */ + else if (!PteSrc.n.u1Dirty && (PdeSrc.n.u1Write & PteSrc.n.u1Write)) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPage)); + SHW_PTE_SET(PteDst, + fGstShwPteFlags + | PGM_PAGE_GET_HCPHYS(pPage) + | PGM_PTFLAGS_TRACK_DIRTY); + SHW_PTE_SET_RO(PteDst); + } + else +# endif + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageSkipped)); +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PteDst.u = PGM_PAGE_GET_HCPHYS(pPage); + PteDst.n.u1Present = 1; + PteDst.n.u1Write = 1; + PteDst.n.u1Execute = 1; + PteDst.n.u1IgnorePAT = 1; + PteDst.n.u3EMT = VMX_EPT_MEMTYPE_WB; + /* PteDst.n.u1Size = 0 */ +# else + SHW_PTE_SET(PteDst, fGstShwPteFlags | PGM_PAGE_GET_HCPHYS(pPage)); +# endif + } + + /* + * Make sure only allocated pages are mapped writable. + */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet. Why, isn't it? */ + Log3(("SyncPageWorker: write-protecting %RGp pPage=%R[pgmpage]at iPTDst=%d\n", GCPhysPage, pPage, iPTDst)); + } + } + + /* + * Keep user track up to date. + */ + if (SHW_PTE_IS_P(PteDst)) + { + if (!SHW_PTE_IS_P(*pPteDst)) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + else if (SHW_PTE_GET_HCPHYS(*pPteDst) != SHW_PTE_GET_HCPHYS(PteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64 PteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst), SHW_PTE_LOG64(PteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + } + } + else if (SHW_PTE_IS_P(*pPteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + } + + /* + * Update statistics and commit the entry. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + if (!PteSrc.n.u1Global) + pShwPage->fSeenNonGlobal = true; +# endif + SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); + return; + } + +/** @todo count these three different kinds. */ + Log2(("SyncPageWorker: invalid address in Pte\n")); + } +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + else if (!PteSrc.n.u1Present) + Log2(("SyncPageWorker: page not present in Pte\n")); + else + Log2(("SyncPageWorker: invalid Pte\n")); +# endif + + /* + * The page is not present or the PTE is bad. Replace the shadow PTE by + * an empty entry, making sure to keep the user tracking up to date. + */ + if (SHW_PTE_IS_P(*pPteDst)) + { + Log2(("SyncPageWorker: deref! *pPteDst=%RX64\n", SHW_PTE_LOG64(*pPteDst))); + PGM_BTH_NAME(SyncPageWorkerTrackDeref)(pVCpu, pShwPage, SHW_PTE_GET_HCPHYS(*pPteDst), iPTDst, GCPhysOldPage); + } + SHW_PTE_ATOMIC_SET(*pPteDst, 0); +} + + +/** + * Syncs a guest OS page. + * + * There are no conflicts at this point, neither is there any need for + * page table allocations. + * + * When called in PAE or AMD64 guest mode, the guest PDPE shall be valid. + * When called in AMD64 guest mode, the guest PML4E shall be valid. + * + * @returns VBox status code. + * @returns VINF_PGM_SYNCPAGE_MODIFIED_PDE if it modifies the PDE in any way. + * @param pVCpu The cross context virtual CPU structure. + * @param PdeSrc Page directory entry of the guest. + * @param GCPtrPage Guest context page address. + * @param cPages Number of pages to sync (PGM_SYNC_N_PAGES) (default=1). + * @param uErr Fault error (X86_TRAP_PF_*). + */ +static int PGM_BTH_NAME(SyncPage)(PVMCPU pVCpu, GSTPDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uErr) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + LogFlow(("SyncPage: GCPtrPage=%RGv cPages=%u uErr=%#x\n", GCPtrPage, cPages, uErr)); + RT_NOREF_PV(uErr); RT_NOREF_PV(cPages); RT_NOREF_PV(GCPtrPage); + + PGM_LOCK_ASSERT_OWNER(pVM); + +# if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) + + /* + * Assert preconditions. + */ + Assert(PdeSrc.n.u1Present); + Assert(cPages); +# if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPagePD[(GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK]); +# endif + + /* + * Get the shadow PDE, find the shadow page table in the pool. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPAE pPDDst; + + /* Fetch the pgm pool shadow descriptor. */ + int rc2 = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc2, rc2); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + + int rc2 = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc2, rc2); + Assert(pPDDst && pPdptDst); + PX86PDEPAE pPdeDst = &pPDDst->a[iPDDst]; +# endif + SHWPDE PdeDst = *pPdeDst; + + /* + * - In the guest SMP case we could have blocked while another VCPU reused + * this page table. + * - With W7-64 we may also take this path when the A bit is cleared on + * higher level tables (PDPE/PML4E). The guest does not invalidate the + * relevant TLB entries. If we're write monitoring any page mapped by + * the modified entry, we may end up here with a "stale" TLB entry. + */ + if (!PdeDst.n.u1Present) + { + Log(("CPU%u: SyncPage: Pde at %RGv changed behind our back? (pPdeDst=%p/%RX64) uErr=%#x\n", pVCpu->idCpu, GCPtrPage, pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); + AssertMsg(pVM->cCpus > 1 || (uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RW)) == (X86_TRAP_PF_P | X86_TRAP_PF_RW), + ("Unexpected missing PDE p=%p/%RX64 uErr=%#x\n", pPdeDst, (uint64_t)PdeDst.u, (uint32_t)uErr)); + if (uErr & X86_TRAP_PF_P) + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_SUCCESS; /* force the instruction to be executed again. */ + } + + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + Assert(pShwPage); + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); +# endif + + /* + * Check that the page is present and that the shadow PDE isn't out of sync. + */ + const bool fBigPage = PdeSrc.b.u1Size && GST_IS_PSE_ACTIVE(pVCpu); + const bool fPdeValid = !fBigPage ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc); + RTGCPHYS GCPhys; + if (!fBigPage) + { + GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2))); +# endif + } + else + { + GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + } + /** @todo This doesn't check the G bit of 2/4MB pages. FIXME */ + if ( fPdeValid + && pShwPage->GCPhys == GCPhys + && PdeSrc.n.u1Present + && PdeSrc.n.u1User == PdeDst.n.u1User + && (PdeSrc.n.u1Write == PdeDst.n.u1Write || !PdeDst.n.u1Write) +# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) + && (PdeSrc.n.u1NoExecute == PdeDst.n.u1NoExecute || !GST_IS_NX_ACTIVE(pVCpu)) +# endif + ) + { + /* + * Check that the PDE is marked accessed already. + * Since we set the accessed bit *before* getting here on a #PF, this + * check is only meant for dealing with non-#PF'ing paths. + */ + if (PdeSrc.n.u1Accessed) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + if (!fBigPage) + { + /* + * 4KB Page - Map the guest page table. + */ + PGSTPT pPTSrc; + int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { +# ifdef PGM_SYNC_N_PAGES + Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); + if ( cPages > 1 + && !(uErr & X86_TRAP_PF_P) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + /* + * This code path is currently only taken when the caller is PGMTrap0eHandler + * for non-present pages! + * + * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and + * deal with locality. + */ + unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst < PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; + + for (; iPTDst < iPTDstEnd; iPTDst++) + { + const PGSTPTE pPteSrc = &pPTSrc->a[offPTSrc + iPTDst]; + + if ( pPteSrc->n.u1Present + && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) + { + RTGCPTR GCPtrCurPage = (GCPtrPage & ~(RTGCPTR)(GST_PT_MASK << GST_PT_SHIFT)) | ((offPTSrc + iPTDst) << PAGE_SHIFT); + NOREF(GCPtrCurPage); +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + /* + * Assuming kernel code will be marked as supervisor - and not as user level + * and executed using a conforming code selector - And marked as readonly. + * Also assume that if we're monitoring a page, it's of no interest to CSAM. + */ + PPGMPAGE pPage; + if ( ((PdeSrc.u & pPteSrc->u) & (X86_PTE_RW | X86_PTE_US)) + || iPTDst == ((GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK) /* always sync GCPtrPage */ + || !CSAMDoesPageNeedScanning(pVM, GCPtrCurPage) + || ( (pPage = pgmPhysGetPage(pVM, pPteSrc->u & GST_PTE_PG_MASK)) + && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + ) +# endif /* else: CSAM not active */ + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, *pPteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx%s\n", + GCPtrCurPage, pPteSrc->n.u1Present, + pPteSrc->n.u1Write & PdeSrc.n.u1Write, + pPteSrc->n.u1User & PdeSrc.n.u1User, + (uint64_t)pPteSrc->u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + } + } + else +# endif /* PGM_SYNC_N_PAGES */ + { + const unsigned iPTSrc = (GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK; + GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPage: 4K %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx} PteDst=%08llx %s\n", + GCPtrPage, PteSrc.n.u1Present, + PteSrc.n.u1Write & PdeSrc.n.u1Write, + PteSrc.n.u1User & PdeSrc.n.u1User, + (uint64_t)PteSrc.u, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + } + else /* MMIO or invalid page: emulated in #PF handler. */ + { + LogFlow(("PGM_GCPHYS_2_PTR %RGp failed with %Rrc\n", GCPhys, rc)); + Assert(!SHW_PTE_IS_P(pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK])); + } + } + else + { + /* + * 4/2MB page - lazy syncing shadow 4K pages. + * (There are many causes of getting here, it's no longer only CSAM.) + */ + /* Calculate the GC physical address of this 4KB shadow page. */ + GCPhys = PGM_A20_APPLY(pVCpu, GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc) | (GCPtrPage & GST_BIG_PAGE_OFFSET_MASK)); + /* Find ram range. */ + PPGMPAGE pPage; + int rc = pgmPhysGetPageEx(pVM, GCPhys, &pPage); + if (RT_SUCCESS(rc)) + { + AssertFatalMsg(!PGM_PAGE_IS_BALLOONED(pPage), ("Unexpected ballooned page at %RGp\n", GCPhys)); + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Try to make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) + || ( PdeSrc.n.u1Write + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + ) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + AssertRC(rc); + } +# endif + + /* + * Make shadow PTE entry. + */ + SHWPTE PteDst; + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc), &PteDst); + else + SHW_PTE_SET(PteDst, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc) | PGM_PAGE_GET_HCPHYS(pPage)); + + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + if ( SHW_PTE_IS_P(PteDst) + && !SHW_PTE_IS_P(pPTDst->a[iPTDst])) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + + /* Make sure only allocated pages are mapped writable. */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ + Log3(("SyncPage: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, GCPtrPage)); + } + + SHW_PTE_ATOMIC_SET2(pPTDst->a[iPTDst], PteDst); + + /* + * If the page is not flagged as dirty and is writable, then make it read-only + * at PD level, so we can set the dirty bit when the page is modified. + * + * ASSUMES that page access handlers are implemented on page table entry level. + * Thus we will first catch the dirty access and set PDE.D and restart. If + * there is an access handler, we'll trap again and let it work on the problem. + */ + /** @todo r=bird: figure out why we need this