summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/PGMAllPool.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/PGMAllPool.cpp
parentInitial commit. (diff)
downloadvirtualbox-upstream.tar.xz
virtualbox-upstream.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/PGMAllPool.cpp')
-rw-r--r--src/VBox/VMM/VMMAll/PGMAllPool.cpp5670
1 files changed, 5670 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/PGMAllPool.cpp b/src/VBox/VMM/VMMAll/PGMAllPool.cpp
new file mode 100644
index 00000000..2d2a77f6
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/PGMAllPool.cpp
@@ -0,0 +1,5670 @@
+/* $Id: PGMAllPool.cpp $ */
+/** @file
+ * PGM Shadow Page Pool.
+ */
+
+/*
+ * Copyright (C) 2006-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_PGM_POOL
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/cpum.h>
+#ifdef IN_RC
+# include <VBox/vmm/patm.h>
+#endif
+#include "PGMInternal.h"
+#include <VBox/vmm/vm.h>
+#include "PGMInline.h"
+#include <VBox/disopcode.h>
+#include <VBox/vmm/hm_vmx.h>
+
+#include <VBox/log.h>
+#include <VBox/err.h>
+#include <iprt/asm.h>
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/string.h>
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+RT_C_DECLS_BEGIN
+#if 0 /* unused */
+DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
+DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
+#endif /* unused */
+static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
+static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
+static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
+static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
+#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
+static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
+#endif
+#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/
+static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT);
+#endif
+
+int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
+PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
+void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
+void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
+
+RT_C_DECLS_END
+
+
+#if 0 /* unused */
+/**
+ * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
+ *
+ * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
+ * @param enmKind The page kind.
+ */
+DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
+{
+ switch (enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ return true;
+ default:
+ return false;
+ }
+}
+#endif /* unused */
+
+
+/**
+ * Flushes a chain of pages sharing the same access monitor.
+ *
+ * @param pPool The pool.
+ * @param pPage A page in the chain.
+ */
+void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
+
+ /*
+ * Find the list head.
+ */
+ uint16_t idx = pPage->idx;
+ if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ {
+ while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ {
+ idx = pPage->iMonitoredPrev;
+ Assert(idx != pPage->idx);
+ pPage = &pPool->aPages[idx];
+ }
+ }
+
+ /*
+ * Iterate the list flushing each shadow page.
+ */
+ for (;;)
+ {
+ idx = pPage->iMonitoredNext;
+ Assert(idx != pPage->idx);
+ if (pPage->idx >= PGMPOOL_IDX_FIRST)
+ {
+ int rc2 = pgmPoolFlushPage(pPool, pPage);
+ AssertRC(rc2);
+ }
+ /* next */
+ if (idx == NIL_PGMPOOL_IDX)
+ break;
+ pPage = &pPool->aPages[idx];
+ }
+}
+
+
+/**
+ * Wrapper for getting the current context pointer to the entry being modified.
+ *
+ * @returns VBox status code suitable for scheduling.
+ * @param pVM The cross context VM structure.
+ * @param pvDst Destination address
+ * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending
+ * on the context (e.g. \#PF in R0 & RC).
+ * @param GCPhysSrc The source guest physical address.
+ * @param cb Size of data to read
+ */
+DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
+{
+#if defined(IN_RING3)
+ NOREF(pVM); NOREF(GCPhysSrc);
+ memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
+ return VINF_SUCCESS;
+#else
+ /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
+ NOREF(pvSrc);
+ return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
+#endif
+}
+
+
+/**
+ * Process shadow entries before they are changed by the guest.
+ *
+ * For PT entries we will clear them. For PD entries, we'll simply check
+ * for mapping conflicts and set the SyncCR3 FF if found.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pPool The pool.
+ * @param pPage The head page.
+ * @param GCPhysFault The guest physical fault address.
+ * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL
+ * depending on the context (e.g. \#PF in R0 & RC).
+ * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
+ */
+static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault,
+ void const *pvAddress, unsigned cbWrite)
+{
+ AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx));
+ const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ NOREF(pVCpu);
+
+ LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n",
+ (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite));
+
+ for (;;)
+ {
+ union
+ {
+ void *pv;
+ PX86PT pPT;
+ PPGMSHWPTPAE pPTPae;
+ PX86PD pPD;
+ PX86PDPAE pPDPae;
+ PX86PDPT pPDPT;
+ PX86PML4 pPML4;
+ } uShw;
+
+ LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n",
+ pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
+
+ uShw.pv = NULL;
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PTE);
+ LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
+ if (uShw.pPT->a[iShw].n.u1Present)
+ {
+ X86PTE GstPte;
+
+ int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
+ AssertRC(rc);
+ Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage,
+ uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
+ GstPte.u & X86_PTE_PG_MASK,
+ iShw);
+ ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0);
+ }
+ break;
+ }
+
+ /* page/2 sized */
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
+ {
+ const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
+ LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
+ if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
+ {
+ X86PTE GstPte;
+ int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
+ AssertRC(rc);
+
+ Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage,
+ PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
+ GstPte.u & X86_PTE_PG_MASK,
+ iShw);
+ PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ {
+ unsigned iGst = off / sizeof(X86PDE);
+ unsigned iShwPdpt = iGst / 256;
+ unsigned iShw = (iGst % 256) * 2;
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+
+ LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
+ if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
+ {
+ for (unsigned i = 0; i < 2; i++)
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
+ break;
+ }
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPDPae->a[iShw+i].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw + i);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw+i].u, 0);
+ }
+
+ /* paranoia / a bit assumptive. */
+ if ( (off & 3)
+ && (off & 3) + cbWrite > 4)
+ {
+ const unsigned iShw2 = iShw + 2 + i;
+ if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
+ break;
+ }
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPDPae->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw2);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
+ }
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ {
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PTEPAE);
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
+ if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
+ {
+ X86PTEPAE GstPte;
+ int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
+ AssertRC(rc);
+
+ Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage,
+ PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
+ GstPte.u & X86_PTE_PAE_PG_MASK,
+ iShw);
+ PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
+ }
+
+ /* paranoia / a bit assumptive. */
+ if ( (off & 7)
+ && (off & 7) + cbWrite > sizeof(X86PTEPAE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
+ AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
+
+ if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2]))
+ {
+ X86PTEPAE GstPte;
+ int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte,
+ pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL,
+ GCPhysFault + sizeof(GstPte), sizeof(GstPte));
+ AssertRC(rc);
+ Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage,
+ PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]),
+ GstPte.u & X86_PTE_PAE_PG_MASK,
+ iShw2);
+ PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0);
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_32BIT_PD:
+ {
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
+
+ LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
+ break;
+ }
+ else
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ {
+ if (uShw.pPD->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
+ pgmPoolFree(pVM,
+ uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw);
+ ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
+ }
+ }
+ /* paranoia / a bit assumptive. */
+ if ( (off & 3)
+ && (off & 3) + cbWrite > sizeof(X86PTE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
+ if ( iShw2 != iShw
+ && iShw2 < RT_ELEMENTS(uShw.pPD->a))
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
+ break;
+ }
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPD->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
+ pgmPoolFree(pVM,
+ uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw2);
+ ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0);
+ }
+ }
+ }
+#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */
+ if ( uShw.pPD->a[iShw].n.u1Present
+ && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
+# ifdef IN_RC /* TLB load - we're pushing things a bit... */
+ ASMProbeReadByte(pvAddress);
+# endif
+ pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
+ ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
+ }
+#endif
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ {
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PDEPAE);
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
+ break;
+ }
+#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ /*
+ * Causes trouble when the guest uses a PDE to refer to the whole page table level
+ * structure. (Invalidate here; faults later on when it tries to change the page
+ * table entries -> recheck; probably only applies to the RC case.)
+ */
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ else
+#endif
+ {
+ if (uShw.pPDPae->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
+ }
+ }
+ /* paranoia / a bit assumptive. */
+ if ( (off & 7)
+ && (off & 7) + cbWrite > sizeof(X86PDEPAE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
+ AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
+
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if ( iShw2 != iShw
+ && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
+ break;
+ }
+ else
+#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPDPae->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw2);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PDPT:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
+ /*
+ * Hopefully this doesn't happen very often:
+ * - touching unused parts of the page
+ * - messing with the bits of pd pointers without changing the physical address
+ */
+ /* PDPT roots are not page aligned; 32 byte only! */
+ const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
+
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = offPdpt / sizeof(X86PDPE);
+ if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
+ break;
+ }
+ else
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPDPT->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
+ pPage->idx,
+ iShw);
+ ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
+ }
+
+ /* paranoia / a bit assumptive. */
+ if ( (offPdpt & 7)
+ && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
+ {
+ const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
+ if ( iShw2 != iShw
+ && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
+ {
+ Assert(pgmMapAreMappingsEnabled(pVM));
+ STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
+ break;
+ }
+ else
+# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+ if (uShw.pPDPT->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
+ pPage->idx,
+ iShw2);
+ ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
+ }
+ }
+ }
+ }
+ break;
+ }
+
+#ifndef IN_RC
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PDEPAE);
+ Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
+ if (uShw.pPDPae->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
+ }
+ /* paranoia / a bit assumptive. */
+ if ( (off & 7)
+ && (off & 7) + cbWrite > sizeof(X86PDEPAE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
+ AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
+
+ Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
+ if (uShw.pPDPae->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
+ pgmPoolFree(pVM,
+ uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
+ pPage->idx,
+ iShw2);
+ ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
+ /*
+ * Hopefully this doesn't happen very often:
+ * - messing with the bits of pd pointers without changing the physical address
+ */
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PDPE);
+ if (uShw.pPDPT->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
+ pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
+ ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
+ }
+ /* paranoia / a bit assumptive. */
+ if ( (off & 7)
+ && (off & 7) + cbWrite > sizeof(X86PDPE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
+ if (uShw.pPDPT->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
+ pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
+ ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
+ }
+ }
+ break;
+ }
+
+ case PGMPOOLKIND_64BIT_PML4:
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
+ /*
+ * Hopefully this doesn't happen very often:
+ * - messing with the bits of pd pointers without changing the physical address
+ */
+ uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ const unsigned iShw = off / sizeof(X86PDPE);
+ if (uShw.pPML4->a[iShw].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
+ pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
+ ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0);
+ }
+ /* paranoia / a bit assumptive. */
+ if ( (off & 7)
+ && (off & 7) + cbWrite > sizeof(X86PDPE))
+ {
+ const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
+ if (uShw.pPML4->a[iShw2].n.u1Present)
+ {
+ LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
+ pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
+ ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0);
+ }
+ }
+ break;
+ }
+#endif /* IN_RING0 */
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
+ }
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv);
+
+ /* next */
+ if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
+ return;
+ pPage = &pPool->aPages[pPage->iMonitoredNext];
+ }
+}
+
+#ifndef IN_RING3
+
+/**
+ * Checks if a access could be a fork operation in progress.
+ *
+ * Meaning, that the guest is setting up the parent process for Copy-On-Write.
+ *
+ * @returns true if it's likely that we're forking, otherwise false.
+ * @param pPool The pool.
+ * @param pDis The disassembled instruction.
+ * @param offFault The access offset.
+ */
+DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
+{
+ /*
+ * i386 linux is using btr to clear X86_PTE_RW.
+ * The functions involved are (2.6.16 source inspection):
+ * clear_bit
+ * ptep_set_wrprotect
+ * copy_one_pte
+ * copy_pte_range
+ * copy_pmd_range
+ * copy_pud_range
+ * copy_page_range
+ * dup_mmap
+ * dup_mm
+ * copy_mm
+ * copy_process
+ * do_fork
+ */
+ if ( pDis->pCurInstr->uOpcode == OP_BTR
+ && !(offFault & 4)
+ /** @todo Validate that the bit index is X86_PTE_RW. */
+ )
+ {
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool);
+ return true;
+ }
+ return false;
+}
+
+
+/**
+ * Determine whether the page is likely to have been reused.
+ *
+ * @returns true if we consider the page as being reused for a different purpose.
+ * @returns false if we consider it to still be a paging page.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pRegFrame Trap register frame.
+ * @param pDis The disassembly info for the faulting instruction.
+ * @param pvFault The fault address.
+ * @param pPage The pool page being accessed.
+ *
+ * @remark The REP prefix check is left to the caller because of STOSD/W.
+ */
+DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault,
+ PPGMPOOLPAGE pPage)
+{
+ /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as
+ such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */
+ if (pPage->cLocked)
+ {
+ Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage));
+ return false;
+ }
+
+# ifndef IN_RC
+ /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
+ if ( HMHasPendingIrq(pVM)
+ && (pRegFrame->rsp - pvFault) < 32)
+ {
+ /* Fault caused by stack writes while trying to inject an interrupt event. */
+ Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
+ return true;
+ }
+# else
+ NOREF(pVM); NOREF(pvFault);
+# endif
+
+ LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg));
+
+ /* Non-supervisor mode write means it's used for something else. */
+ if (CPUMGetGuestCPL(pVCpu) == 3)
+ return true;
+
+ switch (pDis->pCurInstr->uOpcode)
+ {
+ /* call implies the actual push of the return address faulted */
+ case OP_CALL:
+ Log4(("pgmRZPoolMonitorIsReused: CALL\n"));
+ return true;
+ case OP_PUSH:
+ Log4(("pgmRZPoolMonitorIsReused: PUSH\n"));
+ return true;
+ case OP_PUSHF:
+ Log4(("pgmRZPoolMonitorIsReused: PUSHF\n"));
+ return true;
+ case OP_PUSHA:
+ Log4(("pgmRZPoolMonitorIsReused: PUSHA\n"));
+ return true;
+ case OP_FXSAVE:
+ Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n"));
+ return true;
+ case OP_MOVNTI: /* solaris - block_zero_no_xmm */
+ Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n"));
+ return true;
+ case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
+ Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n"));
+ return true;
+ case OP_MOVSWD:
+ case OP_STOSWD:
+ if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX)
+ && pRegFrame->rcx >= 0x40
+ )
+ {
+ Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
+
+ Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n"));
+ return true;
+ }
+ break;
+
+ default:
+ /*
+ * Anything having ESP on the left side means stack writes.
