diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
commit | f8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch) | |
tree | 26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMAll/PGMAllPool.cpp | |
parent | Initial commit. (diff) | |
download | virtualbox-upstream.tar.xz virtualbox-upstream.zip |
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMAll/PGMAllPool.cpp')
-rw-r--r-- | src/VBox/VMM/VMMAll/PGMAllPool.cpp | 5670 |
1 files changed, 5670 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/PGMAllPool.cpp b/src/VBox/VMM/VMMAll/PGMAllPool.cpp new file mode 100644 index 00000000..2d2a77f6 --- /dev/null +++ b/src/VBox/VMM/VMMAll/PGMAllPool.cpp @@ -0,0 +1,5670 @@ +/* $Id: PGMAllPool.cpp $ */ +/** @file + * PGM Shadow Page Pool. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_PGM_POOL +#include <VBox/vmm/pgm.h> +#include <VBox/vmm/mm.h> +#include <VBox/vmm/em.h> +#include <VBox/vmm/cpum.h> +#ifdef IN_RC +# include <VBox/vmm/patm.h> +#endif +#include "PGMInternal.h" +#include <VBox/vmm/vm.h> +#include "PGMInline.h" +#include <VBox/disopcode.h> +#include <VBox/vmm/hm_vmx.h> + +#include <VBox/log.h> +#include <VBox/err.h> +#include <iprt/asm.h> +#include <iprt/asm-amd64-x86.h> +#include <iprt/string.h> + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +RT_C_DECLS_BEGIN +#if 0 /* unused */ +DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind); +DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind); +#endif /* unused */ +static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage); +static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage); +static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable); +static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage); +#if defined(LOG_ENABLED) || defined(VBOX_STRICT) +static const char *pgmPoolPoolKindToStr(uint8_t enmKind); +#endif +#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/ +static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT); +#endif + +int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage); +PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt); +void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt); +void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt); + +RT_C_DECLS_END + + +#if 0 /* unused */ +/** + * Checks if the specified page pool kind is for a 4MB or 2MB guest page. + * + * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false. + * @param enmKind The page kind. + */ +DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind) +{ + switch (enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + return true; + default: + return false; + } +} +#endif /* unused */ + + +/** + * Flushes a chain of pages sharing the same access monitor. + * + * @param pPool The pool. + * @param pPage A page in the chain. + */ +void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind)); + + /* + * Find the list head. + */ + uint16_t idx = pPage->idx; + if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) + { + while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) + { + idx = pPage->iMonitoredPrev; + Assert(idx != pPage->idx); + pPage = &pPool->aPages[idx]; + } + } + + /* + * Iterate the list flushing each shadow page. + */ + for (;;) + { + idx = pPage->iMonitoredNext; + Assert(idx != pPage->idx); + if (pPage->idx >= PGMPOOL_IDX_FIRST) + { + int rc2 = pgmPoolFlushPage(pPool, pPage); + AssertRC(rc2); + } + /* next */ + if (idx == NIL_PGMPOOL_IDX) + break; + pPage = &pPool->aPages[idx]; + } +} + + +/** + * Wrapper for getting the current context pointer to the entry being modified. + * + * @returns VBox status code suitable for scheduling. + * @param pVM The cross context VM structure. + * @param pvDst Destination address + * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending + * on the context (e.g. \#PF in R0 & RC). + * @param GCPhysSrc The source guest physical address. + * @param cb Size of data to read + */ +DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb) +{ +#if defined(IN_RING3) + NOREF(pVM); NOREF(GCPhysSrc); + memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb); + return VINF_SUCCESS; +#else + /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */ + NOREF(pvSrc); + return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb); +#endif +} + + +/** + * Process shadow entries before they are changed by the guest. + * + * For PT entries we will clear them. For PD entries, we'll simply check + * for mapping conflicts and set the SyncCR3 FF if found. + * + * @param pVCpu The cross context virtual CPU structure. + * @param pPool The pool. + * @param pPage The head page. + * @param GCPhysFault The guest physical fault address. + * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL + * depending on the context (e.g. \#PF in R0 & RC). + * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries + */ +static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, + void const *pvAddress, unsigned cbWrite) +{ + AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx)); + const unsigned off = GCPhysFault & PAGE_OFFSET_MASK; + PVM pVM = pPool->CTX_SUFF(pVM); + NOREF(pVCpu); + + LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", + (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite)); + + for (;;) + { + union + { + void *pv; + PX86PT pPT; + PPGMSHWPTPAE pPTPae; + PX86PD pPD; + PX86PDPAE pPDPae; + PX86PDPT pPDPT; + PX86PML4 pPML4; + } uShw; + + LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n", + pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite)); + + uShw.pv = NULL; + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PTE); + LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw)); + if (uShw.pPT->a[iShw].n.u1Present) + { + X86PTE GstPte; + + int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); + AssertRC(rc); + Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, + uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, + GstPte.u & X86_PTE_PG_MASK, + iShw); + ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0); + } + break; + } + + /* page/2 sized */ + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2))) + { + const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1); + LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw)); + if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) + { + X86PTE GstPte; + int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); + AssertRC(rc); + + Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, + PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), + GstPte.u & X86_PTE_PG_MASK, + iShw); + PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0); + } + } + break; + } + + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + { + unsigned iGst = off / sizeof(X86PDE); + unsigned iShwPdpt = iGst / 256; + unsigned iShw = (iGst % 256) * 2; + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + + LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)); + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); + if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD) + { + for (unsigned i = 0; i < 2; i++) + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i)); + break; + } +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPDPae->a[iShw+i].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw + i); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw+i].u, 0); + } + + /* paranoia / a bit assumptive. */ + if ( (off & 3) + && (off & 3) + cbWrite > 4) + { + const unsigned iShw2 = iShw + 2 + i; + if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a)) + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P)) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2)); + break; + } +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPDPae->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw2); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); + } + } + } + } + } + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + { + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PTEPAE); + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT)); + if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw])) + { + X86PTEPAE GstPte; + int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte)); + AssertRC(rc); + + Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, + PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), + GstPte.u & X86_PTE_PAE_PG_MASK, + iShw); + PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0); + } + + /* paranoia / a bit assumptive. */ + if ( (off & 7) + && (off & 7) + cbWrite > sizeof(X86PTEPAE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE); + AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a)); + + if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2])) + { + X86PTEPAE GstPte; + int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, + pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL, + GCPhysFault + sizeof(GstPte), sizeof(GstPte)); + AssertRC(rc); + Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, + PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), + GstPte.u & X86_PTE_PAE_PG_MASK, + iShw2); + PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0); + } + } + break; + } + + case PGMPOOLKIND_32BIT_PD: + { + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging! + + LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw)); + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); + break; + } + else +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + { + if (uShw.pPD->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); + pgmPoolFree(pVM, + uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw); + ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0); + } + } + /* paranoia / a bit assumptive. */ + if ( (off & 3) + && (off & 3) + cbWrite > sizeof(X86PTE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE); + if ( iShw2 != iShw + && iShw2 < RT_ELEMENTS(uShw.pPD->a)) + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); + break; + } +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPD->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u)); + pgmPoolFree(pVM, + uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw2); + ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0); + } + } + } +#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */ + if ( uShw.pPD->a[iShw].n.u1Present + && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)) + { + LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u)); +# ifdef IN_RC /* TLB load - we're pushing things a bit... */ + ASMProbeReadByte(pvAddress); +# endif + pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw); + ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0); + } +#endif + break; + } + + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + { + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PDEPAE); + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw)); + break; + } +#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + /* + * Causes trouble when the guest uses a PDE to refer to the whole page table level + * structure. (Invalidate here; faults later on when it tries to change the page + * table entries -> recheck; probably only applies to the RC case.) + */ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + else +#endif + { + if (uShw.pPDPae->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0); + } + } + /* paranoia / a bit assumptive. */ + if ( (off & 7) + && (off & 7) + cbWrite > sizeof(X86PDEPAE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); + AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); + +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if ( iShw2 != iShw + && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); + break; + } + else +#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPDPae->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw2); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); + } + } + break; + } + + case PGMPOOLKIND_PAE_PDPT: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); + /* + * Hopefully this doesn't happen very often: + * - touching unused parts of the page + * - messing with the bits of pd pointers without changing the physical address + */ + /* PDPT roots are not page aligned; 32 byte only! */ + const unsigned offPdpt = GCPhysFault - pPage->GCPhys; + + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = offPdpt / sizeof(X86PDPE); + if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */ + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw)); + break; + } + else +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPDPT->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u)); + pgmPoolFree(pVM, + uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, + pPage->idx, + iShw); + ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0); + } + + /* paranoia / a bit assumptive. */ + if ( (offPdpt & 7) + && (offPdpt & 7) + cbWrite > sizeof(X86PDPE)) + { + const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE); + if ( iShw2 != iShw + && iShw2 < X86_PG_PAE_PDPE_ENTRIES) + { +# ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING) + { + Assert(pgmMapAreMappingsEnabled(pVM)); + STAM_COUNTER_INC(&(pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZGuestCR3WriteConflict)); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2)); + break; + } + else +# endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + if (uShw.pPDPT->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u)); + pgmPoolFree(pVM, + uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, + pPage->idx, + iShw2); + ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0); + } + } + } + } + break; + } + +#ifndef IN_RC + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD)); + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PDEPAE); + Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)); + if (uShw.pPDPae->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0); + } + /* paranoia / a bit assumptive. */ + if ( (off & 7) + && (off & 7) + cbWrite > sizeof(X86PDEPAE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE); + AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a)); + + Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)); + if (uShw.pPDPae->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u)); + pgmPoolFree(pVM, + uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK, + pPage->idx, + iShw2); + ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0); + } + } + break; + } + + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT)); + /* + * Hopefully this doesn't happen very often: + * - messing with the bits of pd pointers without changing the physical address + */ + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PDPE); + if (uShw.pPDPT->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u)); + pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw); + ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0); + } + /* paranoia / a bit assumptive. */ + if ( (off & 7) + && (off & 7) + cbWrite > sizeof(X86PDPE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE); + if (uShw.pPDPT->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u)); + pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2); + ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0); + } + } + break; + } + + case PGMPOOLKIND_64BIT_PML4: + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4)); + /* + * Hopefully this doesn't happen very often: + * - messing with the bits of pd pointers without changing the physical address + */ + uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + const unsigned iShw = off / sizeof(X86PDPE); + if (uShw.pPML4->a[iShw].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u)); + pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw); + ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0); + } + /* paranoia / a bit assumptive. */ + if ( (off & 7) + && (off & 7) + cbWrite > sizeof(X86PDPE)) + { + const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E); + if (uShw.pPML4->a[iShw2].n.u1Present) + { + LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u)); + pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2); + ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0); + } + } + break; + } +#endif /* IN_RING0 */ + + default: + AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); + } + PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv); + + /* next */ + if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX) + return; + pPage = &pPool->aPages[pPage->iMonitoredNext]; + } +} + +#ifndef IN_RING3 + +/** + * Checks if a access could be a fork operation in progress. + * + * Meaning, that the guest is setting up the parent process for Copy-On-Write. + * + * @returns true if it's likely that we're forking, otherwise false. + * @param pPool The pool. + * @param pDis The disassembled instruction. + * @param offFault The access offset. + */ +DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault) +{ + /* + * i386 linux is using btr to clear X86_PTE_RW. + * The functions involved are (2.6.16 source inspection): + * clear_bit + * ptep_set_wrprotect + * copy_one_pte + * copy_pte_range + * copy_pmd_range + * copy_pud_range + * copy_page_range + * dup_mmap + * dup_mm + * copy_mm + * copy_process + * do_fork + */ + if ( pDis->pCurInstr->uOpcode == OP_BTR + && !(offFault & 4) + /** @todo Validate that the bit index is X86_PTE_RW. */ + ) + { + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool); + return true; + } + return false; +} + + +/** + * Determine whether the page is likely to have been reused. + * + * @returns true if we consider the page as being reused for a different purpose. + * @returns false if we consider it to still be a paging page. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @param pRegFrame Trap register frame. + * @param pDis The disassembly info for the faulting instruction. + * @param pvFault The fault address. + * @param pPage The pool page being accessed. + * + * @remark The REP prefix check is left to the caller because of STOSD/W. + */ +DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault, + PPGMPOOLPAGE pPage) +{ + /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as + such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */ + if (pPage->cLocked) + { + Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage)); + return false; + } + +# ifndef IN_RC + /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */ + if ( HMHasPendingIrq(pVM) + && (pRegFrame->rsp - pvFault) < 32) + { + /* Fault caused by stack writes while trying to inject an interrupt event. */ + Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp)); + return true; + } +# else + NOREF(pVM); NOREF(pvFault); +# endif + + LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg)); + + /* Non-supervisor mode write means it's used for something else. */ + if (CPUMGetGuestCPL(pVCpu) == 3) + return true; + + switch (pDis->pCurInstr->uOpcode) + { + /* call implies the actual push of the return address faulted */ + case OP_CALL: + Log4(("pgmRZPoolMonitorIsReused: CALL\n")); + return true; + case OP_PUSH: + Log4(("pgmRZPoolMonitorIsReused: PUSH\n")); + return true; + case OP_PUSHF: + Log4(("pgmRZPoolMonitorIsReused: PUSHF\n")); + return true; + case OP_PUSHA: + Log4(("pgmRZPoolMonitorIsReused: PUSHA\n")); + return true; + case OP_FXSAVE: + Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n")); + return true; + case OP_MOVNTI: /* solaris - block_zero_no_xmm */ + Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n")); + return true; + case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */ + Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n")); + return true; + case OP_MOVSWD: + case OP_STOSWD: + if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX) + && pRegFrame->rcx >= 0x40 + ) + { + Assert(pDis->uCpuMode == DISCPUMODE_64BIT); + + Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n")); + return true; + } + break; + + default: + /* + * Anything having ESP on the left side means stack writes. + */ + if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32) + || (pDis->Param1.fUse & DISUSE_REG_GEN64)) + && (pDis->Param1.Base.idxGenReg == DISGREG_ESP)) + { + Log4(("pgmRZPoolMonitorIsReused: ESP\n")); + return true; + } + break; + } + + /* + * Page table updates are very very unlikely to be crossing page boundraries, + * and we don't want to deal with that in pgmPoolMonitorChainChanging and such. + */ + uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->Param1); + if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) ) + { + Log4(("pgmRZPoolMonitorIsReused: cross page write\n")); + return true; + } + + /* + * Nobody does an unaligned 8 byte write to a page table, right. + */ + if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0) + { + Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n")); + return true; + } + + return false; +} + + +/** + * Flushes the page being accessed. + * + * @returns VBox status code suitable for scheduling. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @param pPool The pool. + * @param pPage The pool page (head). + * @param pDis The disassembly of the write instruction. + * @param pRegFrame The trap register frame. + * @param GCPhysFault The fault address as guest physical address. + * @param pvFault The fault address. + * @todo VBOXSTRICTRC + */ +static int pgmRZPoolAccessPfHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, + PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) +{ + NOREF(pVM); NOREF(GCPhysFault); + + /* + * First, do the flushing. + */ + pgmPoolMonitorChainFlush(pPool, pPage); + + /* + * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). + * Must do this in raw mode (!); XP boot will fail otherwise. + */ + int rc = VINF_SUCCESS; + VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL); + if (rc2 == VINF_SUCCESS) + { /* do nothing */ } + else if (rc2 == VINF_EM_RESCHEDULE) + { + rc = VBOXSTRICTRC_VAL(rc2); +# ifndef IN_RING3 + VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3); +# endif + } + else if (rc2 == VERR_EM_INTERPRETER) + { +# ifdef IN_RC + if (PATMIsPatchGCAddr(pVM, pRegFrame->eip)) + { + LogFlow(("pgmRZPoolAccessPfHandlerFlush: Interpretation failed for patch code %04x:%RGv, ignoring.\n", + pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->eip)); + rc = VINF_SUCCESS; + STAM_COUNTER_INC(&pPool->StatMonitorPfRZIntrFailPatch2); + } + else +# endif + { + rc = VINF_EM_RAW_EMULATE_INSTR; + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr)); + } + } + else if (RT_FAILURE_NP(rc2)) + rc = VBOXSTRICTRC_VAL(rc2); + else + AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */ + + LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc)); + return rc; +} + + +/** + * Handles the STOSD write accesses. + * + * @returns VBox status code suitable for scheduling. + * @param pVM The cross context VM structure. + * @param pPool The pool. + * @param pPage The pool page (head). + * @param pDis The disassembly of the write instruction. + * @param pRegFrame The trap register frame. + * @param GCPhysFault The fault address as guest physical address. + * @param pvFault The fault address. + */ +DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, + PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault) +{ + unsigned uIncrement = pDis->Param1.cb; + NOREF(pVM); + + Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT); + Assert(pRegFrame->rcx <= 0x20); + +# ifdef VBOX_STRICT + if (pDis->uOpMode == DISCPUMODE_32BIT) + Assert(uIncrement == 4); + else + Assert(uIncrement == 8); +# endif + + Log3(("pgmRZPoolAccessPfHandlerSTOSD\n")); + + /* + * Increment the modification counter and insert it into the list + * of modified pages the first time. + */ + if (!pPage->cModifications++) + pgmPoolMonitorModifiedInsert(pPool, pPage); + + /* + * Execute REP STOSD. + * + * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync + * write situation, meaning that it's safe to write here. + */ + PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM)); + RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault; + while (pRegFrame->rcx) + { +# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu); + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement); + PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset); +# else + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement); +# endif +# ifdef IN_RC + *(uint32_t *)(uintptr_t)pu32 = pRegFrame->eax; +# else + PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement); +# endif + pu32 += uIncrement; + GCPhysFault += uIncrement; + pRegFrame->rdi += uIncrement; + pRegFrame->rcx--; + } + pRegFrame->rip += pDis->cbInstr; + + LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n")); + return VINF_SUCCESS; +} + + +/** + * Handles the simple write accesses. + * + * @returns VBox status code suitable for scheduling. + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + * @param pPool The pool. + * @param pPage The pool page (head). + * @param pDis The disassembly of the write instruction. + * @param pRegFrame The trap register frame. + * @param GCPhysFault The fault address as guest physical address. + * @param pvFault The fault address. + * @param pfReused Reused state (in/out) + */ +DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis, + PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused) +{ + Log3(("pgmRZPoolAccessPfHandlerSimple\n")); + NOREF(pVM); + NOREF(pfReused); /* initialized by caller */ + + /* + * Increment the modification counter and insert it into the list + * of modified pages the first time. + */ + if (!pPage->cModifications++) + pgmPoolMonitorModifiedInsert(pPool, pPage); + + /* + * Clear all the pages. ASSUMES that pvFault is readable. + */ +# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu); +# endif + + uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1); + if (cbWrite <= 8) + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite); + else if (cbWrite <= 16) + { + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8); + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8); + } + else + { + Assert(cbWrite <= 32); + for (uint32_t off = 0; off < cbWrite; off += 8) + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off)); + } + +# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset); +# endif + + /* + * Interpret the instruction. + */ + VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL); + if (RT_SUCCESS(rc)) + AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */ + else if (rc == VERR_EM_INTERPRETER) + { + LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n", + pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode)); + rc = VINF_EM_RAW_EMULATE_INSTR; + STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr)); + } + +# if 0 /* experimental code */ + if (rc == VINF_SUCCESS) + { + switch (pPage->enmKind) + { + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + { + X86PTEPAE GstPte; + int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte)); + AssertRC(rc); + + /* Check the new value written by the guest. If present and with a bogus physical address, then + * it's fairly safe to assume the guest is reusing the PT. + */ + if (GstPte.n.u1Present) + { + RTHCPHYS HCPhys = -1; + int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys); + if (rc != VINF_SUCCESS) + { + *pfReused = true; + STAM_COUNTER_INC(&pPool->StatForceFlushReused); + } + } + break; + } + } + } +# endif + + LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc))); + return VBOXSTRICTRC_VAL(rc); +} + + +/** + * @callback_method_impl{FNPGMRZPHYSPFHANDLER, + * \#PF access handler callback for page table pages.