here, SyncPT should've taken care of this already. + * As for invlpg, it simply frees the whole shadow PT. + * ...It's possibly because the guest clears it and the guest doesn't really tell us... */ + if ( !PdeSrc.b.u1Dirty + && PdeSrc.b.u1Write) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.n.u1Write = 0; + } + else + { + PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.n.u1Write = PdeSrc.n.u1Write; + } + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + Log2(("SyncPage: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} GCPhys=%RGp%s\n", + GCPtrPage, PdeSrc.n.u1Present, PdeSrc.n.u1Write, PdeSrc.n.u1User, (uint64_t)PdeSrc.u, GCPhys, + PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); + } + else + { + LogFlow(("PGM_GCPHYS_2_PTR %RGp (big) failed with %Rrc\n", GCPhys, rc)); + /** @todo must wipe the shadow page table entry in this + * case. */ + } + } + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + return VINF_SUCCESS; + } + + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDNAs)); + } + else if (fPdeValid) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPagePDOutOfSync)); + Log2(("SyncPage: Out-Of-Sync PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); + } + else + { +/// @todo STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_MID_Z(Stat,SyncPagePDOutOfSyncAndInvalid)); + Log2(("SyncPage: Bad PDE at %RGp PdeSrc=%RX64 PdeDst=%RX64 (GCPhys %RGp vs %RGp)\n", + GCPtrPage, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u, pShwPage->GCPhys, GCPhys)); + } + + /* + * Mark the PDE not present. Restart the instruction and let #PF call SyncPT. + * Yea, I'm lazy. + */ + pgmPoolFreeByPage(pPool, pShwPage, pShwPde->idx, iPDDst); + ASMAtomicWriteSize(pPdeDst, 0); + + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + PGM_INVL_VCPU_TLBS(pVCpu); + return VINF_PGM_SYNCPAGE_MODIFIED_PDE; + + +# elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !defined(IN_RC) + NOREF(PdeSrc); + +# ifdef PGM_SYNC_N_PAGES + /* + * Get the shadow PDE, find the shadow page table in the pool. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + X86PDEPAE PdeDst = pgmShwGetPaePDE(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; NOREF(iPdpt); + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + X86PDEPAE PdeDst; + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + + int rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst && pPdptDst); + PdeDst = pPDDst->a[iPDDst]; +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + EPTPDE PdeDst; + + int rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, NULL, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; +# endif + /* In the guest SMP case we could have blocked while another VCPU reused this page table. */ + if (!PdeDst.n.u1Present) + { + AssertMsg(pVM->cCpus > 1, ("Unexpected missing PDE %RX64\n", (uint64_t)PdeDst.u)); + Log(("CPU%d: SyncPage: Pde at %RGv changed behind our back!\n", pVCpu->idCpu, GCPtrPage)); + return VINF_SUCCESS; /* force the instruction to be executed again. */ + } + + /* Can happen in the guest SMP case; other VCPU activated this PDE while we were blocking to handle the page fault. */ + if (PdeDst.n.u1Size) + { + Assert(pVM->pgm.s.fNestedPaging); + Log(("CPU%d: SyncPage: Pde (big:%RX64) at %RGv changed behind our back!\n", pVCpu->idCpu, PdeDst.u, GCPtrPage)); + return VINF_SUCCESS; + } + + /* Mask away the page offset. */ + GCPtrPage &= ~((RTGCPTR)0xfff); + + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, PdeDst.u & SHW_PDE_PG_MASK); + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + + Assert(cPages == 1 || !(uErr & X86_TRAP_PF_P)); + if ( cPages > 1 + && !(uErr & X86_TRAP_PF_P) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + /* + * This code path is currently only taken when the caller is PGMTrap0eHandler + * for non-present pages! + * + * We're setting PGM_SYNC_NR_PAGES pages around the faulting page to sync it and + * deal with locality. + */ + unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst < PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; + for (; iPTDst < iPTDstEnd; iPTDst++) + { + if (!SHW_PTE_IS_P(pPTDst->a[iPTDst])) + { + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", + GCPtrCurPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + else + Log4(("%RGv iPTDst=%x pPTDst->a[iPTDst] %RX64\n", (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) | (iPTDst << PAGE_SHIFT), iPTDst, SHW_PTE_LOG64(pPTDst->a[iPTDst]) )); + } + } + else +# endif /* PGM_SYNC_N_PAGES */ + { + const unsigned iPTDst = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + + Log2(("SyncPage: 4K %RGv PteSrc:{P=1 RW=1 U=1}PteDst=%08llx%s\n", + GCPtrPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + } + return VINF_SUCCESS; + +# else + NOREF(PdeSrc); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +# endif +} + +#endif /* PGM_SHW_TYPE != PGM_TYPE_NONE */ +#if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE + +/** + * CheckPageFault helper for returning a page fault indicating a non-present + * (NP) entry in the page translation structures. + * + * @returns VINF_EM_RAW_GUEST_TRAP. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The error code of the shadow fault. Corrections to + * TRPM's copy will be made if necessary. + * @param GCPtrPage For logging. + * @param uPageFaultLevel For logging. + */ +DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnNP)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) +{ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF)); + AssertMsg(!(uErr & X86_TRAP_PF_P), ("%#x\n", uErr)); + AssertMsg(!(uErr & X86_TRAP_PF_RSVD), ("%#x\n", uErr)); + if (uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) + TRPMSetErrorCode(pVCpu, uErr & ~(X86_TRAP_PF_RSVD | X86_TRAP_PF_P)); + + Log(("CheckPageFault: real page fault (notp) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); + RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel); + return VINF_EM_RAW_GUEST_TRAP; +} + + +/** + * CheckPageFault helper for returning a page fault indicating a reserved bit + * (RSVD) error in the page translation structures. + * + * @returns VINF_EM_RAW_GUEST_TRAP. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The error code of the shadow fault. Corrections to + * TRPM's copy will be made if necessary. + * @param GCPtrPage For logging. + * @param uPageFaultLevel For logging. + */ +DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnRSVD)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) +{ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF)); + if ((uErr & (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) != (X86_TRAP_PF_RSVD | X86_TRAP_PF_P)) + TRPMSetErrorCode(pVCpu, uErr | X86_TRAP_PF_RSVD | X86_TRAP_PF_P); + + Log(("CheckPageFault: real page fault (rsvd) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); + RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel); + return VINF_EM_RAW_GUEST_TRAP; +} + + +/** + * CheckPageFault helper for returning a page protection fault (P). + * + * @returns VINF_EM_RAW_GUEST_TRAP. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr The error code of the shadow fault. Corrections to + * TRPM's copy will be made if necessary. + * @param GCPtrPage For logging. + * @param uPageFaultLevel For logging. + */ +DECLINLINE(int) PGM_BTH_NAME(CheckPageFaultReturnProt)(PVMCPU pVCpu, uint32_t uErr, RTGCPTR GCPtrPage, unsigned uPageFaultLevel) +{ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyTrackRealPF)); + AssertMsg(uErr & (X86_TRAP_PF_RW | X86_TRAP_PF_US | X86_TRAP_PF_ID), ("%#x\n", uErr)); + if ((uErr & (X86_TRAP_PF_P | X86_TRAP_PF_RSVD)) != X86_TRAP_PF_P) + TRPMSetErrorCode(pVCpu, (uErr & ~X86_TRAP_PF_RSVD) | X86_TRAP_PF_P); + + Log(("CheckPageFault: real page fault (prot) at %RGv (%d)\n", GCPtrPage, uPageFaultLevel)); + RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(uPageFaultLevel); + return VINF_EM_RAW_GUEST_TRAP; +} + + +/** + * Handle dirty bit tracking faults. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param uErr Page fault error code. + * @param pPdeSrc Guest page directory entry. + * @param pPdeDst Shadow page directory entry. + * @param GCPtrPage Guest context page address. + */ +static int PGM_BTH_NAME(CheckDirtyPageFault)(PVMCPU pVCpu, uint32_t uErr, PSHWPDE pPdeDst, GSTPDE const *pPdeSrc, + RTGCPTR GCPtrPage) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + NOREF(uErr); + + PGM_LOCK_ASSERT_OWNER(pVM); + + /* + * Handle big page. + */ + if (pPdeSrc->b.u1Size && GST_IS_PSE_ACTIVE(pVCpu)) + { + if ( pPdeDst->n.u1Present + && (pPdeDst->u & PGM_PDFLAGS_TRACK_DIRTY)) + { + SHWPDE PdeDst = *pPdeDst; + + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap)); + Assert(pPdeSrc->b.u1Write); + + /* Note: No need to invalidate this entry on other VCPUs as a stale TLB entry will not harm; write access will simply + * fault again and take this path to only invalidate the entry (see below). + */ + PdeDst.n.u1Write = 1; + PdeDst.n.u1Accessed = 1; + PdeDst.au32[0] &= ~PGM_PDFLAGS_TRACK_DIRTY; + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + PGM_INVL_BIG_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + +# ifdef IN_RING0 + /* Check for stale TLB entry; only applies to the SMP guest case. */ + if ( pVM->cCpus > 1 + && pPdeDst->n.u1Write + && pPdeDst->n.u1Accessed) + { + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); + if (pShwPage) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; + if (SHW_PTE_IS_P_RW(*pPteDst)) + { + /* Stale TLB entry. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + } + } +# endif /* IN_RING0 */ + return VINF_PGM_NO_DIRTY_BIT_TRACKING; + } + + /* + * Map the guest page table. + */ + PGSTPT pPTSrc; + int rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, GST_GET_PDE_GCPHYS(*pPdeSrc), &pPTSrc); + if (RT_FAILURE(rc)) + { + AssertRC(rc); + return rc; + } + + if (pPdeDst->n.u1Present) + { + GSTPTE const *pPteSrc = &pPTSrc->a[(GCPtrPage >> GST_PT_SHIFT) & GST_PT_MASK]; + const GSTPTE PteSrc = *pPteSrc; + +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + /* Bail out here as pgmPoolGetPage will return NULL and we'll crash below. + * Our individual shadow handlers will provide more information and force a fatal exit. + */ + if ( VM_IS_RAW_MODE_ENABLED(pVM) + && MMHyperIsInsideArea(pVM, (RTGCPTR)GCPtrPage)) + { + LogRel(("CheckPageFault: write to hypervisor region %RGv\n", GCPtrPage)); + return VINF_PGM_NO_DIRTY_BIT_TRACKING; + } +#endif + /* + * Map shadow page table. + */ + PPGMPOOLPAGE pShwPage = pgmPoolGetPage(pPool, pPdeDst->u & SHW_PDE_PG_MASK); + if (pShwPage) + { + PSHWPT pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + PSHWPTE pPteDst = &pPTDst->a[(GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK]; + if (SHW_PTE_IS_P(*pPteDst)) /** @todo Optimize accessed bit emulation? */ + { + if (SHW_PTE_IS_TRACK_DIRTY(*pPteDst)) + { + PPGMPAGE pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc)); + SHWPTE PteDst = *pPteDst; + + LogFlow(("DIRTY page trap addr=%RGv\n", GCPtrPage)); + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageTrap)); + + Assert(PteSrc.n.u1Write); + + /* Note: No need to invalidate this entry on other VCPUs as a stale TLB + * entry will not harm; write access will simply fault again and + * take this path to only invalidate the entry. + */ + if (RT_LIKELY(pPage)) + { + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + { + //AssertMsgFailed(("%R[pgmpage] - we don't set PGM_PTFLAGS_TRACK_DIRTY for these pages\n", pPage)); + Assert(!