+ */
+ if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32)
+ || (pDis->Param1.fUse & DISUSE_REG_GEN64))
+ && (pDis->Param1.Base.idxGenReg == DISGREG_ESP))
+ {
+ Log4(("pgmRZPoolMonitorIsReused: ESP\n"));
+ return true;
+ }
+ break;
+ }
+
+ /*
+ * Page table updates are very very unlikely to be crossing page boundraries,
+ * and we don't want to deal with that in pgmPoolMonitorChainChanging and such.
+ */
+ uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->Param1);
+ if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) )
+ {
+ Log4(("pgmRZPoolMonitorIsReused: cross page write\n"));
+ return true;
+ }
+
+ /*
+ * Nobody does an unaligned 8 byte write to a page table, right.
+ */
+ if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0)
+ {
+ Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n"));
+ return true;
+ }
+
+ return false;
+}
+
+
+/**
+ * Flushes the page being accessed.
+ *
+ * @returns VBox status code suitable for scheduling.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pPool The pool.
+ * @param pPage The pool page (head).
+ * @param pDis The disassembly of the write instruction.
+ * @param pRegFrame The trap register frame.
+ * @param GCPhysFault The fault address as guest physical address.
+ * @param pvFault The fault address.
+ * @todo VBOXSTRICTRC
+ */
+static int pgmRZPoolAccessPfHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
+ PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
+{
+ NOREF(pVM); NOREF(GCPhysFault);
+
+ /*
+ * First, do the flushing.
+ */
+ pgmPoolMonitorChainFlush(pPool, pPage);
+
+ /*
+ * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
+ * Must do this in raw mode (!); XP boot will fail otherwise.
+ */
+ int rc = VINF_SUCCESS;
+ VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
+ if (rc2 == VINF_SUCCESS)
+ { /* do nothing */ }
+ else if (rc2 == VINF_EM_RESCHEDULE)
+ {
+ rc = VBOXSTRICTRC_VAL(rc2);
+# ifndef IN_RING3
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
+# endif
+ }
+ else if (rc2 == VERR_EM_INTERPRETER)
+ {
+# ifdef IN_RC
+ if (PATMIsPatchGCAddr(pVM, pRegFrame->eip))
+ {
+ LogFlow(("pgmRZPoolAccessPfHandlerFlush: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
+ pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->eip));
+ rc = VINF_SUCCESS;
+ STAM_COUNTER_INC(&pPool->StatMonitorPfRZIntrFailPatch2);
+ }
+ else
+# endif
+ {
+ rc = VINF_EM_RAW_EMULATE_INSTR;
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
+ }
+ }
+ else if (RT_FAILURE_NP(rc2))
+ rc = VBOXSTRICTRC_VAL(rc2);
+ else
+ AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */
+
+ LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc));
+ return rc;
+}
+
+
+/**
+ * Handles the STOSD write accesses.
+ *
+ * @returns VBox status code suitable for scheduling.
+ * @param pVM The cross context VM structure.
+ * @param pPool The pool.
+ * @param pPage The pool page (head).
+ * @param pDis The disassembly of the write instruction.
+ * @param pRegFrame The trap register frame.
+ * @param GCPhysFault The fault address as guest physical address.
+ * @param pvFault The fault address.
+ */
+DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
+ PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
+{
+ unsigned uIncrement = pDis->Param1.cb;
+ NOREF(pVM);
+
+ Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT);
+ Assert(pRegFrame->rcx <= 0x20);
+
+# ifdef VBOX_STRICT
+ if (pDis->uOpMode == DISCPUMODE_32BIT)
+ Assert(uIncrement == 4);
+ else
+ Assert(uIncrement == 8);
+# endif
+
+ Log3(("pgmRZPoolAccessPfHandlerSTOSD\n"));
+
+ /*
+ * Increment the modification counter and insert it into the list
+ * of modified pages the first time.
+ */
+ if (!pPage->cModifications++)
+ pgmPoolMonitorModifiedInsert(pPool, pPage);
+
+ /*
+ * Execute REP STOSD.
+ *
+ * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
+ * write situation, meaning that it's safe to write here.
+ */
+ PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
+ RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
+ while (pRegFrame->rcx)
+ {
+# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement);
+ PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
+# else
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement);
+# endif
+# ifdef IN_RC
+ *(uint32_t *)(uintptr_t)pu32 = pRegFrame->eax;
+# else
+ PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
+# endif
+ pu32 += uIncrement;
+ GCPhysFault += uIncrement;
+ pRegFrame->rdi += uIncrement;
+ pRegFrame->rcx--;
+ }
+ pRegFrame->rip += pDis->cbInstr;
+
+ LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n"));
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Handles the simple write accesses.
+ *
+ * @returns VBox status code suitable for scheduling.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pPool The pool.
+ * @param pPage The pool page (head).
+ * @param pDis The disassembly of the write instruction.
+ * @param pRegFrame The trap register frame.
+ * @param GCPhysFault The fault address as guest physical address.
+ * @param pvFault The fault address.
+ * @param pfReused Reused state (in/out)
+ */
+DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
+ PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
+{
+ Log3(("pgmRZPoolAccessPfHandlerSimple\n"));
+ NOREF(pVM);
+ NOREF(pfReused); /* initialized by caller */
+
+ /*
+ * Increment the modification counter and insert it into the list
+ * of modified pages the first time.
+ */
+ if (!pPage->cModifications++)
+ pgmPoolMonitorModifiedInsert(pPool, pPage);
+
+ /*
+ * Clear all the pages. ASSUMES that pvFault is readable.
+ */
+# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
+# endif
+
+ uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1);
+ if (cbWrite <= 8)
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite);
+ else if (cbWrite <= 16)
+ {
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8);
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8);
+ }
+ else
+ {
+ Assert(cbWrite <= 32);
+ for (uint32_t off = 0; off < cbWrite; off += 8)
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off));
+ }
+
+# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
+# endif
+
+ /*
+ * Interpret the instruction.
+ */
+ VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
+ if (RT_SUCCESS(rc))
+ AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */
+ else if (rc == VERR_EM_INTERPRETER)
+ {
+ LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n",
+ pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode));
+ rc = VINF_EM_RAW_EMULATE_INSTR;
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
+ }
+
+# if 0 /* experimental code */
+ if (rc == VINF_SUCCESS)
+ {
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ {
+ X86PTEPAE GstPte;
+ int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
+ AssertRC(rc);
+
+ /* Check the new value written by the guest. If present and with a bogus physical address, then
+ * it's fairly safe to assume the guest is reusing the PT.
+ */
+ if (GstPte.n.u1Present)
+ {
+ RTHCPHYS HCPhys = -1;
+ int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
+ if (rc != VINF_SUCCESS)
+ {
+ *pfReused = true;
+ STAM_COUNTER_INC(&pPool->StatForceFlushReused);
+ }
+ }
+ break;
+ }
+ }
+ }
+# endif
+
+ LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
+ return VBOXSTRICTRC_VAL(rc);
+}
+
+
+/**
+ * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
+ * \#PF access handler callback for page table pages.}
+ *
+ * @remarks The @a pvUser argument points to the PGMPOOLPAGE.
+ */
+DECLEXPORT(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
+ RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
+{
+ STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
+ unsigned cMaxModifications;
+ bool fForcedFlush = false;
+ NOREF(uErrorCode);
+
+ LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
+
+ pgmLock(pVM);
+ if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
+ {
+ /* Pool page changed while we were waiting for the lock; ignore. */
+ Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
+ STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+ }
+# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (pPage->fDirty)
+ {
+ Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH));
+ pgmUnlock(pVM);
+ return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
+ }
+# endif
+
+# if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
+ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ {
+ void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
+ void *pvGst;
+ int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
+ }
+# endif
+
+ /*
+ * Disassemble the faulting instruction.
+ */
+ PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
+ int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
+ if (RT_UNLIKELY(rc != VINF_SUCCESS))
+ {
+ AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
+ pgmUnlock(pVM);
+ return rc;
+ }
+
+ Assert(pPage->enmKind != PGMPOOLKIND_FREE);
+
+ /*
+ * We should ALWAYS have the list head as user parameter. This
+ * is because we use that page to record the changes.
+ */
+ Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
+
+# ifdef IN_RING0
+ /* Maximum nr of modifications depends on the page type. */
+ if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
+ || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
+ cMaxModifications = 4;
+ else
+ cMaxModifications = 24;
+# else
+ cMaxModifications = 48;
+# endif
+
+ /*
+ * Incremental page table updates should weigh more than random ones.
+ * (Only applies when started from offset 0)
+ */
+ pVCpu->pgm.s.cPoolAccessHandler++;
+ if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
+ && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40
+ && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb)
+ && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1)
+ {
+ Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
+ Assert(pPage->cModifications < 32000);
+ pPage->cModifications = pPage->cModifications * 2;
+ pPage->GCPtrLastAccessHandlerFault = pvFault;
+ pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
+ if (pPage->cModifications >= cMaxModifications)
+ {
+ STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit);
+ fForcedFlush = true;
+ }
+ }
+
+ if (pPage->cModifications >= cMaxModifications)
+ Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
+
+ /*
+ * Check if it's worth dealing with.
+ */
+ bool fReused = false;
+ bool fNotReusedNotForking = false;
+ if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
+ || pgmPoolIsPageLocked(pPage)
+ )
+ && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage))
+ && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
+ {
+ /*
+ * Simple instructions, no REP prefix.
+ */
+ if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE)))
+ {
+ rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
+ if (fReused)
+ goto flushPage;
+
+ /* A mov instruction to change the first page table entry will be remembered so we can detect
+ * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
+ */
+ if ( rc == VINF_SUCCESS
+ && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */
+ && pDis->pCurInstr->uOpcode == OP_MOV
+ && (pvFault & PAGE_OFFSET_MASK) == 0)
+ {
+ pPage->GCPtrLastAccessHandlerFault = pvFault;
+ pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
+ pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip;
+ /* Make sure we don't kick out a page too quickly. */
+ if (pPage->cModifications > 8)
+ pPage->cModifications = 2;
+ }
+ else if (pPage->GCPtrLastAccessHandlerFault == pvFault)
+ {
+ /* ignore the 2nd write to this page table entry. */
+ pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
+ }
+ else
+ {
+ pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
+ pPage->GCPtrLastAccessHandlerRip = 0;
+ }
+
+ STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
+ pgmUnlock(pVM);
+ return rc;
+ }
+
+ /*
+ * Windows is frequently doing small memset() operations (netio test 4k+).
+ * We have to deal with these or we'll kill the cache and performance.
+ */
+ if ( pDis->pCurInstr->uOpcode == OP_STOSWD
+ && !pRegFrame->eflags.Bits.u1DF
+ && pDis->uOpMode == pDis->uCpuMode
+ && pDis->uAddrMode == pDis->uCpuMode)
+ {
+ bool fValidStosd = false;
+
+ if ( pDis->uCpuMode == DISCPUMODE_32BIT
+ && pDis->fPrefix == DISPREFIX_REP
+ && pRegFrame->ecx <= 0x20
+ && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
+ && !((uintptr_t)pvFault & 3)
+ && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
+ )
+ {
+ fValidStosd = true;
+ pRegFrame->rcx &= 0xffffffff; /* paranoia */
+ }
+ else
+ if ( pDis->uCpuMode == DISCPUMODE_64BIT
+ && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX)
+ && pRegFrame->rcx <= 0x20
+ && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
+ && !((uintptr_t)pvFault & 7)
+ && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
+ )
+ {
+ fValidStosd = true;
+ }
+
+ if (fValidStosd)
+ {
+ rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
+ STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a);
+ pgmUnlock(pVM);
+ return rc;
+ }
+ }
+
+ /* REP prefix, don't bother. */
+ STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix);
+ Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
+ pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix));
+ fNotReusedNotForking = true;
+ }
+
+# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
+ /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
+ * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
+ */
+ if ( pPage->cModifications >= cMaxModifications
+ && !fForcedFlush
+ && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
+ && ( fNotReusedNotForking
+ || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage)
+ && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
+ )
+ )
+ {
+ Assert(!pgmPoolIsPageLocked(pPage));
+ Assert(pPage->fDirty == false);
+
+ /* Flush any monitored duplicates as we will disable write protection. */
+ if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
+ || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ {
+ PPGMPOOLPAGE pPageHead = pPage;
+
+ /* Find the monitor head. */
+ while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
+
+ while (pPageHead)
+ {
+ unsigned idxNext = pPageHead->iMonitoredNext;
+
+ if (pPageHead != pPage)
+ {
+ STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
+ Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
+ int rc2 = pgmPoolFlushPage(pPool, pPageHead);
+ AssertRC(rc2);
+ }
+
+ if (idxNext == NIL_PGMPOOL_IDX)
+ break;
+
+ pPageHead = &pPool->aPages[idxNext];
+ }
+ }
+
+ /* The flushing above might fail for locked pages, so double check. */
+ if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
+ && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
+ {
+ pgmPoolAddDirtyPage(pVM, pPool, pPage);
+
+ /* Temporarily allow write access to the page table again. */
+ rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK);
+ if (rc == VINF_SUCCESS)
+ {
+ rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
+ AssertMsg(rc == VINF_SUCCESS
+ /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
+ || rc == VERR_PAGE_TABLE_NOT_PRESENT
+ || rc == VERR_PAGE_NOT_PRESENT,
+ ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
+# ifdef VBOX_STRICT
+ pPage->GCPtrDirtyFault = pvFault;
+# endif
+
+ STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a);
+ pgmUnlock(pVM);
+ return rc;
+ }
+ }
+ }
+# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
+
+ STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow);
+flushPage:
+ /*
+ * Not worth it, so flush it.