} + * + * @remarks The @a pvUser argument points to the PGMPOOLPAGE. + */ +DECLEXPORT(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVM pVM, PVMCPU pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, + RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser) +{ + STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; + unsigned cMaxModifications; + bool fForcedFlush = false; + NOREF(uErrorCode); + + LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault)); + + pgmLock(pVM); + if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys)) + { + /* Pool page changed while we were waiting for the lock; ignore. */ + Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys))); + STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a); + pgmUnlock(pVM); + return VINF_SUCCESS; + } +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPage->fDirty) + { + Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH)); + pgmUnlock(pVM); + return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */ + } +# endif + +# if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */ + if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + { + void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage); + void *pvGst; + int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); + } +# endif + + /* + * Disassemble the faulting instruction. + */ + PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState; + int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL); + if (RT_UNLIKELY(rc != VINF_SUCCESS)) + { + AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc)); + pgmUnlock(pVM); + return rc; + } + + Assert(pPage->enmKind != PGMPOOLKIND_FREE); + + /* + * We should ALWAYS have the list head as user parameter. This + * is because we use that page to record the changes. + */ + Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); + +# ifdef IN_RING0 + /* Maximum nr of modifications depends on the page type. */ + if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT + || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) + cMaxModifications = 4; + else + cMaxModifications = 24; +# else + cMaxModifications = 48; +# endif + + /* + * Incremental page table updates should weigh more than random ones. + * (Only applies when started from offset 0) + */ + pVCpu->pgm.s.cPoolAccessHandler++; + if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */ + && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40 + && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb) + && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1) + { + Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind))); + Assert(pPage->cModifications < 32000); + pPage->cModifications = pPage->cModifications * 2; + pPage->GCPtrLastAccessHandlerFault = pvFault; + pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; + if (pPage->cModifications >= cMaxModifications) + { + STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit); + fForcedFlush = true; + } + } + + if (pPage->cModifications >= cMaxModifications) + Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind))); + + /* + * Check if it's worth dealing with. + */ + bool fReused = false; + bool fNotReusedNotForking = false; + if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */ + || pgmPoolIsPageLocked(pPage) + ) + && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage)) + && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) + { + /* + * Simple instructions, no REP prefix. + */ + if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE))) + { + rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused); + if (fReused) + goto flushPage; + + /* A mov instruction to change the first page table entry will be remembered so we can detect + * full page table changes early on. This will reduce the amount of unnecessary traps we'll take. + */ + if ( rc == VINF_SUCCESS + && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */ + && pDis->pCurInstr->uOpcode == OP_MOV + && (pvFault & PAGE_OFFSET_MASK) == 0) + { + pPage->GCPtrLastAccessHandlerFault = pvFault; + pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; + pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip; + /* Make sure we don't kick out a page too quickly. */ + if (pPage->cModifications > 8) + pPage->cModifications = 2; + } + else if (pPage->GCPtrLastAccessHandlerFault == pvFault) + { + /* ignore the 2nd write to this page table entry. */ + pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler; + } + else + { + pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; + pPage->GCPtrLastAccessHandlerRip = 0; + } + + STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a); + pgmUnlock(pVM); + return rc; + } + + /* + * Windows is frequently doing small memset() operations (netio test 4k+). + * We have to deal with these or we'll kill the cache and performance. + */ + if ( pDis->pCurInstr->uOpcode == OP_STOSWD + && !pRegFrame->eflags.Bits.u1DF + && pDis->uOpMode == pDis->uCpuMode + && pDis->uAddrMode == pDis->uCpuMode) + { + bool fValidStosd = false; + + if ( pDis->uCpuMode == DISCPUMODE_32BIT + && pDis->fPrefix == DISPREFIX_REP + && pRegFrame->ecx <= 0x20 + && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK) + && !((uintptr_t)pvFault & 3) + && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */ + ) + { + fValidStosd = true; + pRegFrame->rcx &= 0xffffffff; /* paranoia */ + } + else + if ( pDis->uCpuMode == DISCPUMODE_64BIT + && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX) + && pRegFrame->rcx <= 0x20 + && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK) + && !((uintptr_t)pvFault & 7) + && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */ + ) + { + fValidStosd = true; + } + + if (fValidStosd) + { + rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault); + STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a); + pgmUnlock(pVM); + return rc; + } + } + + /* REP prefix, don't bother. */ + STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix); + Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n", + pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix)); + fNotReusedNotForking = true; + } + +# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0) + /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This + * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring. + */ + if ( pPage->cModifications >= cMaxModifications + && !fForcedFlush + && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) + && ( fNotReusedNotForking + || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage) + && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK)) + ) + ) + { + Assert(!pgmPoolIsPageLocked(pPage)); + Assert(pPage->fDirty == false); + + /* Flush any monitored duplicates as we will disable write protection. */ + if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX + || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) + { + PPGMPOOLPAGE pPageHead = pPage; + + /* Find the monitor head. */ + while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX) + pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev]; + + while (pPageHead) + { + unsigned idxNext = pPageHead->iMonitoredNext; + + if (pPageHead != pPage) + { + STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush); + Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind))); + int rc2 = pgmPoolFlushPage(pPool, pPageHead); + AssertRC(rc2); + } + + if (idxNext == NIL_PGMPOOL_IDX) + break; + + pPageHead = &pPool->aPages[idxNext]; + } + } + + /* The flushing above might fail for locked pages, so double check. */ + if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX + && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) + { + pgmPoolAddDirtyPage(pVM, pPool, pPage); + + /* Temporarily allow write access to the page table again. */ + rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK); + if (rc == VINF_SUCCESS) + { + rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT); + AssertMsg(rc == VINF_SUCCESS + /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ + || rc == VERR_PAGE_TABLE_NOT_PRESENT + || rc == VERR_PAGE_NOT_PRESENT, + ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc)); +# ifdef VBOX_STRICT + pPage->GCPtrDirtyFault = pvFault; +# endif + + STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a); + pgmUnlock(pVM); + return rc; + } + } + } +# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */ + + STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow); +flushPage: + /* + * Not worth it, so flush it. + * + * If we considered it to be reused, don't go back to ring-3 + * to emulate failed instructions since we usually cannot + * interpret then. This may be a bit risky, in which case + * the reuse detection must be fixed. + */ + rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault); + if ( rc == VINF_EM_RAW_EMULATE_INSTR + && fReused) + { + /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */ + if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS) + rc = VINF_SUCCESS; /* safe to restart the instruction. */ + } + STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a); + pgmUnlock(pVM); + return rc; +} + +#endif /* !IN_RING3 */ + +/** + * @callback_method_impl{FNPGMPHYSHANDLER, + * Access handler for shadowed page table pages.} + * + * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status. + */ +PGM_ALL_CB2_DECL(VBOXSTRICTRC) +pgmPoolAccessHandler(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, + PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a); + PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser; + LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n", + GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind)); + + NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType); + + pgmLock(pVM); + +#ifdef VBOX_WITH_STATISTICS + /* + * Collect stats on the access. + */ + AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19); + if (cbBuf <= 16 && cbBuf > 0) + STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]); + else if (cbBuf >= 17 && cbBuf < 32) + STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]); + else if (cbBuf >= 32 && cbBuf < 64) + STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]); + else if (cbBuf >= 64) + STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]); + + uint8_t cbAlign; + switch (pPage->enmKind) + { + default: + cbAlign = 7; + break; + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_32BIT_PD_PHYS: + cbAlign = 3; + break; + } + AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7); + if ((uint8_t)GCPhys & cbAlign) + STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]); +#endif + + /* + * Make sure the pool page wasn't modified by a different CPU. + */ + if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys)) + { + Assert(pPage->enmKind != PGMPOOLKIND_FREE); + + /* The max modification count before flushing depends on the context and page type. */ +#ifdef IN_RING3 + uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */ +#else + uint16_t cMaxModifications; + if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT + || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) + cMaxModifications = 4; + else + cMaxModifications = 24; +# ifdef IN_RC + cMaxModifications *= 2; /* traps are cheaper than exists. */ +# endif +#endif + + /* + * We don't have to be very sophisticated about this since there are relativly few calls here. + * However, we must try our best to detect any non-cpu accesses (disk / networking). + */ + if ( ( pPage->cModifications < cMaxModifications + || pgmPoolIsPageLocked(pPage) ) + && enmOrigin != PGMACCESSORIGIN_DEVICE + && cbBuf <= 16) + { + /* Clear the shadow entry. */ + if (!pPage->cModifications++) + pgmPoolMonitorModifiedInsert(pPool, pPage); + + if (cbBuf <= 8) + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf); + else + { + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8); + pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8); + } + } + else + pgmPoolMonitorChainFlush(pPool, pPage); + + STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a); + } + else + Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys))); + pgmUnlock(pVM); + return VINF_PGM_HANDLER_DO_DEFAULT; +} + + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + +# if defined(VBOX_STRICT) && !defined(IN_RING3) + +/** + * Check references to guest physical memory in a PAE / PAE page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + */ +static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT) +{ + unsigned cErrors = 0; + int LastRc = -1; /* initialized to shut up gcc */ + unsigned LastPTE = ~0U; /* initialized to shut up gcc */ + RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */ + PVM pVM = pPool->CTX_SUFF(pVM); + +#ifdef VBOX_STRICT + for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) + AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); +#endif + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + RTHCPHYS HCPhys = NIL_RTHCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); + if ( rc != VINF_SUCCESS + || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys) + { + Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); + LastPTE = i; + LastRc = rc; + LastHCPhys = HCPhys; + cErrors++; + + RTHCPHYS HCPhysPT = NIL_RTHCPHYS; + rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT); + AssertRC(rc); + + for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++) + { + PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage]; + + if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + { + PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage); + + for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) + { + if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j]) + && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT) + { + Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j]))); + } + } + + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2); + } + } + } + } + } + AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys)); +} + + +/** + * Check references to guest physical memory in a PAE / 32-bit page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + */ +static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT) +{ + unsigned cErrors = 0; + int LastRc = -1; /* initialized to shut up gcc */ + unsigned LastPTE = ~0U; /* initialized to shut up gcc */ + RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */ + PVM pVM = pPool->CTX_SUFF(pVM); + +#ifdef VBOX_STRICT + for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) + AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); +#endif + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + RTHCPHYS HCPhys = NIL_RTHCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys); + if ( rc != VINF_SUCCESS + || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys) + { + Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); + LastPTE = i; + LastRc = rc; + LastHCPhys = HCPhys; + cErrors++; + + RTHCPHYS HCPhysPT = NIL_RTHCPHYS; + rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT); + AssertRC(rc); + + for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++) + { + PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage]; + + if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT) + { + PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage); + + for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++) + { + if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j]) + && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT) + { + Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j]))); + } + } + + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2); + } + } + } + } + } + AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys)); +} + +# endif /* VBOX_STRICT && !IN_RING3 */ + +/** + * Clear references to guest physical memory in a PAE / PAE page table. + * + * @returns nr of changed PTEs + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + * @param pOldGstPT The old cached guest page table. + * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE + * @param pfFlush Flush reused page table (out) + */ +DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT, + PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush) +{ + unsigned cChanged = 0; + +#ifdef VBOX_STRICT + for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) + AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); +#endif + *pfFlush = false; + + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + /* Check the new value written by the guest. If present and with a bogus physical address, then + * it's fairly safe to assume the guest is reusing the PT. + */ + if ( fAllowRemoval + && pGstPT->a[i].n.u1Present) + { + if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) + { + *pfFlush = true; + return ++cChanged; + } + } + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */ + if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)) + { +#ifdef VBOX_STRICT + RTHCPHYS HCPhys = NIL_RTGCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys); + AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); +#endif + uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); + bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW); + uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX); + bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW); + + if ( uHostAttr == uGuestAttr + && fHostRW <= fGuestRW) + continue; + } + cChanged++; + /* Something was changed, so flush it. */ + Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n", + i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i); + PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0); + } + } + return cChanged; +} + + +/** + * Clear references to guest physical memory in a PAE / PAE page table. + * + * @returns nr of changed PTEs + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + * @param pOldGstPT The old cached guest page table. + * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE + * @param pfFlush Flush reused page table (out) + */ +DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT, + PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush) +{ + unsigned cChanged = 0; + +#ifdef VBOX_STRICT + for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++) + AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent)); +#endif + *pfFlush = false; + + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + /* Check the new value written by the guest. If present and with a bogus physical address, then + * it's fairly safe to assume the guest is reusing the PT. + */ + if ( fAllowRemoval + && pGstPT->a[i].n.u1Present) + { + if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK)) + { + *pfFlush = true; + return ++cChanged; + } + } + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */ + if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK)) + { +#ifdef VBOX_STRICT + RTHCPHYS HCPhys = NIL_RTGCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys); + AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys)); +#endif + uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G); + bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW); + uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G); + bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW); + + if ( uHostAttr == uGuestAttr + && fHostRW <= fGuestRW) + continue; + } + cChanged++; + /* Something was changed, so flush it. */ + Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n", + i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i); + PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0); + } + } + return cChanged; +} + + +/** + * Flush a dirty page + * + * @param pVM The cross context VM structure. + * @param pPool The pool. + * @param idxSlot Dirty array slot index + * @param fAllowRemoval Allow a reused page table to be removed + */ +static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false) +{ + PPGMPOOLPAGE pPage; + unsigned idxPage; + + Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages)); + if (pPool->aDirtyPages[idxSlot].uIdx == NIL_PGMPOOL_IDX) + return; + + idxPage = pPool->aDirtyPages[idxSlot].uIdx; + AssertRelease(idxPage != NIL_PGMPOOL_IDX); + pPage = &pPool->aPages[idxPage]; + Assert(pPage->idx == idxPage); + Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); + + AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot)); + Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications)); + +#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + PVMCPU pVCpu = VMMGetCpu(pVM); + uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu); +#endif + + /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */ + int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK); + Assert(rc == VINF_SUCCESS); + pPage->fDirty = false; + +#ifdef VBOX_STRICT + uint64_t fFlags = 0; + RTHCPHYS HCPhys; + rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys); + AssertMsg( ( rc == VINF_SUCCESS + && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key)) + /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */ + || rc == VERR_PAGE_TABLE_NOT_PRESENT + || rc == VERR_PAGE_NOT_PRESENT, + ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags)); +#endif + + /* Flush those PTEs that have changed. */ + STAM_PROFILE_START(&pPool->StatTrackDeref,a); + void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); + void *pvGst; + rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + bool fFlush; + unsigned cChanges; + + if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst, + (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush); + else + cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst, + (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush); + + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); + STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); + /* Note: we might want to consider keeping the dirty page active in case there were many changes. */ + + /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */ + Assert(pPage->cModifications); + if (cChanges < 4) + pPage->cModifications = 1; /* must use > 0 here */ + else + pPage->cModifications = RT_MAX(1, pPage->cModifications / 2); + + STAM_COUNTER_INC(&pPool->StatResetDirtyPages); + if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages)) + pPool->idxFreeDirtyPage = idxSlot; + + pPool->cDirtyPages--; + pPool->aDirtyPages[idxSlot].uIdx = NIL_PGMPOOL_IDX; + Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); + if (fFlush) + { + Assert(fAllowRemoval); + Log(("Flush reused page table!\n")); + pgmPoolFlushPage(pPool, pPage); + STAM_COUNTER_INC(&pPool->StatForceFlushReused); + } + else + Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges)); + +#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset); +#endif +} + + +# ifndef IN_RING3 +/** + * Add a new dirty page + * + * @param pVM The cross context VM structure. + * @param pPool The pool. + * @param pPage The page. + */ +void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + unsigned idxFree; + + PGM_LOCK_ASSERT_OWNER(pVM); + AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16); + Assert(!pPage->fDirty); + + idxFree = pPool->idxFreeDirtyPage; + Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages)); + Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); + + if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages)) + { + STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush); + pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/); + } + Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)); + AssertMsg(pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages)); + + Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree)); + + /* + * Make a copy of the guest page table as we require valid GCPhys addresses + * when removing references to physical pages. + * (The HCPhys linear lookup is *extremely* expensive!) + */ + void *pvGst; + int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2); +# ifdef VBOX_STRICT + void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); + if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) + pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); + else + pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); +# endif + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + + STAM_COUNTER_INC(&pPool->StatDirtyPage); + pPage->fDirty = true; + pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree); + pPool->aDirtyPages[idxFree].uIdx = pPage->idx; + pPool->cDirtyPages++; + + pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1); + if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages) + && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX) + { + unsigned i; + for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1); + if (pPool->aDirtyPages[idxFree].uIdx == NIL_PGMPOOL_IDX) + { + pPool->idxFreeDirtyPage = idxFree; + break; + } + } + Assert(i != RT_ELEMENTS(pPool->aDirtyPages)); + } + + Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX); + + /* + * Clear all references to this shadow table. See @bugref{7298}. + */ + pgmPoolTrackClearPageUsers(pPool, pPage); +} +# endif /* !IN_RING3 */ + + +/** + * Check if the specified page is dirty (not write monitored) + * + * @return dirty or not + * @param pVM The cross context VM structure. + * @param GCPhys Guest physical address + */ +bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGM_LOCK_ASSERT_OWNER(pVM); + if (!pPool->cDirtyPages) + return false; + + GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; + + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX) + { + PPGMPOOLPAGE pPage; + unsigned idxPage = pPool->aDirtyPages[i].uIdx; + + pPage = &pPool->aPages[idxPage]; + if (pPage->GCPhys == GCPhys) + return true; + } + } + return false; +} + + +/** + * Reset all dirty pages by reinstating page monitoring. + * + * @param pVM The cross context VM structure. + */ +void pgmPoolResetDirtyPages(PVM pVM) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGM_LOCK_ASSERT_OWNER(pVM); + Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); + + if (!pPool->cDirtyPages) + return; + + Log(("pgmPoolResetDirtyPages\n")); + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/); + + pPool->idxFreeDirtyPage = 0; + if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages) + && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX) + { + unsigned i; + for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX) + { + pPool->idxFreeDirtyPage = i; + break; + } + } + AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); + } + + Assert(pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages)); + return; +} + + +/** + * Invalidate the PT entry for the specified page + * + * @param pVM The cross context VM structure. + * @param GCPtrPage Guest page to invalidate + */ +void pgmPoolResetDirtyPage(PVM pVM, RTGCPTR GCPtrPage) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGM_LOCK_ASSERT_OWNER(pVM); + Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); + + if (!pPool->cDirtyPages) + return; + + Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage); + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + } +} + + +/** + * Reset all dirty pages by reinstating page monitoring. + * + * @param pVM The cross context VM structure. + * @param GCPhysPT Physical address of the page table + */ +void pgmPoolInvalidateDirtyPage(PVM pVM, RTGCPHYS GCPhysPT) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PGM_LOCK_ASSERT_OWNER(pVM); + Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages)); + unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages); + + if (!pPool->cDirtyPages) + return; + + GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK; + + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + if (pPool->aDirtyPages[i].uIdx != NIL_PGMPOOL_IDX) + { + unsigned idxPage = pPool->aDirtyPages[i].uIdx; + + PPGMPOOLPAGE pPage = &pPool->aPages[idxPage]; + if (pPage->GCPhys == GCPhysPT) + { + idxDirtyPage = i; + break; + } + } + } + + if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages)) + { + pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/); + if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages) + && pPool->aDirtyPages[pPool->idxFreeDirtyPage].uIdx != NIL_PGMPOOL_IDX) + { + unsigned i; + for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + { + if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX) + { + pPool->idxFreeDirtyPage = i; + break; + } + } + AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages)); + } + } +} + +# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */ + +/** + * Inserts a page into the GCPhys hash table. + * + * @param pPool The pool. + * @param pPage The page. + */ +DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys)); + Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX); + uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); + pPage->iNext = pPool->aiHash[iHash]; + pPool->aiHash[iHash] = pPage->idx; +} + + +/** + * Removes a page from the GCPhys hash table. + * + * @param pPool The pool. + * @param pPage The page. + */ +DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys)); + uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys); + if (pPool->aiHash[iHash] == pPage->idx) + pPool->aiHash[iHash] = pPage->iNext; + else + { + uint16_t iPrev = pPool->aiHash[iHash]; + for (;;) + { + const int16_t i = pPool->aPages[iPrev].iNext; + if (i == pPage->idx) + { + pPool->aPages[iPrev].iNext = pPage->iNext; + break; + } + if (i == NIL_PGMPOOL_IDX) + { + AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx)); + break; + } + iPrev = i; + } + } + pPage->iNext = NIL_PGMPOOL_IDX; +} + + +/** + * Frees up one cache page. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @param pPool The pool. + * @param iUser The user index. + */ +static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser) +{ +#ifndef IN_RC + const PVM pVM = pPool->CTX_SUFF(pVM); +#endif + Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */ + STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne); + + /* + * Select one page from the tail of the age list. + */ + PPGMPOOLPAGE pPage; + for (unsigned iLoop = 0; ; iLoop++) + { + uint16_t iToFree = pPool->iAgeTail; + if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX) + iToFree = pPool->aPages[iToFree].iAgePrev; +/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls. + if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX) + { + uint16_t i = pPool->aPages[iToFree].iAgePrev; + for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev) + { + if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX) + continue; + iToFree = i; + break; + } + } +*/ + Assert(iToFree != iUser); + AssertRelease(iToFree != NIL_PGMPOOL_IDX); + pPage = &pPool->aPages[iToFree]; + + /* + * Reject any attempts at flushing the currently active shadow CR3 mapping. + * Call pgmPoolCacheUsed to move the page to the head of the age list. + */ + if ( !pgmPoolIsPageLocked(pPage) + && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */) + break; + LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n")); + pgmPoolCacheUsed(pPool, pPage); + AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS); + } + + /* + * Found a usable page, flush it and return. + */ + int rc = pgmPoolFlushPage(pPool, pPage); + /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */ + /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */ + if (rc == VINF_SUCCESS) + PGM_INVL_ALL_VCPU_TLBS(pVM); + return rc; +} + + +/** + * Checks if a kind mismatch is really a page being reused + * or if it's just normal remappings. + * + * @returns true if reused and the cached page (enmKind1) should be flushed + * @returns false if not reused. + * @param enmKind1 The kind of the cached page. + * @param enmKind2 The kind of the requested page. + */ +static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2) +{ + switch (enmKind1) + { + /* + * Never reuse them. There is no remapping in non-paging mode. + */ + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_32BIT_PD_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */ + return false; + + /* + * It's perfectly fine to reuse these, except for PAE and non-paging stuff. + */ + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PDPT: + switch (enmKind2) + { + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + return true; + default: + return false; + } + + /* + * It's perfectly fine to reuse these, except for PAE and non-paging stuff. + */ + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + switch (enmKind2) + { + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + return true; + default: + return false; + } + + /* + * These cannot be flushed, and it's common to reuse the PDs as PTs. + */ + case PGMPOOLKIND_ROOT_NESTED: + return false; + + default: + AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1)); + } +} + + +/** + * Attempts to satisfy a pgmPoolAlloc request from the cache. + * + * @returns VBox status code. + * @retval VINF_PGM_CACHED_PAGE on success. + * @retval VERR_FILE_NOT_FOUND if not found. + * @param pPool The pool. + * @param GCPhys The GC physical address of the page we're gonna shadow. + * @param enmKind The kind of mapping. + * @param enmAccess Access type for the mapping (only relevant for big pages) + * @param fA20Enabled Whether the CPU has the A20 gate enabled. + * @param iUser The shadow page pool index of the user table. This is + * NIL_PGMPOOL_IDX for root pages. + * @param iUserTable The index into the user table (shadowed). Ignored if + * root page + * @param ppPage Where to store the pointer to the page. + */ +static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled, + uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage) +{ + /* + * Look up the GCPhys in the hash. + */ + unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; + Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i)); + if (i != NIL_PGMPOOL_IDX) + { + do + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys)); + if (pPage->GCPhys == GCPhys) + { + if ( (PGMPOOLKIND)pPage->enmKind == enmKind + && (PGMPOOLACCESS)pPage->enmAccess == enmAccess + && pPage->fA20Enabled == fA20Enabled) + { + /* Put it at the start of the use list to make sure pgmPoolTrackAddUser + * doesn't flush it in case there are no more free use records. + */ + pgmPoolCacheUsed(pPool, pPage); + + int rc = VINF_SUCCESS; + if (iUser != NIL_PGMPOOL_IDX) + rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable); + if (RT_SUCCESS(rc)) + { + Assert((PGMPOOLKIND)pPage->enmKind == enmKind); + *ppPage = pPage; + if (pPage->cModifications) + pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */ + STAM_COUNTER_INC(&pPool->StatCacheHits); + return VINF_PGM_CACHED_PAGE; + } + return rc; + } + + if ((PGMPOOLKIND)pPage->enmKind != enmKind) + { + /* + * The kind is different. In some cases we should now flush the page + * as it has been reused, but in most cases this is normal remapping + * of PDs as PT or big pages using the GCPhys field in a slightly + * different way than the other kinds. + */ + if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind)) + { + STAM_COUNTER_INC(&pPool->StatCacheKindMismatches); + pgmPoolFlushPage(pPool, pPage); + break; + } + } + } + + /* next */ + i = pPage->iNext; + } while (i != NIL_PGMPOOL_IDX); + } + + Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind))); + STAM_COUNTER_INC(&pPool->StatCacheMisses); + return VERR_FILE_NOT_FOUND; +} + + +/** + * Inserts a page into the cache. + * + * @param pPool The pool. + * @param pPage The cached page. + * @param fCanBeCached Set if the page is fit for caching from the caller's point of view. + */ +static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached) +{ + /* + * Insert into the GCPhys hash if the page is fit for that. + */ + Assert(!pPage->fCached); + if (fCanBeCached) + { + pPage->fCached = true; + pgmPoolHashInsert(pPool, pPage); + Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", + pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); + STAM_COUNTER_INC(&pPool->StatCacheCacheable); + } + else + { + Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n", + pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); + STAM_COUNTER_INC(&pPool->StatCacheUncacheable); + } + + /* + * Insert