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)); + /* Assuming write handlers here as the PTE is present (otherwise we wouldn't be here). */ + SHW_PTE_SET_RO(PteDst); + } + else + { + if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED + && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GST_GET_PTE_GCPHYS(PteSrc)); + AssertRC(rc); + } + if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED) + SHW_PTE_SET_RW(PteDst); + else + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); + } + } + } + else + SHW_PTE_SET_RW(PteDst); /** @todo r=bird: This doesn't make sense to me. */ + + SHW_PTE_SET(PteDst, (SHW_PTE_GET_U(PteDst) | X86_PTE_D | X86_PTE_A) & ~(uint64_t)PGM_PTFLAGS_TRACK_DIRTY); + SHW_PTE_ATOMIC_SET2(*pPteDst, PteDst); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } + +# ifdef IN_RING0 + /* Check for stale TLB entry; only applies to the SMP guest case. */ + if ( pVM->cCpus > 1 + && SHW_PTE_IS_RW(*pPteDst) + && SHW_PTE_IS_A(*pPteDst)) + { + /* Stale TLB entry. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageStale)); + PGM_INVL_PG(pVCpu, GCPtrPage); + return VINF_PGM_HANDLED_DIRTY_BIT_FAULT; /* restarts the instruction. */ + } +# endif + } + } + else + AssertMsgFailed(("pgmPoolGetPageByHCPhys %RGp failed!\n", pPdeDst->u & SHW_PDE_PG_MASK)); + } + + return VINF_PGM_NO_DIRTY_BIT_TRACKING; +} + +#endif /* PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ + +/** + * Sync a shadow page table. + * + * The shadow page table is not present in the shadow PDE. + * + * Handles mapping conflicts. + * + * This is called by VerifyAccessSyncPage, PrefetchPage, InvalidatePage (on + * conflict), and Trap0eHandler. + * + * A precondition for this method is that the shadow PDE is not present. The + * caller must take the PGM lock before checking this and continue to hold it + * when calling this method. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param iPDSrc Page directory index. + * @param pPDSrc Source page directory (i.e. Guest OS page directory). + * Assume this is a temporary mapping. + * @param GCPtrPage GC Pointer of the page that caused the fault + */ +static int PGM_BTH_NAME(SyncPT)(PVMCPU pVCpu, unsigned iPDSrc, PGSTPD pPDSrc, RTGCPTR GCPtrPage) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + +#if 0 /* rarely useful; leave for debugging. */ + STAM_COUNTER_INC(&pVCpu->pgm.s.StatSyncPtPD[iPDSrc]); +#endif + LogFlow(("SyncPT: GCPtrPage=%RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage); + + PGM_LOCK_ASSERT_OWNER(pVM); + +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + int rc = VINF_SUCCESS; + + STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + + /* + * Some input validation first. + */ + AssertMsg(iPDSrc == ((GCPtrPage >> GST_PD_SHIFT) & GST_PD_MASK), ("iPDSrc=%x GCPtrPage=%RGv\n", iPDSrc, GCPtrPage)); + + /* + * Get the relevant shadow PDE entry. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = GCPtrPage >> SHW_PD_SHIFT; + PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPAE pPDDst; + PSHWPDE pPdeDst; + + /* Fetch the pgm pool shadow descriptor. */ + rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc, rc); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst = NULL; /* initialized to shut up gcc */ + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; +# endif + SHWPDE PdeDst = *pPdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); +# endif + +# ifndef PGM_WITHOUT_MAPPINGS + /* + * Check for conflicts. + * RC: In case of a conflict we'll go to Ring-3 and do a full SyncCR3. + * R3: Simply resolve the conflict. + */ + if (PdeDst.u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); +# ifndef IN_RING3 + Log(("SyncPT: Conflict at %RGv\n", GCPtrPage)); + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + return VERR_ADDRESS_CONFLICT; + +# else /* IN_RING3 */ + PPGMMAPPING pMapping = pgmGetMapping(pVM, (RTGCPTR)GCPtrPage); + Assert(pMapping); +# if PGM_GST_TYPE == PGM_TYPE_32BIT + rc = pgmR3SyncPTResolveConflict(pVM, pMapping, pPDSrc, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT)); +# elif PGM_GST_TYPE == PGM_TYPE_PAE + rc = pgmR3SyncPTResolveConflictPAE(pVM, pMapping, GCPtrPage & (GST_PD_MASK << GST_PD_SHIFT)); +# else + AssertFailed(); NOREF(pMapping); /* can't happen for amd64 */ +# endif + if (RT_FAILURE(rc)) + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + return rc; + } + PdeDst = *pPdeDst; +# endif /* IN_RING3 */ + } +# endif /* !PGM_WITHOUT_MAPPINGS */ + Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ + + /* + * Sync the page directory entry. + */ + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; + const bool fPageTable = !PdeSrc.b.u1Size || !GST_IS_PSE_ACTIVE(pVCpu); + if ( PdeSrc.n.u1Present + && (fPageTable ? GST_IS_PDE_VALID(pVCpu, PdeSrc) : GST_IS_BIG_PDE_VALID(pVCpu, PdeSrc)) ) + { + /* + * Allocate & map the page table. + */ + PSHWPT pPTDst; + PPGMPOOLPAGE pShwPage; + RTGCPHYS GCPhys; + if (fPageTable) + { + GCPhys = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | ((iPDDst & 1) * (PAGE_SIZE / 2))); +# endif + rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), + pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + } + else + { + PGMPOOLACCESS enmAccess; +# if PGM_WITH_NX(PGM_GST_TYPE, PGM_SHW_TYPE) + const bool fNoExecute = PdeSrc.n.u1NoExecute && GST_IS_NX_ACTIVE(pVCpu); +# else + const bool fNoExecute = false; +# endif + + GCPhys = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4MB page directory with two 2 MB shadow PDEs.*/ + GCPhys = PGM_A20_APPLY(pVCpu, GCPhys | (GCPtrPage & (1 << X86_PD_PAE_SHIFT))); +# endif + /* Determine the right kind of large page to avoid incorrect cached entry reuse. */ + if (PdeSrc.n.u1User) + { + if (PdeSrc.n.u1Write) + enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_RW_NX : PGMPOOLACCESS_USER_RW; + else + enmAccess = (fNoExecute) ? PGMPOOLACCESS_USER_R_NX : PGMPOOLACCESS_USER_R; + } + else + { + if (PdeSrc.n.u1Write) + enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_RW_NX : PGMPOOLACCESS_SUPERVISOR_RW; + else + enmAccess = (fNoExecute) ? PGMPOOLACCESS_SUPERVISOR_R_NX : PGMPOOLACCESS_SUPERVISOR_R; + } + rc = pgmPoolAlloc(pVM, GCPhys, BTH_PGMPOOLKIND_PT_FOR_BIG, enmAccess, PGM_A20_IS_ENABLED(pVCpu), + pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + } + if (rc == VINF_SUCCESS) + pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + else if (rc == VINF_PGM_CACHED_PAGE) + { + /* + * The PT was cached, just hook it up. + */ + if (fPageTable) + PdeDst.u = pShwPage->Core.Key | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); + else + { + PdeDst.u = pShwPage->Core.Key | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); + /* (see explanation and assumptions further down.) */ + if ( !PdeSrc.b.u1Dirty + && PdeSrc.b.u1Write) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.b.u1Write = 0; + } + } + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + return VINF_SUCCESS; + } + else + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + /** @todo Why do we bother preserving X86_PDE_AVL_MASK here? + * Both PGM_PDFLAGS_MAPPING and PGM_PDFLAGS_TRACK_DIRTY should be + * irrelevant at this point. */ + PdeDst.u &= X86_PDE_AVL_MASK; + PdeDst.u |= pShwPage->Core.Key; + + /* + * Page directory has been accessed (this is a fault situation, remember). + */ + /** @todo + * Well, when the caller is PrefetchPage or InvalidatePage is isn't a + * fault situation. What's more, the Trap0eHandler has already set the + * accessed bit. So, it's actually just VerifyAccessSyncPage which + * might need setting the accessed flag. + * + * The best idea is to leave this change to the caller and add an + * assertion that it's set already. */ + pPDSrc->a[iPDSrc].n.u1Accessed = 1; + if (fPageTable) + { + /* + * Page table - 4KB. + * + * Sync all or just a few entries depending on PGM_SYNC_N_PAGES. + */ + Log2(("SyncPT: 4K %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx}\n", + GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u)); + PGSTPT pPTSrc; + rc = PGM_GCPHYS_2_PTR(pVM, GST_GET_PDE_GCPHYS(PdeSrc), &pPTSrc); + if (RT_SUCCESS(rc)) + { + /* + * Start by syncing the page directory entry so CSAM's TLB trick works. + */ + PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | X86_PDE_AVL_MASK)) + | GST_GET_PDE_SHW_FLAGS(pVCpu, PdeSrc); + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + + /* + * Directory/page user or supervisor privilege: (same goes for read/write) + * + * Directory Page Combined + * U/S U/S U/S + * 0 0 0 + * 0 1 0 + * 1 0 0 + * 1 1 1 + * + * Simple AND operation. Table listed for completeness. + * + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4K)); +# ifdef PGM_SYNC_N_PAGES + unsigned iPTBase = (GCPtrPage >> SHW_PT_SHIFT) & SHW_PT_MASK; + unsigned iPTDst = iPTBase; + const unsigned iPTDstEnd = RT_MIN(iPTDst + PGM_SYNC_NR_PAGES / 2, RT_ELEMENTS(pPTDst->a)); + if (iPTDst <= PGM_SYNC_NR_PAGES / 2) + iPTDst = 0; + else + iPTDst -= PGM_SYNC_NR_PAGES / 2; +# else /* !PGM_SYNC_N_PAGES */ + unsigned iPTDst = 0; + const unsigned iPTDstEnd = RT_ELEMENTS(pPTDst->a); +# endif /* !PGM_SYNC_N_PAGES */ + RTGCPTR GCPtrCur = (GCPtrPage & ~(RTGCPTR)((1 << SHW_PD_SHIFT) - 1)) + | ((RTGCPTR)iPTDst << PAGE_SHIFT); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtrPage >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + for (; iPTDst < iPTDstEnd; iPTDst++, GCPtrCur += PAGE_SIZE) + { + const unsigned iPTSrc = iPTDst + offPTSrc; + const GSTPTE PteSrc = pPTSrc->a[iPTSrc]; + + if (PteSrc.n.u1Present) + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + /* + * Assuming kernel code will be marked as supervisor - and not as user level + * and executed using a conforming code selector - And marked as readonly. + * Also assume that if we're monitoring a page, it's of no interest to CSAM. + */ + PPGMPAGE pPage; + if ( ((PdeSrc.u & pPTSrc->a[iPTSrc].u) & (X86_PTE_RW | X86_PTE_US)) + || !CSAMDoesPageNeedScanning(pVM, GCPtrCur) + || ( (pPage = pgmPhysGetPage(pVM, GST_GET_PTE_GCPHYS(PteSrc))) + && PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + ) +# endif + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], PdeSrc, PteSrc, pShwPage, iPTDst); + Log2(("SyncPT: 4K+ %RGv PteSrc:{P=%d RW=%d U=%d raw=%08llx}%s dst.raw=%08llx iPTSrc=%x PdeSrc.u=%x physpte=%RGp\n", + GCPtrCur, + PteSrc.n.u1Present, + PteSrc.n.u1Write & PdeSrc.n.u1Write, + PteSrc.n.u1User & PdeSrc.n.u1User, + (uint64_t)PteSrc.u, + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "", SHW_PTE_LOG64(pPTDst->a[iPTDst]), iPTSrc, PdeSrc.au32[0], + (RTGCPHYS)(GST_GET_PDE_GCPHYS(PdeSrc) + iPTSrc*sizeof(PteSrc)) )); + } + /* else: the page table was cleared by the pool */ + } /* for PTEs */ + } + } + else + { + /* + * Big page - 2/4MB. + * + * We'll walk the ram range list in parallel and optimize lookups. + * We will only sync one shadow page table at a time. + */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT4M)); + + /** + * @todo It might be more efficient to sync only a part of the 4MB + * page (similar to what we do for 4KB PDs). + */ + + /* + * Start by syncing the page directory entry. + */ + PdeDst.u = (PdeDst.u & (SHW_PDE_PG_MASK | (X86_PDE_AVL_MASK & ~PGM_PDFLAGS_TRACK_DIRTY))) + | GST_GET_BIG_PDE_SHW_FLAGS(pVCpu, PdeSrc); + + /* + * If the page is not flagged as dirty and is writable, then make it read-only + * at PD level, so we can set the dirty bit when the page is modified. + * + * ASSUMES that page access handlers are implemented on page table entry level. + * Thus we will first catch the dirty access and set PDE.D and restart. If + * there is an access handler, we'll trap again and let it work on the problem. + */ + /** @todo move the above stuff to a section in the PGM documentation. */ + Assert(!