+ *
+ * If we considered it to be reused, don't go back to ring-3
+ * to emulate failed instructions since we usually cannot
+ * interpret then. This may be a bit risky, in which case
+ * the reuse detection must be fixed.
+ */
+ rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
+ if ( rc == VINF_EM_RAW_EMULATE_INSTR
+ && fReused)
+ {
+ /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
+ if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
+ rc = VINF_SUCCESS; /* safe to restart the instruction. */
+ }
+ STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a);
+ pgmUnlock(pVM);
+ return rc;
+}
+
+#endif /* !IN_RING3 */
+
+/**
+ * @callback_method_impl{FNPGMPHYSHANDLER,
+ * Access handler for shadowed page table pages.}
+ *
+ * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status.
+ */
+PGM_ALL_CB2_DECL(VBOXSTRICTRC)
+pgmPoolAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
+ PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a);
+ PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
+ LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
+ GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
+
+ NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType);
+
+ pgmLock(pVM);
+
+#ifdef VBOX_WITH_STATISTICS
+ /*
+ * Collect stats on the access.
+ */
+ AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19);
+ if (cbBuf <= 16 && cbBuf > 0)
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]);
+ else if (cbBuf >= 17 && cbBuf < 32)
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]);
+ else if (cbBuf >= 32 && cbBuf < 64)
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]);
+ else if (cbBuf >= 64)
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]);
+
+ uint8_t cbAlign;
+ switch (pPage->enmKind)
+ {
+ default:
+ cbAlign = 7;
+ break;
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ cbAlign = 3;
+ break;
+ }
+ AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7);
+ if ((uint8_t)GCPhys & cbAlign)
+ STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]);
+#endif
+
+ /*
+ * Make sure the pool page wasn't modified by a different CPU.
+ */
+ if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys))
+ {
+ Assert(pPage->enmKind != PGMPOOLKIND_FREE);
+
+ /* The max modification count before flushing depends on the context and page type. */
+#ifdef IN_RING3
+ uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */
+#else
+ uint16_t cMaxModifications;
+ if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
+ || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
+ cMaxModifications = 4;
+ else
+ cMaxModifications = 24;
+# ifdef IN_RC
+ cMaxModifications *= 2; /* traps are cheaper than exists. */
+# endif
+#endif
+
+ /*
+ * We don't have to be very sophisticated about this since there are relativly few calls here.
+ * However, we must try our best to detect any non-cpu accesses (disk / networking).
+ */
+ if ( ( pPage->cModifications < cMaxModifications
+ || pgmPoolIsPageLocked(pPage) )
+ && enmOrigin != PGMACCESSORIGIN_DEVICE
+ && cbBuf <= 16)
+ {
+ /* Clear the shadow entry. */
+ if (!pPage->cModifications++)
+ pgmPoolMonitorModifiedInsert(pPool, pPage);
+
+ if (cbBuf <= 8)
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf);
+ else
+ {
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8);
+ pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8);
+ }
+ }
+ else
+ pgmPoolMonitorChainFlush(pPool, pPage);
+
+ STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
+ }
+ else
+ Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
+ pgmUnlock(pVM);
+ return VINF_PGM_HANDLER_DO_DEFAULT;
+}
+
+
+# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+
+# if defined(VBOX_STRICT) && !defined(IN_RING3)
+
+/**
+ * Check references to guest physical memory in a PAE / PAE page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ */
+static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
+{
+ unsigned cErrors = 0;
+ int LastRc = -1; /* initialized to shut up gcc */
+ unsigned LastPTE = ~0U; /* initialized to shut up gcc */
+ RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
+ PVM pVM = pPool->CTX_SUFF(pVM);
+
+#ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
+ AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
+#endif
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ RTHCPHYS HCPhys = NIL_RTHCPHYS;
+ int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
+ if ( rc != VINF_SUCCESS
+ || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
+ {
+ Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
+ LastPTE = i;
+ LastRc = rc;
+ LastHCPhys = HCPhys;
+ cErrors++;
+
+ RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
+ rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
+ AssertRC(rc);
+
+ for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
+ {
+ PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
+
+ if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ {
+ PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
+
+ for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
+ {
+ if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
+ && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
+ {
+ Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
+ }
+ }
+
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
+ }
+ }
+ }
+ }
+ }
+ AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
+}
+
+
+/**
+ * Check references to guest physical memory in a PAE / 32-bit page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ */
+static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
+{
+ unsigned cErrors = 0;
+ int LastRc = -1; /* initialized to shut up gcc */
+ unsigned LastPTE = ~0U; /* initialized to shut up gcc */
+ RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
+ PVM pVM = pPool->CTX_SUFF(pVM);
+
+#ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
+ AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
+#endif
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ RTHCPHYS HCPhys = NIL_RTHCPHYS;
+ int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
+ if ( rc != VINF_SUCCESS
+ || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
+ {
+ Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
+ LastPTE = i;
+ LastRc = rc;
+ LastHCPhys = HCPhys;
+ cErrors++;
+
+ RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
+ rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
+ AssertRC(rc);
+
+ for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
+ {
+ PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
+
+ if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
+ {
+ PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
+
+ for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
+ {
+ if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
+ && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
+ {
+ Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
+ }
+ }
+
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
+ }
+ }
+ }
+ }
+ }
+ AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
+}
+
+# endif /* VBOX_STRICT && !IN_RING3 */
+
+/**
+ * Clear references to guest physical memory in a PAE / PAE page table.
+ *
+ * @returns nr of changed PTEs
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ * @param pOldGstPT The old cached guest page table.
+ * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
+ * @param pfFlush Flush reused page table (out)
+ */
+DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT,
+ PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
+{
+ unsigned cChanged = 0;
+
+#ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
+ AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
+#endif
+ *pfFlush = false;
+
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ /* Check the new value written by the guest. If present and with a bogus physical address, then
+ * it's fairly safe to assume the guest is reusing the PT.
+ */
+ if ( fAllowRemoval
+ && pGstPT->a[i].n.u1Present)
+ {
+ if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
+ {
+ *pfFlush = true;
+ return ++cChanged;
+ }
+ }
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
+ if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
+ {
+#ifdef VBOX_STRICT
+ RTHCPHYS HCPhys = NIL_RTGCPHYS;
+ int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
+ AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
+#endif
+ uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
+ bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
+ uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
+ bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
+
+ if ( uHostAttr == uGuestAttr
+ && fHostRW <= fGuestRW)
+ continue;
+ }
+ cChanged++;
+ /* Something was changed, so flush it. */
+ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
+ i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i);
+ PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
+ }
+ }
+ return cChanged;
+}
+
+
+/**
+ * Clear references to guest physical memory in a PAE / PAE page table.
+ *
+ * @returns nr of changed PTEs
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ * @param pOldGstPT The old cached guest page table.
+ * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
+ * @param pfFlush Flush reused page table (out)
+ */
+DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT,
+ PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush)
+{
+ unsigned cChanged = 0;
+
+#ifdef VBOX_STRICT
+ for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
+ AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
+#endif
+ *pfFlush = false;
+
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ /* Check the new value written by the guest. If present and with a bogus physical address, then
+ * it's fairly safe to assume the guest is reusing the PT.
+ */
+ if ( fAllowRemoval
+ && pGstPT->a[i].n.u1Present)
+ {
+ if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK))
+ {
+ *pfFlush = true;
+ return ++cChanged;
+ }
+ }
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
+ if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK))
+ {
+#ifdef VBOX_STRICT
+ RTHCPHYS HCPhys = NIL_RTGCPHYS;
+ int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
+ AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
+#endif
+ uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
+ bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
+ uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
+ bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
+
+ if ( uHostAttr == uGuestAttr
+ && fHostRW <= fGuestRW)
+ continue;
+ }
+ cChanged++;
+ /* Something was changed, so flush it. */
+ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n",
+ i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i);
+ PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
+ }
+ }
+ return cChanged;
+}
+
+
+/**
+ * Flush a dirty page
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPool The pool.
+ * @param idxSlot Dirty array slot index
+ * @param fAllowRemoval Allow a reused page table to be removed
+ */
+static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
+{
+ PPGMPOOLPAGE pPage;
+ unsigned idxPage;
+
+ Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages));
+ if (pPool->aDirtyPages[idxSlot].uIdx == NIL_PGMPOOL_IDX)
+ return;
+
+ idxPage = pPool->aDirtyPages[idxSlot].uIdx;
+ AssertRelease(idxPage != NIL_PGMPOOL_IDX);
+ pPage = &pPool->aPages[idxPage];
+ Assert(pPage->idx == idxPage);
+ Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
+
+ AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
+ Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
+
+#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
+#endif
+
+ /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
+ int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
+ Assert(rc == VINF_SUCCESS);
+ pPage->fDirty = false;
+
+#ifdef VBOX_STRICT
+ uint64_t fFlags = 0;
+ RTHCPHYS HCPhys;
+ rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys);
+ AssertMsg( ( rc == VINF_SUCCESS
+ && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
+ /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
+ || rc == VERR_PAGE_TABLE_NOT_PRESENT
+ || rc == VERR_PAGE_NOT_PRESENT,
+ ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags));
+#endif
+
+ /* Flush those PTEs that have changed. */
+ STAM_PROFILE_START(&pPool->StatTrackDeref,a);
+ void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ void *pvGst;
+ rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ bool fFlush;
+ unsigned cChanges;
+
+ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst,
+ (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
+ else
+ cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst,
+ (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
+
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
+ STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
+ /* Note: we might want to consider keeping the dirty page active in case there were many changes. */
+
+ /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
+ Assert(pPage->cModifications);
+ if (cChanges < 4)
+ pPage->cModifications = 1; /* must use > 0 here */
+ else
+ pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
+
+ STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
+ if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages))
+ pPool->idxFreeDirtyPage = idxSlot;
+
+ pPool->cDirtyPages--;
+ pPool->aDirtyPages[idxSlot].uIdx = NIL_PGMPOOL_IDX;
+ Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
+ if (fFlush)
+ {
+ Assert(fAllowRemoval);
+ Log(("Flush reused page table!\n"));
+ pgmPoolFlushPage(pPool, pPage);
+ STAM_COUNTER_INC(&pPool->StatForceFlushReused);
+ }
+ else
+ Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
+
+#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
+#endif
+}
+
+
+# ifndef IN_RING3
+/**
+ * Add a new dirty page
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPool The pool.
+ * @param pPage The page.
+ */
+void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ unsigned idxFree;
+
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16);
+ Assert(!pPage->fDirty);
+
+ idxFree = pPool->idxFreeDirtyPage;
+ Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages));
+ Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
+
+ if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages))
+ {
+ STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
+ pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
+ }
+ Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages));
+ AssertMsg(pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
+
+ Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
+
+ /*
+ * Make a copy of the guest page table as we require valid GCPhys addresses
+ * when removing references to physical pages.
+ * (The HCPhys linear lookup is *extremely* expensive!)
+ */
+ void *pvGst;
+ int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2);
+# ifdef VBOX_STRICT
+ void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
+ pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
+ else
+ pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
+# endif
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+
+ STAM_COUNTER_INC(&pPool->StatDirtyPage);
+ pPage->fDirty = true;
+ pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree);
+ pPool->aDirtyPages[idxFree].uIdx = pPage->idx;
+ pPool->cDirtyPages++;
+
+ pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
+ if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)
+ && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
+ {
+ unsigned i;
+ for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
+ if (pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX)
+ {
+ pPool->idxFreeDirtyPage = idxFree;
+ break;
+ }
+ }
+ Assert(i != RT_ELEMENTS(pPool->aDirtyPages));
+ }
+
+ Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX);
+
+ /*
+ * Clear all references to this shadow table. See @bugref{7298}.
+ */
+ pgmPoolTrackClearPageUsers(pPool, pPage);
+}
+# endif /* !IN_RING3 */
+
+
+/**
+ * Check if the specified page is dirty (not write monitored)
+ *
+ * @return dirty or not
+ * @param pVM The cross context VM structure.