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)); + if ( !PdeSrc.b.u1Dirty + && PdeSrc.b.u1Write) + { + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,DirtyPageBig)); + PdeDst.u |= PGM_PDFLAGS_TRACK_DIRTY; + PdeDst.b.u1Write = 0; + } + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + + /* + * Fill the shadow page table. + */ + /* Get address and flags from the source PDE. */ + SHWPTE PteDstBase; + SHW_PTE_SET(PteDstBase, GST_GET_BIG_PDE_SHW_FLAGS_4_PTE(pVCpu, PdeSrc)); + + /* Loop thru the entries in the shadow PT. */ + const RTGCPTR GCPtr = (GCPtrPage >> SHW_PD_SHIFT) << SHW_PD_SHIFT; NOREF(GCPtr); + Log2(("SyncPT: BIG %RGv PdeSrc:{P=%d RW=%d U=%d raw=%08llx} Shw=%RGv GCPhys=%RGp %s\n", + GCPtrPage, PdeSrc.b.u1Present, PdeSrc.b.u1Write, PdeSrc.b.u1User, (uint64_t)PdeSrc.u, GCPtr, + GCPhys, PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY ? " Track-Dirty" : "")); + PPGMRAMRANGE pRam = pgmPhysGetRangeAtOrAbove(pVM, GCPhys); + unsigned iPTDst = 0; + while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && !VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + { + if (pRam && GCPhys >= pRam->GCPhys) + { +# ifndef PGM_WITH_A20 + unsigned iHCPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT; +# endif + do + { + /* Make shadow PTE. */ +# ifdef PGM_WITH_A20 + PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT]; +# else + PPGMPAGE pPage = &pRam->aPages[iHCPage]; +# endif + SHWPTE PteDst; + +# ifndef VBOX_WITH_NEW_LAZY_PAGE_ALLOC + /* Try to make the page writable if necessary. */ + if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM + && ( PGM_PAGE_IS_ZERO(pPage) + || ( SHW_PTE_IS_RW(PteDstBase) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED +# ifdef VBOX_WITH_REAL_WRITE_MONITORED_PAGES + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_WRITE_MONITORED +# endif +# ifdef VBOX_WITH_PAGE_SHARING + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_SHARED +# endif + && !PGM_PAGE_IS_BALLOONED(pPage)) + ) + ) + { + rc = pgmPhysPageMakeWritable(pVM, pPage, GCPhys); + AssertRCReturn(rc, rc); + if (VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY)) + break; + } +# endif + + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)) + PGM_BTH_NAME(SyncHandlerPte)(pVM, pPage, SHW_PTE_GET_U(PteDstBase), &PteDst); + else if (PGM_PAGE_IS_BALLOONED(pPage)) + SHW_PTE_SET(PteDst, 0); /* Handle ballooned pages at #PF time. */ +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + /* + * Assuming kernel code will be marked as supervisor and not as user level and executed + * using a conforming code selector. Don't check for readonly, as that implies the whole + * 4MB can be code or readonly data. Linux enables write access for its large pages. + */ + else if ( !PdeSrc.n.u1User + && CSAMDoesPageNeedScanning(pVM, GCPtr | (iPTDst << SHW_PT_SHIFT))) + SHW_PTE_SET(PteDst, 0); +# endif + else + SHW_PTE_SET(PteDst, PGM_PAGE_GET_HCPHYS(pPage) | SHW_PTE_GET_U(PteDstBase)); + + /* Only map writable pages writable. */ + if ( SHW_PTE_IS_P_RW(PteDst) + && PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED) + { + /* Still applies to shared pages. */ + Assert(!PGM_PAGE_IS_ZERO(pPage)); + SHW_PTE_SET_RO(PteDst); /** @todo this isn't quite working yet... */ + Log3(("SyncPT: write-protecting %RGp pPage=%R[pgmpage] at %RGv\n", GCPhys, pPage, (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)))); + } + + if (SHW_PTE_IS_P(PteDst)) + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPage, PGM_PAGE_GET_TRACKING(pPage), pPage, iPTDst); + + /* commit it (not atomic, new table) */ + pPTDst->a[iPTDst] = PteDst; + Log4(("SyncPT: BIG %RGv PteDst:{P=%d RW=%d U=%d raw=%08llx}%s\n", + (RTGCPTR)(GCPtr | (iPTDst << SHW_PT_SHIFT)), SHW_PTE_IS_P(PteDst), SHW_PTE_IS_RW(PteDst), SHW_PTE_IS_US(PteDst), SHW_PTE_LOG64(PteDst), + SHW_PTE_IS_TRACK_DIRTY(PteDst) ? " Track-Dirty" : "")); + + /* advance */ + GCPhys += PAGE_SIZE; + PGM_A20_APPLY_TO_VAR(pVCpu, GCPhys); +# ifndef PGM_WITH_A20 + iHCPage++; +# endif + iPTDst++; + } while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && GCPhys <= pRam->GCPhysLast); + + /* Advance ram range list. */ + while (pRam && GCPhys > pRam->GCPhysLast) + pRam = pRam->CTX_SUFF(pNext); + } + else if (pRam) + { + Log(("Invalid pages at %RGp\n", GCPhys)); + do + { + SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ + GCPhys += PAGE_SIZE; + iPTDst++; + } while ( iPTDst < RT_ELEMENTS(pPTDst->a) + && GCPhys < pRam->GCPhys); + PGM_A20_APPLY_TO_VAR(pVCpu,GCPhys); + } + else + { + Log(("Invalid pages at %RGp (2)\n", GCPhys)); + for ( ; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) + SHW_PTE_SET(pPTDst->a[iPTDst], 0); /* Invalid page, we must handle them manually. */ + } + } /* while more PTEs */ + } /* 4KB / 4MB */ + } + else + AssertRelease(!PdeDst.n.u1Present); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + if (RT_FAILURE(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed)); + return rc; + +#elif (PGM_GST_TYPE == PGM_TYPE_REAL || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && !PGM_TYPE_IS_NESTED(PGM_SHW_TYPE) \ + && (PGM_SHW_TYPE != PGM_TYPE_EPT || PGM_GST_TYPE == PGM_TYPE_PROT) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE \ + && !defined(IN_RC) + NOREF(iPDSrc); NOREF(pPDSrc); + + STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + + /* + * Validate input a little bit. + */ + int rc = VINF_SUCCESS; +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PSHWPDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PPGMPOOLPAGE pShwPde = NULL; /* initialized to shut up gcc */ + PX86PDPAE pPDDst; + PSHWPDE pPdeDst; + + /* Fetch the pgm pool shadow descriptor. */ + rc = pgmShwGetPaePoolPagePD(pVCpu, GCPtrPage, &pShwPde); + AssertRCSuccessReturn(rc, rc); + Assert(pShwPde); + + pPDDst = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPde); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPdpt = (GCPtrPage >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64; + const unsigned iPDDst = (GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK; + PX86PDPAE pPDDst = NULL; /* initialized to shut up gcc */ + PX86PDPT pPdptDst= NULL; /* initialized to shut up gcc */ + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtrPage, NULL, &pPdptDst, &pPDDst); + AssertRCSuccessReturn(rc, rc); + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & X86_PDPE_PG_MASK); + Assert(pShwPde); + +# elif PGM_SHW_TYPE == PGM_TYPE_EPT + const unsigned iPdpt = (GCPtrPage >> EPT_PDPT_SHIFT) & EPT_PDPT_MASK; + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PEPTPD pPDDst; + PEPTPDPT pPdptDst; + + rc = pgmShwGetEPTPDPtr(pVCpu, GCPtrPage, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PSHWPDE pPdeDst = &pPDDst->a[iPDDst]; + + /* Fetch the pgm pool shadow descriptor. */ + PPGMPOOLPAGE pShwPde = pgmPoolGetPage(pPool, pPdptDst->a[iPdpt].u & EPT_PDPTE_PG_MASK); + Assert(pShwPde); +# endif + SHWPDE PdeDst = *pPdeDst; + + Assert(!(PdeDst.u & PGM_PDFLAGS_MAPPING)); + Assert(!PdeDst.n.u1Present); /* We're only supposed to call SyncPT on PDE!P and conflicts.*/ + +# if defined(PGM_WITH_LARGE_PAGES) && PGM_SHW_TYPE != PGM_TYPE_32BIT && PGM_SHW_TYPE != PGM_TYPE_PAE + if ( BTH_IS_NP_ACTIVE(pVM) + && !VM_IS_NEM_ENABLED(pVM)) /** @todo NEM: Large page support. */ + { + /* Check if we allocated a big page before for this 2 MB range. */ + PPGMPAGE pPage; + rc = pgmPhysGetPageEx(pVM, PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PDE2M_PAE_PG_MASK), &pPage); + if (RT_SUCCESS(rc)) + { + RTHCPHYS HCPhys = NIL_RTHCPHYS; + if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE) + { + if (PGM_A20_IS_ENABLED(pVCpu)) + { + STAM_REL_COUNTER_INC(&pVM->pgm.s.StatLargePageReused); + AssertRelease(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + else + { + PGM_PAGE_SET_PDE_TYPE(pVM, pPage, PGM_PAGE_PDE_TYPE_PDE_DISABLED); + pVM->pgm.s.cLargePagesDisabled++; + } + } + else if ( PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE_DISABLED + && PGM_A20_IS_ENABLED(pVCpu)) + { + /* Recheck the entire 2 MB range to see if we can use it again as a large page. */ + rc = pgmPhysRecheckLargePage(pVM, GCPtrPage, pPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + } + else if ( PGMIsUsingLargePages(pVM) + && PGM_A20_IS_ENABLED(pVCpu)) + { + rc = pgmPhysAllocLargePage(pVM, GCPtrPage); + if (RT_SUCCESS(rc)) + { + Assert(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED); + Assert(PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); + } + else + LogFlow(("pgmPhysAllocLargePage failed with %Rrc\n", rc)); + } + + if (HCPhys != NIL_RTHCPHYS) + { + PdeDst.u &= X86_PDE_AVL_MASK; + PdeDst.u |= HCPhys; + PdeDst.n.u1Present = 1; + PdeDst.n.u1Write = 1; + PdeDst.b.u1Size = 1; +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PdeDst.n.u1Execute = 1; + PdeDst.b.u1IgnorePAT = 1; + PdeDst.b.u3EMT = VMX_EPT_MEMTYPE_WB; +# else + PdeDst.n.u1User = 1; +# endif + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + + Log(("SyncPT: Use large page at %RGp PDE=%RX64\n", GCPtrPage, PdeDst.u)); + /* Add a reference to the first page only. */ + PGM_BTH_NAME(SyncPageWorkerTrackAddref)(pVCpu, pShwPde, PGM_PAGE_GET_TRACKING(pPage), pPage, iPDDst); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + return VINF_SUCCESS; + } + } + } +# endif /* HC_ARCH_BITS == 64 */ + + /* + * Allocate & map the page table. + */ + PSHWPT pPTDst; + PPGMPOOLPAGE pShwPage; + RTGCPHYS GCPhys; + + /* Virtual address = physical address */ + GCPhys = PGM_A20_APPLY(pVCpu, GCPtrPage & X86_PAGE_4K_BASE_MASK); + rc = pgmPoolAlloc(pVM, GCPhys & ~(RT_BIT_64(SHW_PD_SHIFT) - 1), BTH_PGMPOOLKIND_PT_FOR_PT, PGMPOOLACCESS_DONTCARE, + PGM_A20_IS_ENABLED(pVCpu), pShwPde->idx, iPDDst, false /*fLockPage*/, + &pShwPage); + if ( rc == VINF_SUCCESS + || rc == VINF_PGM_CACHED_PAGE) + pPTDst = (PSHWPT)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pShwPage); + else + { + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS); + } + + if (rc == VINF_SUCCESS) + { + /* New page table; fully set it up. */ + Assert(pPTDst); + + /* Mask away the page offset. */ + GCPtrPage &= ~(RTGCPTR)PAGE_OFFSET_MASK; + + for (unsigned iPTDst = 0; iPTDst < RT_ELEMENTS(pPTDst->a); iPTDst++) + { + RTGCPTR GCPtrCurPage = PGM_A20_APPLY(pVCpu, (GCPtrPage & ~(RTGCPTR)(SHW_PT_MASK << SHW_PT_SHIFT)) + | (iPTDst << PAGE_SHIFT)); + + PGM_BTH_NAME(SyncPageWorker)(pVCpu, &pPTDst->a[iPTDst], GCPtrCurPage, pShwPage, iPTDst); + Log2(("SyncPage: 4K+ %RGv PteSrc:{P=1 RW=1 U=1} PteDst=%08llx%s\n", + GCPtrCurPage, + SHW_PTE_LOG64(pPTDst->a[iPTDst]), + SHW_PTE_IS_TRACK_DIRTY(pPTDst->a[iPTDst]) ? " Track-Dirty" : "")); + + if (RT_UNLIKELY(VM_FF_IS_SET(pVM, VM_FF_PGM_NO_MEMORY))) + break; + } + } + else + rc = VINF_SUCCESS; /* Cached entry; assume it's still fully valid. */ + + /* Save the new PDE. */ + PdeDst.u &= X86_PDE_AVL_MASK; + PdeDst.u |= pShwPage->Core.Key; + PdeDst.n.u1Present = 1; + PdeDst.n.u1Write = 1; +# if PGM_SHW_TYPE == PGM_TYPE_EPT + PdeDst.n.u1Execute = 1; +# else + PdeDst.n.u1User = 1; + PdeDst.n.u1Accessed = 1; +# endif + ASMAtomicWriteSize(pPdeDst, PdeDst.u); + + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPT), a); + if (RT_FAILURE(rc)) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncPTFailed)); + return rc; + +#else + NOREF(iPDSrc); NOREF(pPDSrc); + AssertReleaseMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_SHW_TYPE, PGM_GST_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +#endif +} + + + +/** + * Prefetch a page/set of pages. + * + * Typically used to sync commonly used pages before entering raw mode + * after a CR3 reload. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage Page to invalidate. + */ +PGM_BTH_DECL(int, PrefetchPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage) +{ +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + /* + * Check that all Guest levels thru the PDE are present, getting the + * PD and PDE in the processes. + */ + int rc = VINF_SUCCESS; +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +# if PGM_GST_TYPE == PGM_TYPE_32BIT + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); +# elif PGM_GST_TYPE == PGM_TYPE_PAE + unsigned iPDSrc; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); + if (!pPDSrc) + return VINF_SUCCESS; /* not present */ +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPDSrc; + PX86PML4E pPml4eSrc; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); + if (!pPDSrc) + return VINF_SUCCESS; /* not present */ +# endif + const GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else + PGSTPD pPDSrc = NULL; + const unsigned iPDSrc = 0; + GSTPDE PdeSrc; + + PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ + PdeSrc.n.u1Present = 1; + PdeSrc.n.u1Write = 1; + PdeSrc.n.u1Accessed = 1; + PdeSrc.n.u1User = 1; +# endif + + if (PdeSrc.n.u1Present && PdeSrc.n.u1Accessed) + { + PVM pVM = pVCpu->CTX_SUFF(pVM); + pgmLock(pVM); + +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + const X86PDE PdeDst = pgmShwGet32BitPDE(pVCpu, GCPtrPage); +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + X86PDEPAE PdeDst; +# if PGM_GST_TYPE != PGM_TYPE_PAE + X86PDPE PdpeSrc; + + /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ + PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ +# endif + rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + pgmUnlock(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + X86PDEPAE PdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_PROT + /* AMD-V nested paging */ + X86PML4E Pml4eSrc; + X86PDPE PdpeSrc; + PX86PML4E pPml4eSrc = &Pml4eSrc; + + /* Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ + Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; + PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; +# endif + + rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + pgmUnlock(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + PdeDst = pPDDst->a[iPDDst]; +# endif + if (!(PdeDst.u & PGM_PDFLAGS_MAPPING)) + { + if (!PdeDst.n.u1Present) + { + /** @todo r=bird: This guy will set the A bit on the PDE, + * probably harmless. */ + rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); + } + else + { + /* Note! We used to sync PGM_SYNC_NR_PAGES pages, which triggered assertions in CSAM, because + * R/W attributes of nearby pages were reset. Not sure how that could happen. Anyway, it + * makes no sense to prefetch more than one page. + */ + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); + if (RT_SUCCESS(rc)) + rc = VINF_SUCCESS; + } + } + pgmUnlock(pVM); + } + return rc; + +#elif PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + NOREF(pVCpu); NOREF(GCPtrPage); + return VINF_SUCCESS; /* ignore */ +#else + AssertCompile(0); +#endif +} + + + + +/** + * Syncs a page during a PGMVerifyAccess() call. + * + * @returns VBox status code (informational included). + * @param pVCpu The cross context virtual CPU structure. + * @param GCPtrPage The address of the page to sync. + * @param fPage The effective guest page flags. + * @param uErr The trap error code. + * @remarks This will normally never be called on invalid guest page + * translation entries. + */ +PGM_BTH_DECL(int, VerifyAccessSyncPage)(PVMCPU pVCpu, RTGCPTR GCPtrPage, unsigned fPage, unsigned uErr) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + LogFlow(("VerifyAccessSyncPage: GCPtrPage=%RGv fPage=%#x uErr=%#x\n", GCPtrPage, fPage, uErr)); + RT_NOREF_PV(GCPtrPage); RT_NOREF_PV(fPage); RT_NOREF_PV(uErr); + + Assert(!pVM->pgm.s.fNestedPaging); +#if ( PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_REAL \ + || PGM_GST_TYPE == PGM_TYPE_PROT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 ) \ + && !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) \ + && PGM_SHW_TYPE != PGM_TYPE_NONE + +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (!(fPage & X86_PTE_US)) + { + /* + * Mark this page as safe. + */ + /** @todo not correct for pages that contain both code and data!! */ + Log(("CSAMMarkPage %RGv; scanned=%d\n", GCPtrPage, true)); + CSAMMarkPage(pVM, GCPtrPage, true); + } +# endif + + /* + * Get guest PD and index. + */ + /** @todo Performance: We've done all this a jiffy ago in the + * PGMGstGetPage call. */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) +# if PGM_GST_TYPE == PGM_TYPE_32BIT + const unsigned iPDSrc = (uint32_t)GCPtrPage >> GST_PD_SHIFT; + PGSTPD pPDSrc = pgmGstGet32bitPDPtr(pVCpu); + +# elif PGM_GST_TYPE == PGM_TYPE_PAE + unsigned iPDSrc = 0; + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtrPage, &iPDSrc, &PdpeSrc); + if (RT_UNLIKELY(!pPDSrc)) + { + Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); + return VINF_EM_RAW_GUEST_TRAP; + } + +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPDSrc = 0; /* shut up gcc */ + PX86PML4E pPml4eSrc = NULL; /* ditto */ + X86PDPE PdpeSrc; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtrPage, &pPml4eSrc, &PdpeSrc, &iPDSrc); + if (RT_UNLIKELY(!pPDSrc)) + { + Log(("PGMVerifyAccess: access violation for %RGv due to non-present PDPTR\n", GCPtrPage)); + return VINF_EM_RAW_GUEST_TRAP; + } +# endif + +# else /* !PGM_WITH_PAGING */ + PGSTPD pPDSrc = NULL; + const unsigned iPDSrc = 0; +# endif /* !PGM_WITH_PAGING */ + int rc = VINF_SUCCESS; + + pgmLock(pVM); + + /* + * First check if the shadow pd is present. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + PX86PDE pPdeDst = pgmShwGet32BitPDEPtr(pVCpu, GCPtrPage); + +# elif PGM_SHW_TYPE == PGM_TYPE_PAE + PX86PDEPAE pPdeDst; + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; +# if PGM_GST_TYPE != PGM_TYPE_PAE + /* Fake PDPT entry; access control handled on the page table level, so allow everything. */ + X86PDPE PdpeSrc; + PdpeSrc.u = X86_PDPE_P; /* rw/us are reserved for PAE pdpte's; accessed bit causes invalid VT-x guest state errors */ +# endif + rc = pgmShwSyncPaePDPtr(pVCpu, GCPtrPage, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + pgmUnlock(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + pPdeDst = &pPDDst->a[iPDDst]; + +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + const unsigned iPDDst = ((GCPtrPage >> SHW_PD_SHIFT) & SHW_PD_MASK); + PX86PDPAE pPDDst; + PX86PDEPAE pPdeDst; + +# if PGM_GST_TYPE == PGM_TYPE_PROT + /* AMD-V nested paging: Fake PML4 & PDPT entry; access control handled on the page table level, so allow everything. */ + X86PML4E Pml4eSrc; + X86PDPE PdpeSrc; + PX86PML4E pPml4eSrc = &Pml4eSrc; + Pml4eSrc.u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A; + PdpeSrc.u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A; +# endif + + rc = pgmShwSyncLongModePDPtr(pVCpu, GCPtrPage, pPml4eSrc->u, PdpeSrc.u, &pPDDst); + if (rc != VINF_SUCCESS) + { + pgmUnlock(pVM); + AssertRC(rc); + return rc; + } + Assert(pPDDst); + pPdeDst = &pPDDst->a[iPDDst]; +# endif + + if (!pPdeDst->n.u1Present) + { + rc = PGM_BTH_NAME(SyncPT)(pVCpu, iPDSrc, pPDSrc, GCPtrPage); + if (rc != VINF_SUCCESS) + { + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + pgmUnlock(pVM); + AssertRC(rc); + return rc; + } + } + +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + /* Check for dirty bit fault */ + rc = PGM_BTH_NAME(CheckDirtyPageFault)(pVCpu, uErr, pPdeDst, &pPDSrc->a[iPDSrc], GCPtrPage); + if (rc == VINF_PGM_HANDLED_DIRTY_BIT_FAULT) + Log(("PGMVerifyAccess: success (dirty)\n")); + else +# endif + { +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + GSTPDE PdeSrc = pPDSrc->a[iPDSrc]; +# else + GSTPDE PdeSrc; + PdeSrc.u = 0; /* faked so we don't have to #ifdef everything */ + PdeSrc.n.u1Present = 1; + PdeSrc.n.u1Write = 1; + PdeSrc.n.u1Accessed = 1; + PdeSrc.n.u1User = 1; +# endif + + Assert(rc != VINF_EM_RAW_GUEST_TRAP); + if (uErr & X86_TRAP_PF_US) + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncUser)); + else /* supervisor */ + STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,PageOutOfSyncSupervisor)); + + rc = PGM_BTH_NAME(SyncPage)(pVCpu, PdeSrc, GCPtrPage, 1, 0); + if (RT_SUCCESS(rc)) + { + /* Page was successfully synced */ + Log2(("PGMVerifyAccess: success (sync)\n")); + rc = VINF_SUCCESS; + } + else + { + Log(("PGMVerifyAccess: access violation for %RGv rc=%Rrc\n", GCPtrPage, rc)); + rc = VINF_EM_RAW_GUEST_TRAP; + } + } + PGM_DYNMAP_UNUSED_HINT(pVCpu, pPdeDst); + pgmUnlock(pVM); + return rc; + +#else /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ + + AssertLogRelMsgFailed(("Shw=%d Gst=%d is not implemented!\n", PGM_GST_TYPE, PGM_SHW_TYPE)); + return VERR_PGM_NOT_USED_IN_MODE; +#endif /* PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) */ +} + + +/** + * Syncs the paging hierarchy starting at CR3. + * + * @returns VBox status code, R0/RC may return VINF_PGM_SYNC_CR3, no other + * informational status codes. + * @retval VERR_PGM_NO_HYPERVISOR_ADDRESS in raw-mode when we're unable to map + * the VMM into guest context. + * @param pVCpu The cross context virtual CPU structure. + * @param cr0 Guest context CR0 register. + * @param cr3 Guest context CR3 register. Not subjected to the A20 + * mask. + * @param cr4 Guest context CR4 register. + * @param fGlobal Including global page directories or not + */ +PGM_BTH_DECL(int, SyncCR3)(PVMCPU pVCpu, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + NOREF(cr0); NOREF(cr3); NOREF(cr4); NOREF(fGlobal); + + LogFlow(("SyncCR3 FF=%d fGlobal=%d\n", !!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), fGlobal)); + +#if !