+ * @param GCPhys Guest physical address
+ */
+bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ if (!pPool->cDirtyPages)
+ return false;
+
+ GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX)
+ {
+ PPGMPOOLPAGE pPage;
+ unsigned idxPage = pPool->aDirtyPages[i].uIdx;
+
+ pPage = &pPool->aPages[idxPage];
+ if (pPage->GCPhys == GCPhys)
+ return true;
+ }
+ }
+ return false;
+}
+
+
+/**
+ * Reset all dirty pages by reinstating page monitoring.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmPoolResetDirtyPages(PVM pVM)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
+
+ if (!pPool->cDirtyPages)
+ return;
+
+ Log(("pgmPoolResetDirtyPages\n"));
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
+
+ pPool->idxFreeDirtyPage = 0;
+ if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
+ && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
+ {
+ unsigned i;
+ for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
+ {
+ pPool->idxFreeDirtyPage = i;
+ break;
+ }
+ }
+ AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
+ }
+
+ Assert(pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages));
+ return;
+}
+
+
+/**
+ * Invalidate the PT entry for the specified page
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPtrPage Guest page to invalidate
+ */
+void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
+
+ if (!pPool->cDirtyPages)
+ return;
+
+ Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ }
+}
+
+
+/**
+ * Reset all dirty pages by reinstating page monitoring.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhysPT Physical address of the page table
+ */
+void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
+ unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages);
+
+ if (!pPool->cDirtyPages)
+ return;
+
+ GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX)
+ {
+ unsigned idxPage = pPool->aDirtyPages[i].uIdx;
+
+ PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
+ if (pPage->GCPhys == GCPhysPT)
+ {
+ idxDirtyPage = i;
+ break;
+ }
+ }
+ }
+
+ if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages))
+ {
+ pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
+ if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
+ && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX)
+ {
+ unsigned i;
+ for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ {
+ if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
+ {
+ pPool->idxFreeDirtyPage = i;
+ break;
+ }
+ }
+ AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
+ }
+ }
+}
+
+# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
+
+/**
+ * Inserts a page into the GCPhys hash table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ */
+DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
+ Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
+ uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
+ pPage->iNext = pPool->aiHash[iHash];
+ pPool->aiHash[iHash] = pPage->idx;
+}
+
+
+/**
+ * Removes a page from the GCPhys hash table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ */
+DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
+ uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
+ if (pPool->aiHash[iHash] == pPage->idx)
+ pPool->aiHash[iHash] = pPage->iNext;
+ else
+ {
+ uint16_t iPrev = pPool->aiHash[iHash];
+ for (;;)
+ {
+ const int16_t i = pPool->aPages[iPrev].iNext;
+ if (i == pPage->idx)
+ {
+ pPool->aPages[iPrev].iNext = pPage->iNext;
+ break;
+ }
+ if (i == NIL_PGMPOOL_IDX)
+ {
+ AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx));
+ break;
+ }
+ iPrev = i;
+ }
+ }
+ pPage->iNext = NIL_PGMPOOL_IDX;
+}
+
+
+/**
+ * Frees up one cache page.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @param pPool The pool.
+ * @param iUser The user index.
+ */
+static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
+{
+#ifndef IN_RC
+ const PVM pVM = pPool->CTX_SUFF(pVM);
+#endif
+ Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
+ STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
+
+ /*
+ * Select one page from the tail of the age list.
+ */
+ PPGMPOOLPAGE pPage;
+ for (unsigned iLoop = 0; ; iLoop++)
+ {
+ uint16_t iToFree = pPool->iAgeTail;
+ if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX)
+ iToFree = pPool->aPages[iToFree].iAgePrev;
+/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
+ if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
+ {
+ uint16_t i = pPool->aPages[iToFree].iAgePrev;
+ for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
+ {
+ if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
+ continue;
+ iToFree = i;
+ break;
+ }
+ }
+*/
+ Assert(iToFree != iUser);
+ AssertRelease(iToFree != NIL_PGMPOOL_IDX);
+ pPage = &pPool->aPages[iToFree];
+
+ /*
+ * Reject any attempts at flushing the currently active shadow CR3 mapping.
+ * Call pgmPoolCacheUsed to move the page to the head of the age list.
+ */
+ if ( !pgmPoolIsPageLocked(pPage)
+ && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */)
+ break;
+ LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
+ pgmPoolCacheUsed(pPool, pPage);
+ AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS);
+ }
+
+ /*
+ * Found a usable page, flush it and return.
+ */
+ int rc = pgmPoolFlushPage(pPool, pPage);
+ /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
+ /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
+ if (rc == VINF_SUCCESS)
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+ return rc;
+}
+
+
+/**
+ * Checks if a kind mismatch is really a page being reused
+ * or if it's just normal remappings.
+ *
+ * @returns true if reused and the cached page (enmKind1) should be flushed
+ * @returns false if not reused.
+ * @param enmKind1 The kind of the cached page.
+ * @param enmKind2 The kind of the requested page.
+ */
+static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
+{
+ switch (enmKind1)
+ {
+ /*
+ * Never reuse them. There is no remapping in non-paging mode.
+ */
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
+ return false;
+
+ /*
+ * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
+ */
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PDPT:
+ switch (enmKind2)
+ {
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ return true;
+ default:
+ return false;
+ }
+
+ /*
+ * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
+ */
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ switch (enmKind2)
+ {
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ return true;
+ default:
+ return false;
+ }
+
+ /*
+ * These cannot be flushed, and it's common to reuse the PDs as PTs.
+ */
+ case PGMPOOLKIND_ROOT_NESTED:
+ return false;
+
+ default:
+ AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
+ }
+}
+
+
+/**
+ * Attempts to satisfy a pgmPoolAlloc request from the cache.
+ *
+ * @returns VBox status code.
+ * @retval VINF_PGM_CACHED_PAGE on success.
+ * @retval VERR_FILE_NOT_FOUND if not found.
+ * @param pPool The pool.
+ * @param GCPhys The GC physical address of the page we're gonna shadow.
+ * @param enmKind The kind of mapping.
+ * @param enmAccess Access type for the mapping (only relevant for big pages)
+ * @param fA20Enabled Whether the CPU has the A20 gate enabled.
+ * @param iUser The shadow page pool index of the user table. This is
+ * NIL_PGMPOOL_IDX for root pages.
+ * @param iUserTable The index into the user table (shadowed). Ignored if
+ * root page
+ * @param ppPage Where to store the pointer to the page.
+ */
+static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
+ uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
+{
+ /*
+ * Look up the GCPhys in the hash.
+ */
+ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
+ Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
+ if (i != NIL_PGMPOOL_IDX)
+ {
+ do
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+ Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
+ if (pPage->GCPhys == GCPhys)
+ {
+ if ( (PGMPOOLKIND)pPage->enmKind == enmKind
+ && (PGMPOOLACCESS)pPage->enmAccess == enmAccess
+ && pPage->fA20Enabled == fA20Enabled)
+ {
+ /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
+ * doesn't flush it in case there are no more free use records.
+ */
+ pgmPoolCacheUsed(pPool, pPage);
+
+ int rc = VINF_SUCCESS;
+ if (iUser != NIL_PGMPOOL_IDX)
+ rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
+ if (RT_SUCCESS(rc))
+ {
+ Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
+ *ppPage = pPage;
+ if (pPage->cModifications)
+ pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
+ STAM_COUNTER_INC(&pPool->StatCacheHits);
+ return VINF_PGM_CACHED_PAGE;
+ }
+ return rc;
+ }
+
+ if ((PGMPOOLKIND)pPage->enmKind != enmKind)
+ {
+ /*
+ * The kind is different. In some cases we should now flush the page
+ * as it has been reused, but in most cases this is normal remapping
+ * of PDs as PT or big pages using the GCPhys field in a slightly
+ * different way than the other kinds.
+ */
+ if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
+ {
+ STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
+ pgmPoolFlushPage(pPool, pPage);
+ break;
+ }
+ }
+ }
+
+ /* next */
+ i = pPage->iNext;
+ } while (i != NIL_PGMPOOL_IDX);
+ }
+
+ Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
+ STAM_COUNTER_INC(&pPool->StatCacheMisses);
+ return VERR_FILE_NOT_FOUND;
+}
+
+
+/**
+ * Inserts a page into the cache.
+ *
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
+ */
+static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
+{
+ /*
+ * Insert into the GCPhys hash if the page is fit for that.
+ */
+ Assert(!pPage->fCached);
+ if (fCanBeCached)
+ {
+ pPage->fCached = true;
+ pgmPoolHashInsert(pPool, pPage);
+ Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
+ pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
+ STAM_COUNTER_INC(&pPool->StatCacheCacheable);
+ }
+ else
+ {
+ Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
+ pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
+ STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
+ }
+
+ /*
+ * Insert at the head of the age list.
+ */
+ pPage->iAgePrev = NIL_PGMPOOL_IDX;
+ pPage->iAgeNext = pPool->iAgeHead;
+ if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
+ pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
+ else
+ pPool->iAgeTail = pPage->idx;
+ pPool->iAgeHead = pPage->idx;
+}
+
+
+/**
+ * Flushes a cached page.
+ *
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ */
+static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
+
+ /*
+ * Remove the page from the hash.
+ */
+ if (pPage->fCached)
+ {
+ pPage->fCached = false;
+ pgmPoolHashRemove(pPool, pPage);
+ }
+ else
+ Assert(pPage->iNext == NIL_PGMPOOL_IDX);
+
+ /*
+ * Remove it from the age list.
+ */
+ if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
+ pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
+ else
+ pPool->iAgeTail = pPage->iAgePrev;
+ if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
+ pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
+ else
+ pPool->iAgeHead = pPage->iAgeNext;
+ pPage->iAgeNext = NIL_PGMPOOL_IDX;
+ pPage->iAgePrev = NIL_PGMPOOL_IDX;
+}
+
+
+/**
+ * Looks for pages sharing the monitor.
+ *
+ * @returns Pointer to the head page.
+ * @returns NULL if not found.
+ * @param pPool The Pool
+ * @param pNewPage The page which is going to be monitored.
+ */
+static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
+{
+ /*
+ * Look up the GCPhys in the hash.
+ */
+ RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
+ if (i == NIL_PGMPOOL_IDX)
+ return NULL;
+ do
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+ if ( pPage->GCPhys - GCPhys < PAGE_SIZE
+ && pPage != pNewPage)
+ {
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PDPT:
+ {
+ /* find the head */
+ while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ {
+ Assert(pPage->iMonitoredPrev != pPage->idx);
+ pPage = &pPool->aPages[pPage->iMonitoredPrev];
+ }
+ return pPage;
+ }
+
+ /* ignore, no monitoring. */
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ break;
+ default:
+ AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
+ }
+ }
+
+ /* next */
+ i = pPage->iNext;
+ } while (i != NIL_PGMPOOL_IDX);
+ return NULL;
+}
+
+
+/**
+ * Enabled write monitoring of a guest page.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ */
+static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK));
+
+ /*
+ * Filter out the relevant kinds.
+ */
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PDPT:
+ break;
+
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_ROOT_NESTED:
+ /* Nothing to monitor here. */
+ return VINF_SUCCESS;
+
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ /* Nothing to monitor here. */
+ return VINF_SUCCESS;
+ default:
+ AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
+ }
+
+ /*
+ * Install handler.
+ */
+ int rc;
+ PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
+ if (pPageHead)
+ {
+ Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
+ Assert(pPageHead->iMonitoredPrev != pPage->idx);
+
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (pPageHead->fDirty)
+ pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */);
+#endif
+
+ pPage->iMonitoredPrev = pPageHead->idx;
+ pPage->iMonitoredNext = pPageHead->iMonitoredNext;
+ if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
+ pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
+ pPageHead->iMonitoredNext = pPage->idx;
+ rc = VINF_SUCCESS;
+ }
+ else
+ {
+ Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+ rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType,
+ MMHyperCCToR3(pVM, pPage), MMHyperCCToR0(pVM, pPage), MMHyperCCToRC(pVM, pPage),
+ NIL_RTR3PTR /*pszDesc*/);
+ /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
+ * the heap size should suffice. */
+ AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
+ }
+ pPage->fMonitored = true;
+ return rc;
+}
+
+
+/**
+ * Disables write monitoring of a guest page.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ */
+static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ /*
+ * Filter out the relevant kinds.
+ */
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PDPT:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ break;
+
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ /* Nothing to monitor here. */
+ Assert(!pPage->fMonitored);
+ return VINF_SUCCESS;
+
+ default:
+ AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
+ }
+ Assert(pPage->fMonitored);
+
+ /*
+ * Remove the page from the monitored list or uninstall it if last.
+ */
+ const PVM pVM = pPool->CTX_SUFF(pVM);
+ int rc;
+ if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
+ || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
+ {
+ if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
+ {
+ PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
+ pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
+ rc = PGMHandlerPhysicalChangeUserArgs(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK, MMHyperCCToR3(pVM, pNewHead),
+ MMHyperCCToR0(pVM, pNewHead), MMHyperCCToRC(pVM, pNewHead));
+
+ AssertFatalRCSuccess(rc);
+ pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
+ }
+ else
+ {
+ pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
+ if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
+ {
+ pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
+ pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
+ }
+ pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
+ rc = VINF_SUCCESS;
+ }
+ }
+ else
+ {
+ rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
+ AssertFatalRC(rc);
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
+ ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
+ }
+ pPage->fMonitored = false;
+
+ /*
+ * Remove it from the list of modified pages (if in it).
+ */
+ pgmPoolMonitorModifiedRemove(pPool, pPage);
+
+ return rc;
+}
+
+
+/**
+ * Inserts the page into the list of modified pages.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ */
+void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
+ AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
+ && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
+ && pPool->iModifiedHead != pPage->idx,
+ ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
+ pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
+ pPool->iModifiedHead, pPool->cModifiedPages));
+
+ pPage->iModifiedNext = pPool->iModifiedHead;
+ if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
+ pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
+ pPool->iModifiedHead = pPage->idx;
+ pPool->cModifiedPages++;
+#ifdef VBOX_WITH_STATISTICS
+ if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
+ pPool->cModifiedPagesHigh = pPool->cModifiedPages;
+#endif
+}
+
+
+/**
+ * Removes the page from the list of modified pages and resets the
+ * modification counter.
+ *
+ * @param pPool The pool.
+ * @param pPage The page which is believed to be in the list of modified pages.
+ */
+static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
+ if (pPool->iModifiedHead == pPage->idx)
+ {
+ Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
+ pPool->iModifiedHead = pPage->iModifiedNext;
+ if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
+ {
+ pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ }
+ pPool->cModifiedPages--;
+ }
+ else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
+ {
+ pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
+ if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
+ {
+ pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ }
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPool->cModifiedPages--;
+ }
+ else
+ Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
+ pPage->cModifications = 0;
+}
+
+
+/**
+ * Zaps the list of modified pages, resetting their modification counters in the process.
+ *
+ * @param pVM The cross context VM structure.
+ */
+static void pgmPoolMonitorModifiedClearAll(PVM pVM)
+{
+ pgmLock(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
+
+ unsigned cPages = 0; NOREF(cPages);
+
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ pgmPoolResetDirtyPages(pVM);
+#endif
+
+ uint16_t idx = pPool->iModifiedHead;
+ pPool->iModifiedHead = NIL_PGMPOOL_IDX;
+ while (idx != NIL_PGMPOOL_IDX)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[idx];
+ idx = pPage->iModifiedNext;
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->cModifications = 0;
+ Assert(++cPages);
+ }
+ AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
+ pPool->cModifiedPages = 0;
+ pgmUnlock(pVM);
+}
+
+
+/**
+ * Handle SyncCR3 pool tasks
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if successfully added.
+ * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
+ * @param pVCpu The cross context virtual CPU structure.
+ * @remark Should only be used when monitoring is available, thus placed in
+ * the PGMPOOL_WITH_MONITORING \#ifdef.
+ */
+int pgmPoolSyncCR3(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags));
+
+ /*
+ * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
+ * Occasionally we will have to clear all the shadow page tables because we wanted
+ * to monitor a page which was mapped by too many shadowed page tables. This operation
+ * sometimes referred to as a 'lightweight flush'.
+ */
+# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
+ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
+ pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/);
+# else /* !IN_RING3 */
+ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
+ {
+ Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
+
+ /* Make sure all other VCPUs return to ring 3. */
+ if (pVM->cCpus > 1)
+ {
+ VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+ }
+ return VINF_PGM_SYNC_CR3;
+ }
+# endif /* !IN_RING3 */
+ else
+ {
+ pgmPoolMonitorModifiedClearAll(pVM);
+
+ /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
+ if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
+ {
+ Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
+ return pgmPoolSyncCR3(pVCpu);
+ }
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Frees up at least one user entry.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if successfully added.
+ *
+ * @param pPool The pool.
+ * @param iUser The user index.
+ */
+static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
+{
+ STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
+ /*
+ * Just free cached pages in a braindead fashion.
+ */
+ /** @todo walk the age list backwards and free the first with usage. */
+ int rc = VINF_SUCCESS;
+ do
+ {
+ int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
+ if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
+ rc = rc2;
+ } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
+ return rc;
+}
+
+
+/**
+ * Inserts a page into the cache.
+ *
+ * This will create user node for the page, insert it into the GCPhys
+ * hash, and insert it into the age list.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if successfully added.
+ *
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ * @param GCPhys The GC physical address of the page we're gonna shadow.
+ * @param iUser The user index.
+ * @param iUserTable The user table index.
+ */
+DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
+{
+ int rc = VINF_SUCCESS;
+ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
+
+ LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys);
+
+ if (iUser != NIL_PGMPOOL_IDX)
+ {
+#ifdef VBOX_STRICT
+ /*
+ * Check that the entry doesn't already exists.
+ */
+ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
+ {
+ uint16_t i = pPage->iUserHead;
+ do
+ {
+ Assert(i < pPool->cMaxUsers);
+ AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
+ i = paUsers[i].iNext;
+ } while (i != NIL_PGMPOOL_USER_INDEX);
+ }
+#endif
+
+ /*
+ * Find free a user node.
+ */
+ uint16_t i = pPool->iUserFreeHead;
+ if (i == NIL_PGMPOOL_USER_INDEX)
+ {
+ rc = pgmPoolTrackFreeOneUser(pPool, iUser);
+ if (RT_FAILURE(rc))
+ return rc;
+ i = pPool->iUserFreeHead;
+ }
+
+ /*
+ * Unlink the user node from the free list,
+ * initialize and insert it into the user list.
+ */
+ pPool->iUserFreeHead = paUsers[i].iNext;
+ paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
+ paUsers[i].iUser = iUser;
+ paUsers[i].iUserTable = iUserTable;
+ pPage->iUserHead = i;
+ }
+ else
+ pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
+
+
+ /*
+ * Insert into cache and enable monitoring of the guest page if enabled.
+ *
+ * Until we implement caching of all levels, including the CR3 one, we'll
+ * have to make sure we don't try monitor & cache any recursive reuse of
+ * a monitored CR3 page. Because all windows versions are doing this we'll
+ * have to be able to do combined access monitoring, CR3 + PT and
+ * PD + PT (guest PAE).
+ *
+ * Update:
+ * We're now cooperating with the CR3 monitor if an uncachable page is found.
+ */
+ const bool fCanBeMonitored = true;
+ pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
+ if (fCanBeMonitored)
+ {
+ rc = pgmPoolMonitorInsert(pPool, pPage);
+ AssertRC(rc);
+ }
+ return rc;
+}
+
+
+/**
+ * Adds a user reference to a page.
+ *
+ * This will move the page to the head of the
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if successfully added.
+ *
+ * @param pPool The pool.
+ * @param pPage The cached page.
+ * @param iUser The user index.
+ * @param iUserTable The user table.
+ */
+static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
+{
+ Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable));
+ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
+ Assert(iUser != NIL_PGMPOOL_IDX);
+
+# ifdef VBOX_STRICT
+ /*
+ * Check that the entry doesn't already exists. We only allow multiple
+ * users of top-level paging structures (SHW_POOL_ROOT_IDX).
+ */
+ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
+ {
+ uint16_t i = pPage->iUserHead;
+ do
+ {
+ Assert(i < pPool->cMaxUsers);
+ /** @todo this assertion looks odd... Shouldn't it be && here? */
+ AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
+ i = paUsers[i].iNext;
+ } while (i != NIL_PGMPOOL_USER_INDEX);
+ }
+# endif
+
+ /*
+ * Allocate a user node.
+ */
+ uint16_t i = pPool->iUserFreeHead;
+ if (i == NIL_PGMPOOL_USER_INDEX)
+ {
+ int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
+ if (RT_FAILURE(rc))
+ return rc;
+ i = pPool->iUserFreeHead;
+ }
+ pPool->iUserFreeHead = paUsers[i].iNext;
+
+ /*
+ * Initialize the user node and insert it.
+ */
+ paUsers[i].iNext = pPage->iUserHead;
+ paUsers[i].iUser = iUser;
+ paUsers[i].iUserTable = iUserTable;
+ pPage->iUserHead = i;
+
+# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (pPage->fDirty)
+ pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */);
+# endif
+
+ /*
+ * Tell the cache to update its replacement stats for this page.
+ */
+ pgmPoolCacheUsed(pPool, pPage);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Frees a user record associated with a page.
+ *
+ * This does not clear the entry in the user table, it simply replaces the
+ * user record to the chain of free records.
+ *
+ * @param pPool The pool.
+ * @param pPage The shadow page.
+ * @param iUser The shadow page pool index of the user table.
+ * @param iUserTable The index into the user table (shadowed).
+ *
+ * @remarks Don't call this for root pages.
+ */
+static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
+{
+ Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
+ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
+ Assert(iUser != NIL_PGMPOOL_IDX);
+
+ /*
+ * Unlink and free the specified user entry.
+ */
+
+ /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
+ uint16_t i = pPage->iUserHead;
+ if ( i != NIL_PGMPOOL_USER_INDEX
+ && paUsers[i].iUser == iUser
+ && paUsers[i].iUserTable == iUserTable)
+ {
+ pPage->iUserHead = paUsers[i].iNext;
+
+ paUsers[i].iUser = NIL_PGMPOOL_IDX;
+ paUsers[i].iNext = pPool->iUserFreeHead;
+ pPool->iUserFreeHead = i;
+ return;
+ }
+
+ /* General: Linear search. */
+ uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
+ while (i != NIL_PGMPOOL_USER_INDEX)
+ {
+ if ( paUsers[i].iUser == iUser
+ && paUsers[i].iUserTable == iUserTable)
+ {
+ if (iPrev != NIL_PGMPOOL_USER_INDEX)
+ paUsers[iPrev].iNext = paUsers[i].iNext;
+ else
+ pPage->iUserHead = paUsers[i].iNext;
+
+ paUsers[i].iUser = NIL_PGMPOOL_IDX;
+ paUsers[i].iNext = pPool->iUserFreeHead;
+ pPool->iUserFreeHead = i;
+ return;
+ }
+ iPrev = i;
+ i = paUsers[i].iNext;
+ }
+
+ /* Fatal: didn't find it */
+ AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n",
+ iUser, iUserTable, pPage->GCPhys));
+}
+
+
+#if 0 /* unused */
+/**
+ * Gets the entry size of a shadow table.
+ *
+ * @param enmKind The kind of page.
+ *
+ * @returns The size of the entry in bytes. That is, 4 or 8.
+ * @returns If the kind is not for a table, an assertion is raised and 0 is
+ * returned.
+ */
+DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
+{
+ switch (enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ return 4;
+
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_PAE_PDPT:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ return 8;
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
+ }
+}
+#endif /* unused */
+
+#if 0 /* unused */
+/**
+ * Gets the entry size of a guest table.
+ *
+ * @param enmKind The kind of page.
+ *
+ * @returns The size of the entry in bytes. That is, 0, 4 or 8.
+ * @returns If the kind is not for a table, an assertion is raised and 0 is
+ * returned.
+ */
+DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
+{
+ switch (enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ return 4;
+
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_PAE_PDPT:
+ return 8;
+
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ /** @todo can we return 0? (nobody is calling this...) */
+ AssertFailed();
+ return 0;
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
+ }
+}
+#endif /* unused */
+
+
+/**
+ * Checks one shadow page table entry for a mapping of a physical page.
+ *
+ * @returns true / false indicating removal of all relevant PTEs
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPhysPage The guest page in question.
+ * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
+ * @param iShw The shadow page table.
+ * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown
+ */
+static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte)
+{
+ LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte));
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ bool fRet = false;
+
+ /*
+ * Assert sanity.
+ */
+ Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE);
+ AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
+ PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
+
+ /*
+ * Then, clear the actual mappings to the page in the shadow PT.
+ */
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ {
+ const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
+ PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ uint32_t u32AndMask = 0;
+ uint32_t u32OrMask = 0;
+
+ if (!fFlushPTEs)
+ {
+ switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
+ {
+ case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
+ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
+ u32OrMask = X86_PTE_RW;
+ u32AndMask = UINT32_MAX;
+ fRet = true;
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
+ break;
+
+ case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
+ u32OrMask = 0;
+ u32AndMask = ~X86_PTE_RW;
+ fRet = true;
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
+ break;
+ default:
+ /* (shouldn't be here, will assert below) */
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+ break;
+ }
+ }
+ else
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+
+ /* Update the counter if we're removing references. */
+ if (!u32AndMask)
+ {
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ }
+
+ if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
+ {
+ X86PTE Pte;
+
+ Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte]));
+ Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask;
+ if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
+ Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
+
+ ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
+ return fRet;
+ }
+#ifdef LOG_ENABLED
+ Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
+ if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
+ {
+ Log(("i=%d cFound=%d\n", i, ++cFound));
+ }
+#endif
+ AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind));
+ /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */
+ {
+ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
+ PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ uint64_t u64OrMask = 0;
+ uint64_t u64AndMask = 0;
+
+ if (!fFlushPTEs)
+ {
+ switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
+ {
+ case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
+ case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
+ u64OrMask = X86_PTE_RW;
+ u64AndMask = UINT64_MAX;
+ fRet = true;
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
+ break;
+
+ case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
+ u64OrMask = 0;
+ u64AndMask = ~(uint64_t)X86_PTE_RW;
+ fRet = true;
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
+ break;
+
+ default:
+ /* (shouldn't be here, will assert below) */
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+ break;
+ }
+ }
+ else
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+
+ /* Update the counter if we're removing references. */
+ if (!u64AndMask)
+ {
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ }
+
+ if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
+ {
+ X86PTEPAE Pte;
+
+ Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
+ Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask;
+ if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
+ Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */
+
+ PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
+ return fRet;
+ }
+#ifdef LOG_ENABLED
+ Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64));
+ for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
+ if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
+ Log(("i=%d cFound=%d\n", i, ++cFound));
+#endif
+ AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
+ /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
+ break;
+ }
+
+#ifdef PGM_WITH_LARGE_PAGES
+ /* Large page case only. */
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ {
+ Assert(pVM->pgm.s.fNestedPaging);
+
+ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
+ PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+
+ if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
+ {
+ Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+ pPD->a[iPte].u = 0;
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
+
+ /* Update the counter as we're removing references. */
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+
+ return fRet;
+ }
+# ifdef LOG_ENABLED
+ Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
+ if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
+ Log(("i=%d cFound=%d\n", i, ++cFound));
+# endif
+ AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
+ break;
+ }
+
+ /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ {
+ Assert(pVM->pgm.s.fNestedPaging);
+
+ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
+ PX86PD pPD = (PX86PD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+
+ if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
+ {
+ Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
+ STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
+ pPD->a[iPte].u = 0;
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
+
+ /* Update the counter as we're removing references. */
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ return fRet;
+ }
+# ifdef LOG_ENABLED
+ Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
+ if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
+ Log(("i=%d cFound=%d\n", i, ++cFound));
+# endif
+ AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
+ /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
+ break;
+ }
+#endif /* PGM_WITH_LARGE_PAGES */
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
+ }
+
+ /* not reached. */
+#ifndef _MSC_VER
+ return fRet;
+#endif
+}
+
+
+/**
+ * Scans one shadow page table for mappings of a physical page.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPhysPage The guest page in question.
+ * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
+ * @param iShw The shadow page table.
+ */
+static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
+
+ /* We should only come here with when there's only one reference to this physical page. */
+ Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
+
+ Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw));
+ STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
+ bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage));
+ if (!fKeptPTEs)
+ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
+ STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
+}
+
+
+/**
+ * Flushes a list of shadow page tables mapping the same physical page.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPhysPage The guest page in question.
+ * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
+ * @param iPhysExt The physical cross reference extent list to flush.
+ */
+static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ bool fKeepList = false;
+
+ STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
+ Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
+
+ const uint16_t iPhysExtStart = iPhysExt;
+ PPGMPOOLPHYSEXT pPhysExt;
+ do
+ {
+ Assert(iPhysExt < pPool->cMaxPhysExts);
+ pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
+ for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
+ {
+ if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
+ {
+ bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]);
+ if (!fKeptPTEs)
+ {
+ pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
+ pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+ else
+ fKeepList = true;
+ }
+ }
+ /* next */
+ iPhysExt = pPhysExt->iNext;
+ } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
+
+ if (!fKeepList)
+ {
+ /* insert the list into the free list and clear the ram range entry. */
+ pPhysExt->iNext = pPool->iPhysExtFreeHead;
+ pPool->iPhysExtFreeHead = iPhysExtStart;
+ /* Invalidate the tracking data. */
+ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
+ }
+
+ STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
+}
+
+
+/**
+ * Flushes all shadow page table mappings of the given guest page.
+ *
+ * This is typically called when the host page backing the guest one has been
+ * replaced or when the page protection was changed due to a guest access
+ * caught by the monitoring.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if all references has been successfully cleared.
+ * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
+ * pool cleaning. FF and sync flags are set.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhysPage GC physical address of the page in question
+ * @param pPhysPage The guest page in question.
+ * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
+ * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
+ * flushed, it is NOT touched if this isn't necessary.
+ * The caller MUST initialized this to @a false.
+ */
+int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
+{
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ pgmLock(pVM);
+ int rc = VINF_SUCCESS;
+
+#ifdef PGM_WITH_LARGE_PAGES
+ /* Is this page part of a large page? */
+ if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
+ {
+ RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
+ GCPhysPage &= X86_PDE_PAE_PG_MASK;
+
+ /* Fetch the large page base. */
+ PPGMPAGE pLargePage;
+ if (GCPhysBase != GCPhysPage)
+ {
+ pLargePage = pgmPhysGetPage(pVM, GCPhysBase);
+ AssertFatal(pLargePage);
+ }
+ else
+ pLargePage = pPhysPage;
+
+ Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
+
+ if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE)
+ {
+ /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
+ PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
+ pVM->pgm.s.cLargePagesDisabled++;
+
+ /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
+ rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs);
+
+ *pfFlushTLBs = true;
+ pgmUnlock(pVM);
+ return rc;
+ }
+ }
+#else
+ NOREF(GCPhysPage);
+#endif /* PGM_WITH_LARGE_PAGES */
+
+ const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
+ if (u16)
+ {
+ /*
+ * The zero page is currently screwing up the tracking and we'll
+ * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
+ * is defined, zero pages won't normally be mapped. Some kind of solution
+ * will be needed for this problem of course, but it will have to wait...
+ */
+ if ( PGM_PAGE_IS_ZERO(pPhysPage)
+ || PGM_PAGE_IS_BALLOONED(pPhysPage))
+ rc = VINF_PGM_GCPHYS_ALIASED;
+ else
+ {
+# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) /** @todo we can drop this now. */
+ /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
+ pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
+ uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
+# endif
+
+ if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
+ {
+ Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
+ pgmPoolTrackFlushGCPhysPT(pVM,
+ pPhysPage,
+ fFlushPTEs,
+ PGMPOOL_TD_GET_IDX(u16));
+ }
+ else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
+ pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
+ else
+ rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
+ *pfFlushTLBs = true;
+
+# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
+# endif
+ }
+ }
+
+ if (rc == VINF_PGM_GCPHYS_ALIASED)
+ {
+ pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ rc = VINF_PGM_SYNC_CR3;
+ }
+ pgmUnlock(pVM);
+ return rc;
+}
+
+
+/**
+ * Scans all shadow page tables for mappings of a physical page.
+ *
+ * This may be slow, but it's most likely more efficient than cleaning
+ * out the entire page pool / cache.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if all references has been successfully cleared.
+ * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
+ * a page pool cleaning.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPhysPage The guest page in question.
+ */
+int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
+ LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
+ pPool->cUsedPages, pPool->cPresent, pPhysPage));
+
+ /*
+ * There is a limit to what makes sense.
+ */
+ if ( pPool->cPresent > 1024
+ && pVM->cCpus == 1)
+ {
+ LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
+ STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
+ return VINF_PGM_GCPHYS_ALIASED;
+ }
+
+ /*
+ * Iterate all the pages until we've encountered all that in use.
+ * This is simple but not quite optimal solution.
+ */
+ const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; /** @todo drop X86_PTE_P here as we always test if present separately, anyway. */
+ const uint32_t u32 = u64; /** @todo move into the 32BIT_PT_xx case */
+ unsigned cLeft = pPool->cUsedPages;
+ unsigned iPage = pPool->cCurPages;
+ while (--iPage >= PGMPOOL_IDX_FIRST)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
+ if ( pPage->GCPhys != NIL_RTGCPHYS
+ && pPage->cPresent)
+ {
+ switch (pPage->enmKind)
+ {
+ /*
+ * We only care about shadow page tables.
+ */
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ {
+ unsigned cPresent = pPage->cPresent;
+ PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
+ if (pPT->a[i].n.u1Present)
+ {
+ if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
+ {
+ //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
+ pPT->a[i].u = 0;
+
+ /* Update the counter as we're removing references. */
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ }
+ if (!--cPresent)
+ break;
+ }
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ {
+ unsigned cPresent = pPage->cPresent;
+ PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
+ if (PGMSHWPTEPAE_IS_P(pPT->a[i]))
+ {
+ if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
+ {
+ //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
+ PGMSHWPTEPAE_SET(pPT->a[i], 0); /// @todo why not atomic?
+
+ /* Update the counter as we're removing references. */
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ }
+ if (!--cPresent)
+ break;
+ }
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
+ break;
+ }
+#ifndef IN_RC
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ {
+ unsigned cPresent = pPage->cPresent;
+ PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
+ if (pPT->a[i].n.u1Present)
+ {
+ if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
+ {
+ //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
+ pPT->a[i].u = 0;
+
+ /* Update the counter as we're removing references. */
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ }
+ if (!--cPresent)
+ break;
+ }
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
+ break;
+ }
+#endif
+ }
+ if (!--cLeft)
+ break;
+ }
+ }
+
+ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
+ STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
+
+ /*
+ * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush.
+ */
+ if (pPool->cPresent > 1024)
+ {
+ LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
+ return VINF_PGM_GCPHYS_ALIASED;
+ }
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Clears the user entry in a user table.
+ *
+ * This is used to remove all references to a page when flushing it.
+ */
+static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
+{
+ Assert(pUser->iUser != NIL_PGMPOOL_IDX);
+ Assert(pUser->iUser < pPool->cCurPages);
+ uint32_t iUserTable = pUser->iUserTable;
+
+ /*
+ * Map the user page. Ignore references made by fictitious pages.
+ */
+ PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
+ LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
+ union
+ {
+ uint64_t *pau64;
+ uint32_t *pau32;
+ } u;
+ if (pUserPage->idx < PGMPOOL_IDX_FIRST)
+ {
+ Assert(!pUserPage->pvPageR3);
+ return;
+ }
+ u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
+
+
+ /* Safety precaution in case we change the paging for other modes too in the future. */
+ Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage);
+
+#ifdef VBOX_STRICT
+ /*
+ * Some sanity checks.
+ */
+ switch (pUserPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ Assert(iUserTable < X86_PG_ENTRIES);
+ break;
+ case PGMPOOLKIND_PAE_PDPT:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ Assert(iUserTable < 4);
+ Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
+ break;
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ break;
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
+ break;
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
+ break;
+ case PGMPOOLKIND_64BIT_PML4:
+ Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
+ /* GCPhys >> PAGE_SHIFT is the index here */
+ break;
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ break;
+
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ break;
+
+ case PGMPOOLKIND_ROOT_NESTED:
+ Assert(iUserTable < X86_PG_PAE_ENTRIES);
+ break;
+
+ default:
+ AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
+ break;
+ }
+#endif /* VBOX_STRICT */
+
+ /*
+ * Clear the entry in the user page.
+ */
+ switch (pUserPage->enmKind)
+ {
+ /* 32-bit entries */
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ ASMAtomicWriteU32(&u.pau32[iUserTable], 0);
+ break;
+
+ /* 64-bit entries */
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+#ifdef IN_RC
+ /*
+ * In 32 bits PAE mode we *must* invalidate the TLB when changing a
+ * PDPT entry; the CPU fetches them only during cr3 load, so any
+ * non-present PDPT will continue to cause page faults.
+ */
+ ASMReloadCR3();
+#endif
+ RT_FALL_THRU();
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PDPT:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ ASMAtomicWriteU64(&u.pau64[iUserTable], 0);
+ break;
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
+ }
+ PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64);
+}
+
+
+/**
+ * Clears all users of a page.
+ */
+static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ /*
+ * Free all the user records.
+ */
+ LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
+
+ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
+ uint16_t i = pPage->iUserHead;
+ while (i != NIL_PGMPOOL_USER_INDEX)
+ {
+ /* Clear enter in user table. */
+ pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
+
+ /* Free it. */
+ const uint16_t iNext = paUsers[i].iNext;
+ paUsers[i].iUser = NIL_PGMPOOL_IDX;
+ paUsers[i].iNext = pPool->iUserFreeHead;
+ pPool->iUserFreeHead = i;
+
+ /* Next. */
+ i = iNext;
+ }
+ pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
+}
+
+
+/**
+ * Allocates a new physical cross reference extent.
+ *
+ * @returns Pointer to the allocated extent on success. NULL if we're out of them.
+ * @param pVM The cross context VM structure.
+ * @param piPhysExt Where to store the phys ext index.
+ */
+PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ uint16_t iPhysExt = pPool->iPhysExtFreeHead;
+ if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
+ {
+ STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
+ return NULL;
+ }
+ PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
+ pPool->iPhysExtFreeHead = pPhysExt->iNext;
+ pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
+ *piPhysExt = iPhysExt;
+ return pPhysExt;
+}
+
+
+/**
+ * Frees a physical cross reference extent.
+ *
+ * @param pVM The cross context VM structure.
+ * @param iPhysExt The extent to free.
+ */
+void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ Assert(iPhysExt < pPool->cMaxPhysExts);
+ PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
+ for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
+ {
+ pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
+ pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+ pPhysExt->iNext = pPool->iPhysExtFreeHead;
+ pPool->iPhysExtFreeHead = iPhysExt;
+}
+
+
+/**
+ * Frees a physical cross reference extent.
+ *
+ * @param pVM The cross context VM structure.
+ * @param iPhysExt The extent to free.
+ */
+void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+
+ const uint16_t iPhysExtStart = iPhysExt;
+ PPGMPOOLPHYSEXT pPhysExt;
+ do
+ {
+ Assert(iPhysExt < pPool->cMaxPhysExts);
+ pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
+ for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
+ {
+ pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
+ pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+
+ /* next */
+ iPhysExt = pPhysExt->iNext;
+ } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
+
+ pPhysExt->iNext = pPool->iPhysExtFreeHead;
+ pPool->iPhysExtFreeHead = iPhysExtStart;
+}
+
+
+/**
+ * Insert a reference into a list of physical cross reference extents.
+ *
+ * @returns The new tracking data for PGMPAGE.
+ *
+ * @param pVM The cross context VM structure.
+ * @param iPhysExt The physical extent index of the list head.
+ * @param iShwPT The shadow page table index.
+ * @param iPte Page table entry
+ *
+ */
+static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte)
+{
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
+
+ /*
+ * Special common cases.
+ */
+ if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX)
+ {
+ paPhysExts[iPhysExt].aidx[1] = iShwPT;
+ paPhysExts[iPhysExt].apte[1] = iPte;
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
+ LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
+ }
+ if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
+ {
+ paPhysExts[iPhysExt].aidx[2] = iShwPT;
+ paPhysExts[iPhysExt].apte[2] = iPte;
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
+ LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
+ }
+ AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3);
+
+ /*
+ * General treatment.
+ */
+ const uint16_t iPhysExtStart = iPhysExt;
+ unsigned cMax = 15;
+ for (;;)
+ {
+ Assert(iPhysExt < pPool->cMaxPhysExts);
+ for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
+ if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
+ {
+ paPhysExts[iPhysExt].aidx[i] = iShwPT;
+ paPhysExts[iPhysExt].apte[i] = iPte;
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany);
+ LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
+ }
+ if (!--cMax)
+ {
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackOverflows);
+ pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
+ LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
+ }
+
+ /* advance */
+ iPhysExt = paPhysExts[iPhysExt].iNext;
+ if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
+ break;
+ }
+
+ /*
+ * Add another extent to the list.
+ */
+ PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
+ if (!pNew)
+ {
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackNoExtentsLeft);
+ pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
+ LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
+ }
+ pNew->iNext = iPhysExtStart;
+ pNew->aidx[0] = iShwPT;
+ pNew->apte[0] = iPte;
+ LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart));
+ return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
+}
+
+
+/**
+ * Add a reference to guest physical page where extents are in use.