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE + + pgmLock(pVM); + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); +# endif + + /* + * Update page access handlers. + * The virtual are always flushed, while the physical are only on demand. + * WARNING: We are incorrectly not doing global flushing on Virtual Handler updates. We'll + * have to look into that later because it will have a bad influence on the performance. + * @note SvL: There's no need for that. Just invalidate the virtual range(s). + * bird: Yes, but that won't work for aliases. + */ + /** @todo this MUST go away. See @bugref{1557}. */ + STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h); + PGM_GST_NAME(HandlerVirtualUpdate)(pVM, cr4); + STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->CTX_MID_Z(Stat,SyncCR3Handlers), h); + pgmUnlock(pVM); +#endif /* !NESTED && !EPT */ + +#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + /* + * Nested / EPT / None - No work. + */ + Assert(!pgmMapAreMappingsEnabled(pVM)); + return VINF_SUCCESS; + +#elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + /* + * AMD64 (Shw & Gst) - No need to check all paging levels; we zero + * out the shadow parts when the guest modifies its tables. + */ + Assert(!pgmMapAreMappingsEnabled(pVM)); + return VINF_SUCCESS; + +#else /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ + +# ifndef PGM_WITHOUT_MAPPINGS + /* + * Check for and resolve conflicts with our guest mappings if they + * are enabled and not fixed. + */ + if (pgmMapAreMappingsFloating(pVM)) + { + int rc = pgmMapResolveConflicts(pVM); + Assert(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3); + if (rc == VINF_SUCCESS) + { /* likely */ } + else if (rc == VINF_PGM_SYNC_CR3) + { + LogFlow(("SyncCR3: detected conflict -> VINF_PGM_SYNC_CR3\n")); + return VINF_PGM_SYNC_CR3; + } + else if (RT_FAILURE(rc)) + return rc; + else + AssertMsgFailed(("%Rrc\n", rc)); + } +# else + Assert(!pgmMapAreMappingsEnabled(pVM)); +# endif + return VINF_SUCCESS; +#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_AMD64 */ +} + + + + +#ifdef VBOX_STRICT +# ifdef IN_RC +# undef AssertMsgFailed +# define AssertMsgFailed Log +# endif + +/** + * Checks that the shadow page table is in sync with the guest one. + * + * @returns The number of errors. + * @param pVCpu The cross context virtual CPU structure. + * @param cr3 Guest context CR3 register. + * @param cr4 Guest context CR4 register. + * @param GCPtr Where to start. Defaults to 0. + * @param cb How much to check. Defaults to everything. + */ +PGM_BTH_DECL(unsigned, AssertCR3)(PVMCPU pVCpu, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb) +{ + NOREF(pVCpu); NOREF(cr3); NOREF(cr4); NOREF(GCPtr); NOREF(cb); +#if PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) || PGM_SHW_TYPE == PGM_TYPE_NONE + return 0; +#else + unsigned cErrors = 0; + PVM pVM = pVCpu->CTX_SUFF(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + +# if PGM_GST_TYPE == PGM_TYPE_PAE + /** @todo currently broken; crashes below somewhere */ + AssertFailed(); +# endif + +# if PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 + + bool fBigPagesSupported = GST_IS_PSE_ACTIVE(pVCpu); + PPGMCPU pPGM = &pVCpu->pgm.s; + RTGCPHYS GCPhysGst; /* page address derived from the guest page tables. */ + RTHCPHYS HCPhysShw; /* page address derived from the shadow page tables. */ +# ifndef IN_RING0 + RTHCPHYS HCPhys; /* general usage. */ +# endif + int rc; + + /* + * Check that the Guest CR3 and all its mappings are correct. + */ + AssertMsgReturn(pPGM->GCPhysCR3 == PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), + ("Invalid GCPhysCR3=%RGp cr3=%RGp\n", pPGM->GCPhysCR3, (RTGCPHYS)cr3), + false); +# if !defined(IN_RING0) && PGM_GST_TYPE != PGM_TYPE_AMD64 +# if PGM_GST_TYPE == PGM_TYPE_32BIT + rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGst32BitPdRC, NULL, &HCPhysShw); +# else + rc = PGMShwGetPage(pVCpu, (RTRCUINTPTR)pPGM->pGstPaePdptRC, NULL, &HCPhysShw); +# endif + AssertRCReturn(rc, 1); + HCPhys = NIL_RTHCPHYS; + rc = pgmRamGCPhys2HCPhys(pVM, PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK), &HCPhys); + AssertMsgReturn(HCPhys == HCPhysShw, ("HCPhys=%RHp HCPhyswShw=%RHp (cr3)\n", HCPhys, HCPhysShw), false); +# if PGM_GST_TYPE == PGM_TYPE_32BIT && defined(IN_RING3) + pgmGstGet32bitPDPtr(pVCpu); + RTGCPHYS GCPhys; + rc = PGMR3DbgR3Ptr2GCPhys(pVM->pUVM, pPGM->pGst32BitPdR3, &GCPhys); + AssertRCReturn(rc, 1); + AssertMsgReturn(PGM_A20_APPLY(pVCpu, cr3 & GST_CR3_PAGE_MASK) == GCPhys, ("GCPhys=%RGp cr3=%RGp\n", GCPhys, (RTGCPHYS)cr3), false); +# endif +# endif /* !IN_RING0 */ + + /* + * Get and check the Shadow CR3. + */ +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + unsigned cPDEs = X86_PG_ENTRIES; + unsigned cIncrement = X86_PG_ENTRIES * PAGE_SIZE; +# elif PGM_SHW_TYPE == PGM_TYPE_PAE +# if PGM_GST_TYPE == PGM_TYPE_32BIT + unsigned cPDEs = X86_PG_PAE_ENTRIES * 4; /* treat it as a 2048 entry table. */ +# else + unsigned cPDEs = X86_PG_PAE_ENTRIES; +# endif + unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE; +# elif PGM_SHW_TYPE == PGM_TYPE_AMD64 + unsigned cPDEs = X86_PG_PAE_ENTRIES; + unsigned cIncrement = X86_PG_PAE_ENTRIES * PAGE_SIZE; +# endif + if (cb != ~(RTGCPTR)0) + cPDEs = RT_MIN(cb >> SHW_PD_SHIFT, 1); + +/** @todo call the other two PGMAssert*() functions. */ + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK; + + for (; iPml4 < X86_PG_PAE_ENTRIES; iPml4++) + { + PPGMPOOLPAGE pShwPdpt = NULL; + PX86PML4E pPml4eSrc; + PX86PML4E pPml4eDst; + RTGCPHYS GCPhysPdptSrc; + + pPml4eSrc = pgmGstGetLongModePML4EPtr(pVCpu, iPml4); + pPml4eDst = pgmShwGetLongModePML4EPtr(pVCpu, iPml4); + + /* Fetch the pgm pool shadow descriptor if the shadow pml4e is present. */ + if (!pPml4eDst->n.u1Present) + { + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + continue; + } + + pShwPdpt = pgmPoolGetPage(pPool, pPml4eDst->u & X86_PML4E_PG_MASK); + GCPhysPdptSrc = PGM_A20_APPLY(pVCpu, pPml4eSrc->u & X86_PML4E_PG_MASK); + + if (pPml4eSrc->n.u1Present != pPml4eDst->n.u1Present) + { + AssertMsgFailed(("Present bit doesn't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } + + if (GCPhysPdptSrc != pShwPdpt->GCPhys) + { + AssertMsgFailed(("Physical address doesn't match! iPml4 %d pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, pPml4eDst->u, pPml4eSrc->u, pShwPdpt->GCPhys, GCPhysPdptSrc)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } + + if ( pPml4eDst->n.u1User != pPml4eSrc->n.u1User + || pPml4eDst->n.u1Write != pPml4eSrc->n.u1Write + || pPml4eDst->n.u1NoExecute != pPml4eSrc->n.u1NoExecute) + { + AssertMsgFailed(("User/Write/NoExec bits don't match! pPml4eDst.u=%#RX64 pPml4eSrc.u=%RX64\n", pPml4eDst->u, pPml4eSrc->u)); + GCPtr += _2M * UINT64_C(512) * UINT64_C(512); + cErrors++; + continue; + } +# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ + { +# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 */ + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 || PGM_GST_TYPE == PGM_TYPE_PAE + /* + * Check the PDPTEs too. + */ + unsigned iPdpt = (GCPtr >> SHW_PDPT_SHIFT) & SHW_PDPT_MASK; + + for (;iPdpt <= SHW_PDPT_MASK; iPdpt++) + { + unsigned iPDSrc = 0; /* initialized to shut up gcc */ + PPGMPOOLPAGE pShwPde = NULL; + PX86PDPE pPdpeDst; + RTGCPHYS GCPhysPdeSrc; + X86PDPE PdpeSrc; + PdpeSrc.u = 0; /* initialized to shut up gcc 4.5 */ +# if PGM_GST_TYPE == PGM_TYPE_PAE + PGSTPD pPDSrc = pgmGstGetPaePDPtr(pVCpu, GCPtr, &iPDSrc, &PdpeSrc); + PX86PDPT pPdptDst = pgmShwGetPaePDPTPtr(pVCpu); +# else + PX86PML4E pPml4eSrcIgn; + PX86PDPT pPdptDst; + PX86PDPAE pPDDst; + PGSTPD pPDSrc = pgmGstGetLongModePDPtr(pVCpu, GCPtr, &pPml4eSrcIgn, &PdpeSrc, &iPDSrc); + + rc = pgmShwGetLongModePDPtr(pVCpu, GCPtr, NULL, &pPdptDst, &pPDDst); + if (rc != VINF_SUCCESS) + { + AssertMsg(rc == VERR_PAGE_DIRECTORY_PTR_NOT_PRESENT, ("Unexpected rc=%Rrc\n", rc)); + GCPtr += 512 * _2M; + continue; /* next PDPTE */ + } + Assert(pPDDst); +# endif + Assert(iPDSrc == 0); + + pPdpeDst = &pPdptDst->a[iPdpt]; + + if (!pPdpeDst->n.u1Present) + { + GCPtr += 512 * _2M; + continue; /* next PDPTE */ + } + + pShwPde = pgmPoolGetPage(pPool, pPdpeDst->u & X86_PDPE_PG_MASK); + GCPhysPdeSrc = PGM_A20_APPLY(pVCpu, PdpeSrc.u & X86_PDPE_PG_MASK); + + if (pPdpeDst->n.u1Present != PdpeSrc.n.u1Present) + { + AssertMsgFailed(("Present bit doesn't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); + GCPtr += 512 * _2M; + cErrors++; + continue; + } + + if (GCPhysPdeSrc != pShwPde->GCPhys) + { +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + AssertMsgFailed(("Physical address doesn't match! iPml4 %d iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPml4, iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); +# else + AssertMsgFailed(("Physical address doesn't match! iPdpt %d pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64 Phys %RX64 vs %RX64\n", iPdpt, pPdpeDst->u, PdpeSrc.u, pShwPde->GCPhys, GCPhysPdeSrc)); +# endif + GCPtr += 512 * _2M; + cErrors++; + continue; + } + +# if PGM_GST_TYPE == PGM_TYPE_AMD64 + if ( pPdpeDst->lm.u1User != PdpeSrc.lm.u1User + || pPdpeDst->lm.u1Write != PdpeSrc.lm.u1Write + || pPdpeDst->lm.u1NoExecute != PdpeSrc.lm.u1NoExecute) + { + AssertMsgFailed(("User/Write/NoExec bits don't match! pPdpeDst.u=%#RX64 pPdpeSrc.u=%RX64\n", pPdpeDst->u, PdpeSrc.u)); + GCPtr += 512 * _2M; + cErrors++; + continue; + } +# endif + +# else /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ + { +# endif /* PGM_GST_TYPE != PGM_TYPE_AMD64 && PGM_GST_TYPE != PGM_TYPE_PAE */ +# if PGM_GST_TYPE == PGM_TYPE_32BIT + GSTPD const *pPDSrc = pgmGstGet32bitPDPtr(pVCpu); +# if PGM_SHW_TYPE == PGM_TYPE_32BIT + PCX86PD pPDDst = pgmShwGet32BitPDPtr(pVCpu); +# endif +# endif /* PGM_GST_TYPE == PGM_TYPE_32BIT */ + /* + * Iterate the shadow page directory. + */ + GCPtr = (GCPtr >> SHW_PD_SHIFT) << SHW_PD_SHIFT; + unsigned iPDDst = (GCPtr >> SHW_PD_SHIFT) & SHW_PD_MASK; + + for (; + iPDDst < cPDEs; + iPDDst++, GCPtr += cIncrement) + { +# if PGM_SHW_TYPE == PGM_TYPE_PAE + const SHWPDE PdeDst = *pgmShwGetPaePDEPtr(pVCpu, GCPtr); +# else + const SHWPDE PdeDst = pPDDst->a[iPDDst]; +# endif + if (PdeDst.u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + if ((PdeDst.u & X86_PDE_AVL_MASK) != PGM_PDFLAGS_MAPPING) + { + AssertMsgFailed(("Mapping shall only have PGM_PDFLAGS_MAPPING set! PdeDst.u=%#RX64\n", (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + } + else if ( (PdeDst.u & X86_PDE_P) + || ((PdeDst.u & (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) == (X86_PDE_P | PGM_PDFLAGS_TRACK_DIRTY)) + ) + { + HCPhysShw = PdeDst.u & SHW_PDE_PG_MASK; + PPGMPOOLPAGE pPoolPage = pgmPoolGetPage(pPool, HCPhysShw); + if (!pPoolPage) + { + AssertMsgFailed(("Invalid page table address %RHp at %RGv! PdeDst=%#RX64\n", + HCPhysShw, GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + const SHWPT *pPTDst = (const SHWPT *)PGMPOOL_PAGE_2_PTR_V2(pVM, pVCpu, pPoolPage); + + if (PdeDst.u & (X86_PDE4M_PWT | X86_PDE4M_PCD)) + { + AssertMsgFailed(("PDE flags PWT and/or PCD is set at %RGv! These flags are not virtualized! PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + } + + if (PdeDst.u & (X86_PDE4M_G | X86_PDE4M_D)) + { + AssertMsgFailed(("4K PDE reserved flags at %RGv! PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + } + + const GSTPDE PdeSrc = pPDSrc->a[(iPDDst >> (GST_PD_SHIFT - SHW_PD_SHIFT)) & GST_PD_MASK]; + if (!PdeSrc.n.u1Present) + { + AssertMsgFailed(("Guest PDE at %RGv is not present! PdeDst=%#RX64 PdeSrc=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + + if ( !PdeSrc.b.u1Size + || !fBigPagesSupported) + { + GCPhysGst = GST_GET_PDE_GCPHYS(PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | ((iPDDst & 1) * (PAGE_SIZE / 2))); +# endif + } + else + { +# if PGM_GST_TYPE == PGM_TYPE_32BIT + if (PdeSrc.u & X86_PDE4M_PG_HIGH_MASK) + { + AssertMsgFailed(("Guest PDE at %RGv is using PSE36 or similar! PdeSrc=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } +# endif + GCPhysGst = GST_GET_BIG_PDE_GCPHYS(pVM, PdeSrc); +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst | (GCPtr & RT_BIT(X86_PAGE_2M_SHIFT))); +# endif + } + + if ( pPoolPage->enmKind + != (!PdeSrc.b.u1Size || !fBigPagesSupported ? BTH_PGMPOOLKIND_PT_FOR_PT : BTH_PGMPOOLKIND_PT_FOR_BIG)) + { + AssertMsgFailed(("Invalid shadow page table kind %d at %RGv! PdeSrc=%#RX64\n", + pPoolPage->enmKind, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + } + + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { + AssertMsgFailed(("Cannot find guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", + GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + + if (GCPhysGst != pPoolPage->GCPhys) + { + AssertMsgFailed(("GCPhysGst=%RGp != pPage->GCPhys=%RGp at %RGv\n", + GCPhysGst, pPoolPage->GCPhys, GCPtr)); + cErrors++; + continue; + } + + if ( !PdeSrc.b.u1Size + || !fBigPagesSupported) + { + /* + * Page Table. + */ + const GSTPT *pPTSrc; + rc = PGM_GCPHYS_2_PTR_V2(pVM, pVCpu, PGM_A20_APPLY(pVCpu, GCPhysGst & ~(RTGCPHYS)(PAGE_SIZE - 1)), + &pPTSrc); + if (RT_FAILURE(rc)) + { + AssertMsgFailed(("Cannot map/convert guest physical address %RGp in the PDE at %RGv! PdeSrc=%#RX64\n", + GCPhysGst, GCPtr, (uint64_t)PdeSrc.u)); + cErrors++; + continue; + } + if ( (PdeSrc.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/)) + != (PdeDst.u & (X86_PDE_P | X86_PDE_US | X86_PDE_RW/* | X86_PDE_A*/))) + { + /// @todo We get here a lot on out-of-sync CR3 entries. The access handler should zap them to avoid false alarms here! + // (This problem will go away when/if we shadow multiple CR3s.) + AssertMsgFailed(("4K PDE flags mismatch at %RGv! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) + { + AssertMsgFailed(("4K PDEs cannot have PGM_PDFLAGS_TRACK_DIRTY set! GCPtr=%RGv PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + + /* iterate the page table. */ +# if PGM_SHW_TYPE == PGM_TYPE_PAE && PGM_GST_TYPE == PGM_TYPE_32BIT + /* Select the right PDE as we're emulating a 4kb page table with 2 shadow page tables. */ + const unsigned offPTSrc = ((GCPtr >> SHW_PD_SHIFT) & 1) * 512; +# else + const unsigned offPTSrc = 0; +# endif + for (unsigned iPT = 0, off = 0; + iPT < RT_ELEMENTS(pPTDst->a); + iPT++, off += PAGE_SIZE) + { + const SHWPTE PteDst = pPTDst->a[iPT]; + + /* skip not-present and dirty tracked entries. */ + if (!(SHW_PTE_GET_U(PteDst) & (X86_PTE_P | PGM_PTFLAGS_TRACK_DIRTY))) /** @todo deal with ALL handlers and CSAM !P pages! */ + continue; + Assert(SHW_PTE_IS_P(PteDst)); + + const GSTPTE PteSrc = pPTSrc->a[iPT + offPTSrc]; + if (!PteSrc.n.u1Present) + { +# ifdef IN_RING3 + PGMAssertHandlerAndFlagsInSync(pVM); + DBGFR3PagingDumpEx(pVM->pUVM, pVCpu->idCpu, DBGFPGDMP_FLAGS_CURRENT_CR3 | DBGFPGDMP_FLAGS_CURRENT_MODE + | DBGFPGDMP_FLAGS_GUEST | DBGFPGDMP_FLAGS_HEADER | DBGFPGDMP_FLAGS_PRINT_CR3, + 0, 0, UINT64_MAX, 99, NULL); +# endif + AssertMsgFailed(("Out of sync (!P) PTE at %RGv! PteSrc=%#RX64 PteDst=%#RX64 pPTSrc=%RGv iPTSrc=%x PdeSrc=%x physpte=%RGp\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst), pPTSrc, iPT + offPTSrc, PdeSrc.au32[0], + (uint64_t)GST_GET_PDE_GCPHYS(PdeSrc) + (iPT + offPTSrc) * sizeof(PteSrc))); + cErrors++; + continue; + } + + uint64_t fIgnoreFlags = GST_PTE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_G | X86_PTE_D | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT; +# if 1 /** @todo sync accessed bit properly... */ + fIgnoreFlags |= X86_PTE_A; +# endif + + /* match the physical addresses */ + HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); + GCPhysGst = GST_GET_PTE_GCPHYS(PteSrc); + +# ifdef IN_RING3 + rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); + if (RT_FAILURE(rc)) + { + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + } + else if (HCPhysShw != (HCPhys & SHW_PTE_PG_MASK)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + + pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { +# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; + } + else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage:%R[pgmpage] GCPhysGst=%RGp PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + + /* flags */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) + { + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) + { + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_RW; + } + else + { + if ( SHW_PTE_IS_P(PteDst) +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + && !PGM_PAGE_IS_MMIO(pPhysPage) +# endif + ) + { + AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_P; + } + } + else + { + if (!PteSrc.n.u1Dirty && PteSrc.n.u1Write) + { + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is writable! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (!SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (SHW_PTE_IS_D(PteDst)) + { + AssertMsgFailed(("!DIRTY page at %RGv is marked DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } +# if 0 /** @todo sync access bit properly... */ + if (PteDst.n.u1Accessed != PteSrc.n.u1Accessed) + { + AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; +# else + fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; +# endif + } + else if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + /* access bit emulation (not implemented). */ + if (PteSrc.n.u1Accessed || SHW_PTE_IS_P(PteDst)) + { + AssertMsgFailed(("PGM_PTFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + if (!SHW_PTE_IS_A(PteDst)) + { + AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_P; + } +# ifdef DEBUG_sandervl + fIgnoreFlags |= X86_PTE_D | X86_PTE_A; +# endif + } + + if ( (PteSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + && (PteSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + ) + { + AssertMsgFailed(("Flags mismatch at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PteSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PteSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + } /* foreach PTE */ + } + else + { + /* + * Big Page. + */ + uint64_t fIgnoreFlags = X86_PDE_AVL_MASK | GST_PDE_PG_MASK | X86_PDE4M_G | X86_PDE4M_D | X86_PDE4M_PS | X86_PDE4M_PWT | X86_PDE4M_PCD; + if (!PdeSrc.b.u1Dirty && PdeSrc.b.u1Write) + { + if (PdeDst.n.u1Write) + { + AssertMsgFailed(("!DIRTY page at %RGv is writable! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (!(PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY)) + { + AssertMsgFailed(("!DIRTY page at %RGv is not marked TRACK_DIRTY! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } +# if 0 /** @todo sync access bit properly... */ + if (PdeDst.n.u1Accessed != PdeSrc.b.u1Accessed) + { + AssertMsgFailed(("!DIRTY page at %RGv is has mismatching accessed bit! PteSrc=%#RX64 PteDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; +# else + fIgnoreFlags |= X86_PTE_RW | X86_PTE_A; +# endif + } + else if (PdeDst.u & PGM_PDFLAGS_TRACK_DIRTY) + { + /* access bit emulation (not implemented). */ + if (PdeSrc.b.u1Accessed || PdeDst.n.u1Present) + { + AssertMsgFailed(("PGM_PDFLAGS_TRACK_DIRTY set at %RGv but no accessed bit emulation! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + continue; + } + if (!PdeDst.n.u1Accessed) + { + AssertMsgFailed(("!ACCESSED page at %RGv is has the accessed bit set! PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + fIgnoreFlags |= X86_PTE_P; + } + + if ((PdeSrc.u & ~fIgnoreFlags) != (PdeDst.u & ~fIgnoreFlags)) + { + AssertMsgFailed(("Flags mismatch (B) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PdeDst=%#RX64\n", + GCPtr, (uint64_t)PdeSrc.u & ~fIgnoreFlags, (uint64_t)PdeDst.u & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PdeSrc.u, (uint64_t)PdeDst.u)); + cErrors++; + } + + /* iterate the page table. */ + for (unsigned iPT = 0, off = 0; + iPT < RT_ELEMENTS(pPTDst->a); + iPT++, off += PAGE_SIZE, GCPhysGst = PGM_A20_APPLY(pVCpu, GCPhysGst + PAGE_SIZE)) + { + const SHWPTE PteDst = pPTDst->a[iPT]; + + if (SHW_PTE_IS_TRACK_DIRTY(PteDst)) + { + AssertMsgFailed(("The PTE at %RGv emulating a 2/4M page is marked TRACK_DIRTY! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + + /* skip not-present entries. */ + if (!SHW_PTE_IS_P(PteDst)) /** @todo deal with ALL handlers and CSAM !P pages! */ + continue; + + fIgnoreFlags = X86_PTE_PAE_PG_MASK | X86_PTE_AVL_MASK | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_PAT | X86_PTE_D | X86_PTE_A | X86_PTE_G | X86_PTE_PAE_NX; + + /* match the physical addresses */ + HCPhysShw = SHW_PTE_GET_HCPHYS(PteDst); + +# ifdef IN_RING3 + rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysGst, &HCPhys); + if (RT_FAILURE(rc)) + { + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + } + else if (HCPhysShw != (HCPhys & X86_PTE_PAE_PG_MASK)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp HCPhys=%RHp GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, HCPhys, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + pPhysPage = pgmPhysGetPage(pVM, GCPhysGst); + if (!pPhysPage) + { +# ifdef IN_RING3 /** @todo make MMR3PageDummyHCPhys an 'All' function! */ + if (HCPhysShw != MMR3PageDummyHCPhys(pVM)) /** @todo this is wrong. */ + { + AssertMsgFailed(("Cannot find guest physical address %RGp at %RGv! PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPhysGst, GCPtr + off, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } +# endif + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("Invalid guest page at %RGv is writable! GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + } + fIgnoreFlags |= X86_PTE_RW; + } + else if (HCPhysShw != PGM_PAGE_GET_HCPHYS(pPhysPage)) + { + AssertMsgFailed(("Out of sync (phys) at %RGv! HCPhysShw=%RHp pPhysPage=%R[pgmpage] GCPhysGst=%RGp PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, HCPhysShw, pPhysPage, GCPhysGst, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + + /* flags */ + if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPhysPage)) + { + if (!PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPhysPage)) + { + if (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage) != PGM_PAGE_HNDL_PHYS_STATE_DISABLED) + { + if (SHW_PTE_IS_RW(PteDst)) + { + AssertMsgFailed(("WRITE access flagged at %RGv but the page is writable! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_RW; + } + } + else + { + if ( SHW_PTE_IS_P(PteDst) +# if PGM_SHW_TYPE == PGM_TYPE_EPT || PGM_SHW_TYPE == PGM_TYPE_PAE || PGM_SHW_TYPE == PGM_TYPE_AMD64 + && !PGM_PAGE_IS_MMIO(pPhysPage) +# endif + ) + { + AssertMsgFailed(("ALL access flagged at %RGv but the page is present! pPhysPage=%R[pgmpage] PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, pPhysPage, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + fIgnoreFlags |= X86_PTE_P; + } + } + + if ( (PdeSrc.u & ~fIgnoreFlags) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) + && (PdeSrc.u & ~(fIgnoreFlags | X86_PTE_RW)) != (SHW_PTE_GET_U(PteDst) & ~fIgnoreFlags) /* lazy phys handler dereg. */ + ) + { + AssertMsgFailed(("Flags mismatch (BT) at %RGv! %#RX64 != %#RX64 fIgnoreFlags=%#RX64 PdeSrc=%#RX64 PteDst=%#RX64\n", + GCPtr + off, (uint64_t)PdeSrc.u & ~fIgnoreFlags, SHW_PTE_LOG64(PteDst) & ~fIgnoreFlags, + fIgnoreFlags, (uint64_t)PdeSrc.u, SHW_PTE_LOG64(PteDst))); + cErrors++; + continue; + } + } /* for each PTE */ + } + } + /* not present */ + + } /* for each PDE */ + + } /* for each PDPTE */ + + } /* for each PML4E */ + +# ifdef DEBUG + if (cErrors) + LogFlow(("AssertCR3: cErrors=%d\n", cErrors)); +# endif +# endif /* GST is in {32BIT, PAE, AMD64} */ + return cErrors; +#endif /* !PGM_TYPE_IS_NESTED_OR_EPT(PGM_SHW_TYPE) && PGM_SHW_TYPE != PGM_TYPE_NONE */ +} +#endif /* VBOX_STRICT */ + + +/** + * Sets up the CR3 for shadow paging + * + * @returns Strict VBox status code. + * @retval VINF_SUCCESS. + * + * @param pVCpu The cross context virtual CPU structure. + * @param GCPhysCR3 The physical address in the CR3 register. (A20 + * mask already applied.) + */ +PGM_BTH_DECL(int, MapCR3)(PVMCPU pVCpu, RTGCPHYS GCPhysCR3) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + /* Update guest paging info. */ +#if PGM_GST_TYPE == PGM_TYPE_32BIT \ + || PGM_GST_TYPE == PGM_TYPE_PAE \ + || PGM_GST_TYPE == PGM_TYPE_AMD64 + + LogFlow(("MapCR3: %RGp\n", GCPhysCR3)); + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); + + /* + * Map the page CR3 points at. + */ + RTHCPTR HCPtrGuestCR3; + RTHCPHYS HCPhysGuestCR3; + pgmLock(pVM); + PPGMPAGE pPageCR3 = pgmPhysGetPage(pVM, GCPhysCR3); + AssertReturn(pPageCR3, VERR_PGM_INVALID_CR3_ADDR); + HCPhysGuestCR3 = PGM_PAGE_GET_HCPHYS(pPageCR3); + /** @todo this needs some reworking wrt. locking? */ +# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) + HCPtrGuestCR3 = NIL_RTHCPTR; + int rc = VINF_SUCCESS; +# else + int rc = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPageCR3, GCPhysCR3 & GST_CR3_PAGE_MASK, (void **)&HCPtrGuestCR3); /** @todo r=bird: This GCPhysCR3 masking isn't necessary. */ +# endif + pgmUnlock(pVM); + if (RT_SUCCESS(rc)) + { + rc = PGMMap(pVM, (RTGCPTR)pVM->pgm.s.GCPtrCR3Mapping, HCPhysGuestCR3, PAGE_SIZE, 0); + if (RT_SUCCESS(rc)) + { +# ifdef IN_RC + PGM_INVL_PG(pVCpu, pVM->pgm.s.GCPtrCR3Mapping); +# endif +# if PGM_GST_TYPE == PGM_TYPE_32BIT + pVCpu->pgm.s.pGst32BitPdR3 = (R3PTRTYPE(PX86PD))HCPtrGuestCR3; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGst32BitPdR0 = (R0PTRTYPE(PX86PD))HCPtrGuestCR3; +# endif + pVCpu->pgm.s.pGst32BitPdRC = (RCPTRTYPE(PX86PD))(RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping; + +# elif PGM_GST_TYPE == PGM_TYPE_PAE + unsigned off = GCPhysCR3 & GST_CR3_PAGE_MASK & PAGE_OFFSET_MASK; + pVCpu->pgm.s.pGstPaePdptR3 = (R3PTRTYPE(PX86PDPT))HCPtrGuestCR3; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGstPaePdptR0 = (R0PTRTYPE(PX86PDPT))HCPtrGuestCR3; +# endif + pVCpu->pgm.s.pGstPaePdptRC = (RCPTRTYPE(PX86PDPT))((RTRCUINTPTR)pVM->pgm.s.GCPtrCR3Mapping + off); + LogFlow(("Cached mapping %RRv\n", pVCpu->pgm.s.pGstPaePdptRC)); + + /* + * Map the 4 PDs too. + */ + PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pVCpu); + RTGCPTR GCPtr = pVM->pgm.s.GCPtrCR3Mapping + PAGE_SIZE; + for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++, GCPtr += PAGE_SIZE) + { + pVCpu->pgm.s.aGstPaePdpeRegs[i].u = pGuestPDPT->a[i].u; + if (pGuestPDPT->a[i].n.u1Present) + { + RTHCPTR HCPtr; + RTHCPHYS HCPhys; + RTGCPHYS GCPhys = PGM_A20_APPLY(pVCpu, pGuestPDPT->a[i].u & X86_PDPE_PG_MASK); + pgmLock(pVM); + PPGMPAGE pPage = pgmPhysGetPage(pVM, GCPhys); + AssertReturn(pPage, VERR_PGM_INVALID_PDPE_ADDR); + HCPhys = PGM_PAGE_GET_HCPHYS(pPage); +# if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) + HCPtr = NIL_RTHCPTR; + int rc2 = VINF_SUCCESS; +# else + int rc2 = pgmPhysGCPhys2CCPtrInternalDepr(pVM, pPage, GCPhys, (void **)&HCPtr); +# endif + pgmUnlock(pVM); + if (RT_SUCCESS(rc2)) + { + rc = PGMMap(pVM, GCPtr, HCPhys, PAGE_SIZE, 0); + AssertRCReturn(rc, rc); + + pVCpu->pgm.s.apGstPaePDsR3[i] = (R3PTRTYPE(PX86PDPAE))HCPtr; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.apGstPaePDsR0[i] = (R0PTRTYPE(PX86PDPAE))HCPtr; +# endif + pVCpu->pgm.s.apGstPaePDsRC[i] = (RCPTRTYPE(PX86PDPAE))(RTRCUINTPTR)GCPtr; + pVCpu->pgm.s.aGCPhysGstPaePDs[i] = GCPhys; +# ifdef IN_RC + PGM_INVL_PG(pVCpu, GCPtr); +# endif + continue; + } + AssertMsgFailed(("pgmR3Gst32BitMapCR3: rc2=%d GCPhys=%RGp i=%d\n", rc2, GCPhys, i)); + } + + pVCpu->pgm.s.apGstPaePDsR3[i] = 0; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.apGstPaePDsR0[i] = 0; +# endif + pVCpu->pgm.s.apGstPaePDsRC[i] = 0; + pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; +# ifdef IN_RC + PGM_INVL_PG(pVCpu, GCPtr); /** @todo this shouldn't be necessary? */ +# endif + } + +# elif PGM_GST_TYPE == PGM_TYPE_AMD64 + pVCpu->pgm.s.pGstAmd64Pml4R3 = (R3PTRTYPE(PX86PML4))HCPtrGuestCR3; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGstAmd64Pml4R0 = (R0PTRTYPE(PX86PML4))HCPtrGuestCR3; +# endif +# endif + } + else + AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); + } + else + AssertMsgFailed(("rc=%Rrc GCPhysGuestPD=%RGp\n", rc, GCPhysCR3)); + +#else /* prot/real stub */ + int rc = VINF_SUCCESS; +#endif + + /* + * Update shadow paging info for guest modes with paging (32-bit, PAE, AMD64). + */ +# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64) \ + && ( PGM_GST_TYPE != PGM_TYPE_REAL \ + && PGM_GST_TYPE != PGM_TYPE_PROT)) + + Assert(!pVM->pgm.s.fNestedPaging); + PGM_A20_ASSERT_MASKED(pVCpu, GCPhysCR3); + + /* + * Update the shadow root page as well since that's not fixed. + */ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPAGE pOldShwPageCR3 = pVCpu->pgm.s.CTX_SUFF(pShwPageCR3); + PPGMPOOLPAGE pNewShwPageCR3; + + pgmLock(pVM); + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); +# endif + + Assert(!(GCPhysCR3 >> (PAGE_SHIFT + 32))); + rc = pgmPoolAlloc(pVM, GCPhysCR3 & GST_CR3_PAGE_MASK, BTH_PGMPOOLKIND_ROOT, PGMPOOLACCESS_DONTCARE, PGM_A20_IS_ENABLED(pVCpu), + NIL_PGMPOOL_IDX, UINT32_MAX, true /*fLockPage*/, + &pNewShwPageCR3); + AssertFatalRC(rc); + rc = VINF_SUCCESS; + +# ifdef IN_RC + /* + * WARNING! We can't deal with jumps to ring 3 in the code below as the + * state will be inconsistent! Flush important things now while + * we still can and then make sure there are no ring-3 calls. + */ +# ifdef VBOX_WITH_REM + REMNotifyHandlerPhysicalFlushIfAlmostFull(pVM, pVCpu); +# endif + VMMRZCallRing3Disable(pVCpu); +# endif + + pVCpu->pgm.s.CTX_SUFF(pShwPageCR3) = pNewShwPageCR3; +# ifdef IN_RING0 + pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); +# elif defined(IN_RC) + pVCpu->pgm.s.pShwPageCR3R3 = MMHyperCCToR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); +# else + pVCpu->pgm.s.pShwPageCR3R0 = MMHyperCCToR0(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + pVCpu->pgm.s.pShwPageCR3RC = MMHyperCCToRC(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); +# endif + +# ifndef PGM_WITHOUT_MAPPINGS + /* + * Apply all hypervisor mappings to the new CR3. + * Note that SyncCR3 will be executed in case CR3 is changed in a guest paging mode; this will + * make sure we check for conflicts in the new CR3 root. + */ +# if PGM_WITH_PAGING(PGM_GST_TYPE, PGM_SHW_TYPE) + Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); +# endif + rc = pgmMapActivateCR3(pVM, pNewShwPageCR3); + AssertRCReturn(rc, rc); +# endif + + /* Set the current hypervisor CR3. */ + CPUMSetHyperCR3(pVCpu, PGMGetHyperCR3(pVCpu)); + SELMShadowCR3Changed(pVM, pVCpu); + +# ifdef IN_RC + /* NOTE: The state is consistent again. */ + VMMRZCallRing3Enable(pVCpu); +# endif + + /* Clean up the old CR3 root. */ + if ( pOldShwPageCR3 + && pOldShwPageCR3 != pNewShwPageCR3 /* @todo can happen due to incorrect syncing between REM & PGM; find the real cause */) + { + Assert(pOldShwPageCR3->enmKind != PGMPOOLKIND_FREE); +# ifndef PGM_WITHOUT_MAPPINGS + /* Remove the hypervisor mappings from the shadow page table. */ + pgmMapDeactivateCR3(pVM, pOldShwPageCR3); +# endif + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pOldShwPageCR3); + + pgmPoolFreeByPage(pPool, pOldShwPageCR3, NIL_PGMPOOL_IDX, UINT32_MAX); + } + pgmUnlock(pVM); +# else + NOREF(GCPhysCR3); +# endif + + return rc; +} + +/** + * Unmaps the shadow CR3. + * + * @returns VBox status, no specials. + * @param pVCpu The cross context virtual CPU structure. + */ +PGM_BTH_DECL(int, UnmapCR3)(PVMCPU pVCpu) +{ + LogFlow(("UnmapCR3\n")); + + int rc = VINF_SUCCESS; + PVM pVM = pVCpu->CTX_SUFF(pVM); NOREF(pVM); + + /* + * Update guest paging info. + */ +#if PGM_GST_TYPE == PGM_TYPE_32BIT + pVCpu->pgm.s.pGst32BitPdR3 = 0; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGst32BitPdR0 = 0; +# endif + pVCpu->pgm.s.pGst32BitPdRC = 0; + +#elif PGM_GST_TYPE == PGM_TYPE_PAE + pVCpu->pgm.s.pGstPaePdptR3 = 0; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGstPaePdptR0 = 0; +# endif + pVCpu->pgm.s.pGstPaePdptRC = 0; + for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) + { + pVCpu->pgm.s.apGstPaePDsR3[i] = 0; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.apGstPaePDsR0[i] = 0; +# endif + pVCpu->pgm.s.apGstPaePDsRC[i] = 0; + pVCpu->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; + } + +#elif PGM_GST_TYPE == PGM_TYPE_AMD64 + pVCpu->pgm.s.pGstAmd64Pml4R3 = 0; +# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE + pVCpu->pgm.s.pGstAmd64Pml4R0 = 0; +# endif + +#else /* prot/real mode stub */ + /* nothing to do */ +#endif + +#if !defined(IN_RC) /* In RC we rely on MapCR3 to do the shadow part for us at a safe time */ + /* + * Update shadow paging info. + */ +# if ( ( PGM_SHW_TYPE == PGM_TYPE_32BIT \ + || PGM_SHW_TYPE == PGM_TYPE_PAE \ + || PGM_SHW_TYPE == PGM_TYPE_AMD64)) + +# if PGM_GST_TYPE != PGM_TYPE_REAL + Assert(!pVM->pgm.s.fNestedPaging); +# endif + + pgmLock(pVM); + +# ifndef PGM_WITHOUT_MAPPINGS + if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) + /* Remove the hypervisor mappings from the shadow page table. */ + pgmMapDeactivateCR3(pVM, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); +# endif + + if (pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)) + { + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPool->cDirtyPages) + pgmPoolResetDirtyPages(pVM); +# endif + + /* Mark the page as unlocked; allow flushing again. */ + pgmPoolUnlockPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3)); + + pgmPoolFreeByPage(pPool, pVCpu->pgm.s.CTX_SUFF(pShwPageCR3), NIL_PGMPOOL_IDX, UINT32_MAX); + pVCpu->pgm.s.pShwPageCR3R3 = 0; + pVCpu->pgm.s.pShwPageCR3R0 = 0; + pVCpu->pgm.s.pShwPageCR3RC = 0; + } + pgmUnlock(pVM); +# endif +#endif /* !IN_RC*/ + + return rc; +} + |