+ *
+ * @returns The new tracking data for PGMPAGE.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pPhysPage Pointer to the aPages entry in the ram range.
+ * @param u16 The ram range flags (top 16-bits).
+ * @param iShwPT The shadow page table index.
+ * @param iPte Page table entry
+ */
+uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte)
+{
+ pgmLock(pVM);
+ if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
+ {
+ /*
+ * Convert to extent list.
+ */
+ Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
+ uint16_t iPhysExt;
+ PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
+ if (pPhysExt)
+ {
+ LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliased);
+ pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
+ pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage);
+ pPhysExt->aidx[1] = iShwPT;
+ pPhysExt->apte[1] = iPte;
+ u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
+ }
+ else
+ u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
+ }
+ else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
+ {
+ /*
+ * Insert into the extent list.
+ */
+ u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte);
+ }
+ else
+ STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedLots);
+ pgmUnlock(pVM);
+ return u16;
+}
+
+
+/**
+ * Clear references to guest physical memory.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pPhysPage Pointer to the aPages entry in the ram range.
+ * @param iPte Shadow PTE index
+ */
+void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte)
+{
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
+ AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
+
+ uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
+ if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
+ {
+ pgmLock(pVM);
+
+ uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
+ PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
+ do
+ {
+ Assert(iPhysExt < pPool->cMaxPhysExts);
+
+ /*
+ * Look for the shadow page and check if it's all freed.
+ */
+ for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
+ {
+ if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx
+ && paPhysExts[iPhysExt].apte[i] == iPte)
+ {
+ paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
+ paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+
+ for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
+ if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
+ {
+ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
+ pgmUnlock(pVM);
+ return;
+ }
+
+ /* we can free the node. */
+ const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
+ if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
+ && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
+ {
+ /* lonely node */
+ pgmPoolTrackPhysExtFree(pVM, iPhysExt);
+ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
+ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
+ }
+ else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
+ {
+ /* head */
+ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
+ PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
+ pgmPoolTrackPhysExtFree(pVM, iPhysExt);
+ }
+ else
+ {
+ /* in list */
+ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx));
+ paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
+ pgmPoolTrackPhysExtFree(pVM, iPhysExt);
+ }
+ iPhysExt = iPhysExtNext;
+ pgmUnlock(pVM);
+ return;
+ }
+ }
+
+ /* next */
+ iPhysExtPrev = iPhysExt;
+ iPhysExt = paPhysExts[iPhysExt].iNext;
+ } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
+
+ pgmUnlock(pVM);
+ AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
+ }
+ else /* nothing to do */
+ Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
+}
+
+/**
+ * Clear references to guest physical memory.
+ *
+ * This is the same as pgmPoolTracDerefGCPhysHint except that the guest
+ * physical address is assumed to be correct, so the linear search can be
+ * skipped and we can assert at an earlier point.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param HCPhys The host physical address corresponding to the guest page.
+ * @param GCPhys The guest physical address corresponding to HCPhys.
+ * @param iPte Shadow PTE index
+ */
+static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte)
+{
+ /*
+ * Lookup the page and check if it checks out before derefing it.
+ */
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys);
+ if (pPhysPage)
+ {
+ Assert(PGM_PAGE_GET_HCPHYS(pPhysPage));
+#ifdef LOG_ENABLED
+ RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage);
+ Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
+#endif
+ if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys)
+ {
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
+ return;
+ }
+
+ AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n",
+ HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage)));
+ }
+ AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
+}
+
+
+/**
+ * Clear references to guest physical memory.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param HCPhys The host physical address corresponding to the guest page.
+ * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
+ * @param iPte Shadow pte index
+ */
+void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte)
+{
+ Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
+
+ /*
+ * Try the hint first.
+ */
+ RTHCPHYS HCPhysHinted;
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint);
+ if (pPhysPage)
+ {
+ HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage);
+ Assert(HCPhysHinted);
+ if (HCPhysHinted == HCPhys)
+ {
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
+ return;
+ }
+ }
+ else
+ HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef);
+
+ /*
+ * Damn, the hint didn't work. We'll have to do an expensive linear search.
+ */
+ STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
+ PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
+ while (pRam)
+ {
+ unsigned iPage = pRam->cb >> PAGE_SHIFT;
+ while (iPage-- > 0)
+ {
+ if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
+ {
+ Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
+ HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
+ Assert(pPage->cPresent);
+ Assert(pPool->cPresent);
+ pPage->cPresent--;
+ pPool->cPresent--;
+ pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte);
+ return;
+ }
+ }
+ pRam = pRam->CTX_SUFF(pNext);
+ }
+
+ AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted));
+}
+
+
+/**
+ * Clear references to guest physical memory in a 32-bit / 32-bit page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ */
+DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
+{
+ RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ Assert(!(pShwPT->a[i].u & RT_BIT_32(10)));
+ if (pShwPT->a[i].n.u1Present)
+ {
+ Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
+ i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to guest physical memory in a PAE / 32-bit page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table (just a half one).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
+{
+ RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
+ || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
+ i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to guest physical memory in a PAE / PAE page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ * @param pGstPT The guest page table.
+ */
+DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
+{
+ RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20);
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
+ {
+ Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
+ || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
+ i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
+ pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to guest physical memory in a 32-bit / 4MB page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
+{
+ RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
+ RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
+ {
+ Assert(!(pShwPT->a[i].u & RT_BIT_32(10)));
+ if (pShwPT->a[i].n.u1Present)
+ {
+ Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
+ i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
+ pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to guest physical memory in a PAE / 2/4MB page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT)
+{
+ RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
+ RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
+ {
+ Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
+ || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
+ if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
+ {
+ Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
+ i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys));
+ pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in an EPT page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPT The shadow page directory pointer table (mapping of the
+ * page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
+{
+ RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
+ RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
+ for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
+ {
+ Assert((pShwPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
+ if (pShwPT->a[i].n.u1Present)
+ {
+ Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
+ i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
+ pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
+ if (!pPage->cPresent)
+ break;
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in a 32 bits page directory.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPD The shadow page directory (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
+ {
+ if ( pShwPD->a[i].n.u1Present
+ && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
+ )
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPD The shadow page directory (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
+ {
+ if ( pShwPD->a[i].n.u1Present
+ && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING))
+ {
+#ifdef PGM_WITH_LARGE_PAGES
+ if (pShwPD->a[i].b.u1Size)
+ {
+ Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
+ i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
+ pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK,
+ pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
+ i);
+ }
+ else
+#endif
+ {
+ Assert((pShwPD->a[i].u & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0);
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
+ /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
+ }
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in a PAE page directory pointer table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
+{
+ for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
+ {
+ Assert((pShwPDPT->a[i].u & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0);
+ if ( pShwPDPT->a[i].n.u1Present
+ && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
+ )
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in a 64-bit page directory pointer table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
+ {
+ Assert((pShwPDPT->a[i].u & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
+ if (pShwPDPT->a[i].n.u1Present)
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
+ /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in a 64-bit level 4 page table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
+ {
+ Assert((pShwPML4->a[i].u & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
+ if (pShwPML4->a[i].n.u1Present)
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
+ /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in an EPT page directory.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPD The shadow page directory (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
+ {
+ Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
+ if (pShwPD->a[i].n.u1Present)
+ {
+#ifdef PGM_WITH_LARGE_PAGES
+ if (pShwPD->a[i].b.u1Size)
+ {
+ Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
+ i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
+ pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK,
+ pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
+ i);
+ }
+ else
+#endif
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
+ }
+ /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
+ }
+ }
+}
+
+
+/**
+ * Clear references to shadowed pages in an EPT page directory pointer table.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
+ */
+DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
+{
+ for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
+ {
+ Assert((pShwPDPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
+ if (pShwPDPT->a[i].n.u1Present)
+ {
+ PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
+ if (pSubPage)
+ pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
+ else
+ AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
+ /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
+ }
+ }
+}
+
+
+/**
+ * Clears all references made by this page.
+ *
+ * This includes other shadow pages and GC physical addresses.
+ *
+ * @param pPool The pool.
+ * @param pPage The page.
+ */
+static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
+{
+ /*
+ * Map the shadow page and take action according to the page kind.
+ */
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ {
+ STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
+ void *pvGst;
+ int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+ STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ {
+ STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
+ void *pvGst;
+ int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+ STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ {
+ STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
+ void *pvGst;
+ int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
+ pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
+ STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
+ break;
+ }
+
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ {
+ STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
+ pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
+ STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ {
+ STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
+ pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw);
+ STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
+ break;
+ }
+
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
+ break;
+
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ case PGMPOOLKIND_32BIT_PD:
+ pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
+ break;
+
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ case PGMPOOLKIND_PAE_PDPT:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
+ break;
+
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
+ break;
+
+ case PGMPOOLKIND_64BIT_PML4:
+ pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
+ break;
+
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
+ break;
+
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
+ break;
+
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
+ break;
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
+ }
+
+ /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
+ STAM_PROFILE_START(&pPool->StatZeroPage, z);
+ ASMMemZeroPage(pvShw);
+ STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
+ pPage->fZeroed = true;
+ Assert(!pPage->cPresent);
+ PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
+}
+
+
+/**
+ * Flushes a pool page.
+ *
+ * This moves the page to the free list after removing all user references to it.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ * @param pPool The pool.
+ * @param pPage The shadow page.
+ * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
+ */
+int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
+{
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ bool fFlushRequired = false;
+
+ int rc = VINF_SUCCESS;
+ STAM_PROFILE_START(&pPool->StatFlushPage, f);
+ LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
+ pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
+
+ /*
+ * Reject any attempts at flushing any of the special root pages (shall
+ * not happen).
+ */
+ AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST,
+ ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n",
+ pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx),
+ VINF_SUCCESS);
+
+ pgmLock(pVM);
+
+ /*
+ * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
+ */
+ if (pgmPoolIsPageLocked(pPage))
+ {
+ AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
+ || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
+ || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
+ || pPage->enmKind == PGMPOOLKIND_32BIT_PD
+ || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
+ || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
+ || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
+ || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
+ || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD
+ || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED,
+ ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
+ Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
+ pgmUnlock(pVM);
+ return VINF_SUCCESS;
+ }
+
+#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ /* Start a subset so we won't run out of mapping space. */
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu);
+#endif
+
+ /*
+ * Mark the page as being in need of an ASMMemZeroPage().
+ */
+ pPage->fZeroed = false;
+
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (pPage->fDirty)
+ pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */);
+#endif
+
+ /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
+ if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
+ fFlushRequired = true;
+
+ /*
+ * Clear the page.
+ */
+ pgmPoolTrackClearPageUsers(pPool, pPage);
+ STAM_PROFILE_START(&pPool->StatTrackDeref,a);
+ pgmPoolTrackDeref(pPool, pPage);
+ STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
+
+ /*
+ * Flush it from the cache.
+ */
+ pgmPoolCacheFlushPage(pPool, pPage);
+
+#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
+ /* Heavy stuff done. */
+ PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset);
+#endif
+
+ /*
+ * Deregistering the monitoring.
+ */
+ if (pPage->fMonitored)
+ rc = pgmPoolMonitorFlush(pPool, pPage);
+
+ /*
+ * Free the page.
+ */
+ Assert(pPage->iNext == NIL_PGMPOOL_IDX);
+ pPage->iNext = pPool->iFreeHead;
+ pPool->iFreeHead = pPage->idx;
+ pPage->enmKind = PGMPOOLKIND_FREE;
+ pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
+ pPage->GCPhys = NIL_RTGCPHYS;
+ pPage->fReusedFlushPending = false;
+
+ pPool->cUsedPages--;
+
+ /* Flush the TLBs of all VCPUs if required. */
+ if ( fFlushRequired
+ && fFlush)
+ {
+ PGM_INVL_ALL_VCPU_TLBS(pVM);
+ }
+
+ pgmUnlock(pVM);
+ STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
+ return rc;
+}
+
+
+/**
+ * Frees a usage of a pool page.
+ *
+ * The caller is responsible to updating the user table so that it no longer
+ * references the shadow page.
+ *
+ * @param pPool The pool.
+ * @param pPage The shadow page.
+ * @param iUser The shadow page pool index of the user table.
+ * NIL_PGMPOOL_IDX for root pages.
+ * @param iUserTable The index into the user table (shadowed). Ignored if
+ * root page.
+ */
+void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
+{
+ PVM pVM = pPool->CTX_SUFF(pVM);
+
+ STAM_PROFILE_START(&pPool->StatFree, a);
+ LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n",
+ pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
+ AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */
+
+ pgmLock(pVM);
+ if (iUser != NIL_PGMPOOL_IDX)
+ pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
+ if (!pPage->fCached)
+ pgmPoolFlushPage(pPool, pPage);
+ pgmUnlock(pVM);
+ STAM_PROFILE_STOP(&pPool->StatFree, a);
+}
+
+
+/**
+ * Makes one or more free page free.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS on success.
+ *
+ * @param pPool The pool.
+ * @param enmKind Page table kind
+ * @param iUser The user of the page.
+ */
+static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
+{
+ PVM pVM = pPool->CTX_SUFF(pVM);
+ LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser));
+ NOREF(enmKind);
+
+ /*
+ * If the pool isn't full grown yet, expand it.
+ */
+ if ( pPool->cCurPages < pPool->cMaxPages
+#if defined(IN_RC)
+ /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
+ && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
+ && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
+#endif
+ )
+ {
+ STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
+#ifdef IN_RING3
+ int rc = PGMR3PoolGrow(pVM);
+#else
+ int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
+#endif
+ if (RT_FAILURE(rc))
+ return rc;
+ STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
+ if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
+ return VINF_SUCCESS;
+ }
+
+ /*
+ * Free one cached page.
+ */
+ return pgmPoolCacheFreeOne(pPool, iUser);
+}
+
+
+/**
+ * Allocates a page from the pool.
+ *
+ * This page may actually be a cached page and not in need of any processing
+ * on the callers part.
+ *
+ * @returns VBox status code.
+ * @retval VINF_SUCCESS if a NEW page was allocated.
+ * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys The GC physical address of the page we're gonna shadow.
+ * For 4MB and 2MB PD entries, it's the first address the
+ * shadow PT is covering.
+ * @param enmKind The kind of mapping.
+ * @param enmAccess Access type for the mapping (only relevant for big pages)
+ * @param fA20Enabled Whether the A20 gate is enabled or not.
+ * @param iUser The shadow page pool index of the user table. Root
+ * pages should pass NIL_PGMPOOL_IDX.
+ * @param iUserTable The index into the user table (shadowed). Ignored for
+ * root pages (iUser == NIL_PGMPOOL_IDX).
+ * @param fLockPage Lock the page
+ * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
+ */
+int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
+ uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
+ LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
+ *ppPage = NULL;
+ /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
+ * (TRPMR3SyncIDT) because of FF priority. Try fix that?
+ * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
+
+ pgmLock(pVM);
+
+ if (pPool->fCacheEnabled)
+ {
+ int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage);
+ if (RT_SUCCESS(rc2))
+ {
+ if (fLockPage)
+ pgmPoolLockPage(pPool, *ppPage);
+ pgmUnlock(pVM);
+ STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
+ LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
+ return rc2;
+ }
+ }
+
+ /*
+ * Allocate a new one.
+ */
+ int rc = VINF_SUCCESS;
+ uint16_t iNew = pPool->iFreeHead;
+ if (iNew == NIL_PGMPOOL_IDX)
+ {
+ rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
+ if (RT_FAILURE(rc))
+ {
+ pgmUnlock(pVM);
+ Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
+ STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
+ return rc;
+ }
+ iNew = pPool->iFreeHead;
+ AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_PGM_POOL_IPE);
+ }
+
+ /* unlink the free head */
+ PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
+ pPool->iFreeHead = pPage->iNext;
+ pPage->iNext = NIL_PGMPOOL_IDX;
+
+ /*
+ * Initialize it.
+ */
+ pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
+ pPage->enmKind = enmKind;
+ pPage->enmAccess = enmAccess;
+ pPage->GCPhys = GCPhys;
+ pPage->fA20Enabled = fA20Enabled;
+ pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
+ pPage->fMonitored = false;
+ pPage->fCached = false;
+ pPage->fDirty = false;
+ pPage->fReusedFlushPending = false;
+ pPage->cModifications = 0;
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->cPresent = 0;
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ pPage->idxDirtyEntry = 0;
+ pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
+ pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
+ pPage->cLastAccessHandler = 0;
+ pPage->cLocked = 0;
+# ifdef VBOX_STRICT
+ pPage->GCPtrDirtyFault = NIL_RTGCPTR;
+# endif
+
+ /*
+ * Insert into the tracking and cache. If this fails, free the page.
+ */
+ int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
+ if (RT_FAILURE(rc3))
+ {
+ pPool->cUsedPages--;
+ pPage->enmKind = PGMPOOLKIND_FREE;
+ pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
+ pPage->GCPhys = NIL_RTGCPHYS;
+ pPage->iNext = pPool->iFreeHead;
+ pPool->iFreeHead = pPage->idx;
+ pgmUnlock(pVM);
+ STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
+ Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
+ return rc3;
+ }
+
+ /*
+ * Commit the allocation, clear the page and return.
+ */
+#ifdef VBOX_WITH_STATISTICS
+ if (pPool->cUsedPages > pPool->cUsedPagesHigh)
+ pPool->cUsedPagesHigh = pPool->cUsedPages;
+#endif
+
+ if (!pPage->fZeroed)
+ {
+ STAM_PROFILE_START(&pPool->StatZeroPage, z);
+ void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
+ ASMMemZeroPage(pv);
+ STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
+ }
+
+ *ppPage = pPage;
+ if (fLockPage)
+ pgmPoolLockPage(pPool, pPage);
+ pgmUnlock(pVM);
+ LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
+ rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
+ STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
+ return rc;
+}
+
+
+/**
+ * Frees a usage of a pool page.
+ *
+ * @param pVM The cross context VM structure.
+ * @param HCPhys The HC physical address of the shadow page.
+ * @param iUser The shadow page pool index of the user table.
+ * NIL_PGMPOOL_IDX if root page.
+ * @param iUserTable The index into the user table (shadowed). Ignored if
+ * root page.
+ */
+void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
+{
+ LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable));
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+ pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
+}
+
+
+/**
+ * Internal worker for finding a 'in-use' shadow page give by it's physical address.
+ *
+ * @returns Pointer to the shadow page structure.
+ * @param pPool The pool.
+ * @param HCPhys The HC physical address of the shadow page.
+ */
+PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
+{
+ PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
+
+ /*
+ * Look up the page.
+ */
+ PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
+
+ AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
+ return pPage;
+}
+
+
+/**
+ * Internal worker for finding a page for debugging purposes, no assertions.
+ *
+ * @returns Pointer to the shadow page structure. NULL on if not found.
+ * @param pPool The pool.
+ * @param HCPhys The HC physical address of the shadow page.
+ */
+PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys)
+{
+ PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
+ return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
+}
+
+#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
+
+/**
+ * Flush the specified page if present
+ *
+ * @param pVM The cross context VM structure.
+ * @param GCPhys Guest physical address of the page to flush
+ */
+void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+
+ VM_ASSERT_EMT(pVM);
+
+ /*
+ * Look up the GCPhys in the hash.
+ */
+ GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
+ unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
+ if (i == NIL_PGMPOOL_IDX)
+ return;
+
+ do
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+ if (pPage->GCPhys - GCPhys < PAGE_SIZE)
+ {
+ switch (pPage->enmKind)
+ {
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ case PGMPOOLKIND_64BIT_PML4:
+ case PGMPOOLKIND_32BIT_PD:
+ case PGMPOOLKIND_PAE_PDPT:
+ {
+ Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ if (pPage->fDirty)
+ STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
+ else
+#endif
+ STAM_COUNTER_INC(&pPool->StatForceFlushPage);
+ Assert(!pgmPoolIsPageLocked(pPage));
+ pgmPoolMonitorChainFlush(pPool, pPage);
+ return;
+ }
+
+ /* ignore, no monitoring. */
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ case PGMPOOLKIND_ROOT_NESTED:
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ break;
+
+ default:
+ AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
+ }
+ }
+
+ /* next */
+ i = pPage->iNext;
+ } while (i != NIL_PGMPOOL_IDX);
+ return;
+}
+
+#endif /* IN_RING3 */
+#ifdef IN_RING3
+
+/**
+ * Reset CPU on hot plugging.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
+{
+ pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
+
+ pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+}
+
+
+/**
+ * Flushes the entire cache.
+ *
+ * It will assert a global CR3 flush (FF) and assumes the caller is aware of
+ * this and execute this CR3 flush.
+ *
+ * @param pVM The cross context VM structure.
+ */
+void pgmR3PoolReset(PVM pVM)
+{
+ PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
+
+ PGM_LOCK_ASSERT_OWNER(pVM);
+ STAM_PROFILE_START(&pPool->StatR3Reset, a);
+ LogFlow(("pgmR3PoolReset:\n"));
+
+ /*
+ * If there are no pages in the pool, there is nothing to do.
+ */
+ if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
+ {
+ STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
+ return;
+ }
+
+ /*
+ * Exit the shadow mode since we're going to clear everything,
+ * including the root page.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ pgmR3ExitShadowModeBeforePoolFlush(&pVM->aCpus[i]);
+
+ /*
+ * Nuke the free list and reinsert all pages into it.
+ */
+ for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
+ {
+ PPGMPOOLPAGE pPage = &pPool->aPages[i];
+
+ Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
+ if (pPage->fMonitored)
+ pgmPoolMonitorFlush(pPool, pPage);
+ pPage->iModifiedNext = NIL_PGMPOOL_IDX;
+ pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
+ pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
+ pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
+ pPage->GCPhys = NIL_RTGCPHYS;
+ pPage->enmKind = PGMPOOLKIND_FREE;
+ pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
+ Assert(pPage->idx == i);
+ pPage->iNext = i + 1;
+ pPage->fA20Enabled = true;
+ pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
+ pPage->fSeenNonGlobal = false;
+ pPage->fMonitored = false;
+ pPage->fDirty = false;
+ pPage->fCached = false;
+ pPage->fReusedFlushPending = false;
+ pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
+ pPage->cPresent = 0;
+ pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
+ pPage->cModifications = 0;
+ pPage->iAgeNext = NIL_PGMPOOL_IDX;
+ pPage->iAgePrev = NIL_PGMPOOL_IDX;
+ pPage->idxDirtyEntry = 0;
+ pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
+ pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
+ pPage->cLastAccessHandler = 0;
+ pPage->cLocked = 0;
+#ifdef VBOX_STRICT
+ pPage->GCPtrDirtyFault = NIL_RTGCPTR;
+#endif
+ }
+ pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
+ pPool->iFreeHead = PGMPOOL_IDX_FIRST;
+ pPool->cUsedPages = 0;
+
+ /*
+ * Zap and reinitialize the user records.
+ */
+ pPool->cPresent = 0;
+ pPool->iUserFreeHead = 0;
+ PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
+ const unsigned cMaxUsers = pPool->cMaxUsers;
+ for (unsigned i = 0; i < cMaxUsers; i++)
+ {
+ paUsers[i].iNext = i + 1;
+ paUsers[i].iUser = NIL_PGMPOOL_IDX;
+ paUsers[i].iUserTable = 0xfffffffe;
+ }
+ paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
+
+ /*
+ * Clear all the GCPhys links and rebuild the phys ext free list.
+ */
+ for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
+ pRam;
+ pRam = pRam->CTX_SUFF(pNext))
+ {
+ unsigned iPage = pRam->cb >> PAGE_SHIFT;
+ while (iPage-- > 0)
+ PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
+ }
+
+ pPool->iPhysExtFreeHead = 0;
+ PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
+ const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
+ for (unsigned i = 0; i < cMaxPhysExts; i++)
+ {
+ paPhysExts[i].iNext = i + 1;
+ paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
+ paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
+ }
+ paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
+
+ /*
+ * Just zap the modified list.
+ */
+ pPool->cModifiedPages = 0;
+ pPool->iModifiedHead = NIL_PGMPOOL_IDX;
+
+ /*
+ * Clear the GCPhys hash and the age list.
+ */
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
+ pPool->aiHash[i] = NIL_PGMPOOL_IDX;
+ pPool->iAgeHead = NIL_PGMPOOL_IDX;
+ pPool->iAgeTail = NIL_PGMPOOL_IDX;
+
+#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
+ /* Clear all dirty pages. */
+ pPool->idxFreeDirtyPage = 0;
+ pPool->cDirtyPages = 0;
+ for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
+ pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
+#endif
+
+ /*
+ * Reinsert active pages into the hash and ensure monitoring chains are correct.
+ */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ /*
+ * Re-enter the shadowing mode and assert Sync CR3 FF.
+ */
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
+ }
+
+ STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
+}
+
+#endif /* IN_RING3 */
+
+#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
+/**
+ * Stringifies a PGMPOOLKIND value.
+ */
+static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
+{
+ switch ((PGMPOOLKIND)enmKind)
+ {
+ case PGMPOOLKIND_INVALID:
+ return "PGMPOOLKIND_INVALID";
+ case PGMPOOLKIND_FREE:
+ return "PGMPOOLKIND_FREE";
+ case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
+ return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
+ return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
+ case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
+ return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
+ case PGMPOOLKIND_PAE_PT_FOR_PHYS:
+ return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
+ return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
+ case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
+ return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
+ return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
+ case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
+ return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
+ case PGMPOOLKIND_32BIT_PD:
+ return "PGMPOOLKIND_32BIT_PD";
+ case PGMPOOLKIND_32BIT_PD_PHYS:
+ return "PGMPOOLKIND_32BIT_PD_PHYS";
+ case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
+ return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
+ case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
+ return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
+ case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
+ return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
+ case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
+ return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
+ case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
+ return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
+ case PGMPOOLKIND_PAE_PD_PHYS:
+ return "PGMPOOLKIND_PAE_PD_PHYS";
+ case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
+ return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
+ case PGMPOOLKIND_PAE_PDPT:
+ return "PGMPOOLKIND_PAE_PDPT";
+ case PGMPOOLKIND_PAE_PDPT_PHYS:
+ return "PGMPOOLKIND_PAE_PDPT_PHYS";
+ case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
+ return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
+ case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
+ return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
+ case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
+ return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
+ case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
+ return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
+ case PGMPOOLKIND_64BIT_PML4:
+ return "PGMPOOLKIND_64BIT_PML4";
+ case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
+ return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
+ case PGMPOOLKIND_EPT_PD_FOR_PHYS:
+ return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
+ case PGMPOOLKIND_EPT_PT_FOR_PHYS:
+ return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
+ case PGMPOOLKIND_ROOT_NESTED:
+ return "PGMPOOLKIND_ROOT_NESTED";
+ }
+ return "Unknown kind!";
+}
+#endif /* LOG_ENABLED || VBOX_STRICT */
+