at the head of the age list. + */ + pPage->iAgePrev = NIL_PGMPOOL_IDX; + pPage->iAgeNext = pPool->iAgeHead; + if (pPool->iAgeHead != NIL_PGMPOOL_IDX) + pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx; + else + pPool->iAgeTail = pPage->idx; + pPool->iAgeHead = pPage->idx; +} + + +/** + * Flushes a cached page. + * + * @param pPool The pool. + * @param pPage The cached page. + */ +static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys)); + + /* + * Remove the page from the hash. + */ + if (pPage->fCached) + { + pPage->fCached = false; + pgmPoolHashRemove(pPool, pPage); + } + else + Assert(pPage->iNext == NIL_PGMPOOL_IDX); + + /* + * Remove it from the age list. + */ + if (pPage->iAgeNext != NIL_PGMPOOL_IDX) + pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; + else + pPool->iAgeTail = pPage->iAgePrev; + if (pPage->iAgePrev != NIL_PGMPOOL_IDX) + pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; + else + pPool->iAgeHead = pPage->iAgeNext; + pPage->iAgeNext = NIL_PGMPOOL_IDX; + pPage->iAgePrev = NIL_PGMPOOL_IDX; +} + + +/** + * Looks for pages sharing the monitor. + * + * @returns Pointer to the head page. + * @returns NULL if not found. + * @param pPool The Pool + * @param pNewPage The page which is going to be monitored. + */ +static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage) +{ + /* + * Look up the GCPhys in the hash. + */ + RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; + unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; + if (i == NIL_PGMPOOL_IDX) + return NULL; + do + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + if ( pPage->GCPhys - GCPhys < PAGE_SIZE + && pPage != pNewPage) + { + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PDPT: + { + /* find the head */ + while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) + { + Assert(pPage->iMonitoredPrev != pPage->idx); + pPage = &pPool->aPages[pPage->iMonitoredPrev]; + } + return pPage; + } + + /* ignore, no monitoring. */ + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_32BIT_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + break; + default: + AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); + } + } + + /* next */ + i = pPage->iNext; + } while (i != NIL_PGMPOOL_IDX); + return NULL; +} + + +/** + * Enabled write monitoring of a guest page. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @param pPool The pool. + * @param pPage The cached page. + */ +static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK)); + + /* + * Filter out the relevant kinds. + */ + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PDPT: + break; + + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_ROOT_NESTED: + /* Nothing to monitor here. */ + return VINF_SUCCESS; + + case PGMPOOLKIND_32BIT_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + /* Nothing to monitor here. */ + return VINF_SUCCESS; + default: + AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); + } + + /* + * Install handler. + */ + int rc; + PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage); + if (pPageHead) + { + Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx); + Assert(pPageHead->iMonitoredPrev != pPage->idx); + +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPageHead->fDirty) + pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */); +#endif + + pPage->iMonitoredPrev = pPageHead->idx; + pPage->iMonitoredNext = pPageHead->iMonitoredNext; + if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX) + pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx; + pPageHead->iMonitoredNext = pPage->idx; + rc = VINF_SUCCESS; + } + else + { + Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX); + PVM pVM = pPool->CTX_SUFF(pVM); + const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; + rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType, + MMHyperCCToR3(pVM, pPage), MMHyperCCToR0(pVM, pPage), MMHyperCCToRC(pVM, pPage), + NIL_RTR3PTR /*pszDesc*/); + /** @todo we should probably deal with out-of-memory conditions here, but for now increasing + * the heap size should suffice. */ + AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc)); + PVMCPU pVCpu = VMMGetCpu(pVM); + AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))); + } + pPage->fMonitored = true; + return rc; +} + + +/** + * Disables write monitoring of a guest page. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @param pPool The pool. + * @param pPage The cached page. + */ +static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + /* + * Filter out the relevant kinds. + */ + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PDPT: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + break; + + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_32BIT_PD_PHYS: + /* Nothing to monitor here. */ + Assert(!pPage->fMonitored); + return VINF_SUCCESS; + + default: + AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind)); + } + Assert(pPage->fMonitored); + + /* + * Remove the page from the monitored list or uninstall it if last. + */ + const PVM pVM = pPool->CTX_SUFF(pVM); + int rc; + if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX + || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX) + { + if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX) + { + PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext]; + pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX; + rc = PGMHandlerPhysicalChangeUserArgs(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK, MMHyperCCToR3(pVM, pNewHead), + MMHyperCCToR0(pVM, pNewHead), MMHyperCCToRC(pVM, pNewHead)); + + AssertFatalRCSuccess(rc); + pPage->iMonitoredNext = NIL_PGMPOOL_IDX; + } + else + { + pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext; + if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX) + { + pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev; + pPage->iMonitoredNext = NIL_PGMPOOL_IDX; + } + pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; + rc = VINF_SUCCESS; + } + } + else + { + rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK); + AssertFatalRC(rc); + PVMCPU pVCpu = VMMGetCpu(pVM); + AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), + ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions)); + } + pPage->fMonitored = false; + + /* + * Remove it from the list of modified pages (if in it). + */ + pgmPoolMonitorModifiedRemove(pPool, pPage); + + return rc; +} + + +/** + * Inserts the page into the list of modified pages. + * + * @param pPool The pool. + * @param pPage The page. + */ +void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx)); + AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX + && pPage->iModifiedPrev == NIL_PGMPOOL_IDX + && pPool->iModifiedHead != pPage->idx, + ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n", + pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications, + pPool->iModifiedHead, pPool->cModifiedPages)); + + pPage->iModifiedNext = pPool->iModifiedHead; + if (pPool->iModifiedHead != NIL_PGMPOOL_IDX) + pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx; + pPool->iModifiedHead = pPage->idx; + pPool->cModifiedPages++; +#ifdef VBOX_WITH_STATISTICS + if (pPool->cModifiedPages > pPool->cModifiedPagesHigh) + pPool->cModifiedPagesHigh = pPool->cModifiedPages; +#endif +} + + +/** + * Removes the page from the list of modified pages and resets the + * modification counter. + * + * @param pPool The pool. + * @param pPage The page which is believed to be in the list of modified pages. + */ +static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications)); + if (pPool->iModifiedHead == pPage->idx) + { + Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); + pPool->iModifiedHead = pPage->iModifiedNext; + if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) + { + pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + } + pPool->cModifiedPages--; + } + else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX) + { + pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext; + if (pPage->iModifiedNext != NIL_PGMPOOL_IDX) + { + pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev; + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + } + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPool->cModifiedPages--; + } + else + Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX); + pPage->cModifications = 0; +} + + +/** + * Zaps the list of modified pages, resetting their modification counters in the process. + * + * @param pVM The cross context VM structure. + */ +static void pgmPoolMonitorModifiedClearAll(PVM pVM) +{ + pgmLock(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages)); + + unsigned cPages = 0; NOREF(cPages); + +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + pgmPoolResetDirtyPages(pVM); +#endif + + uint16_t idx = pPool->iModifiedHead; + pPool->iModifiedHead = NIL_PGMPOOL_IDX; + while (idx != NIL_PGMPOOL_IDX) + { + PPGMPOOLPAGE pPage = &pPool->aPages[idx]; + idx = pPage->iModifiedNext; + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->cModifications = 0; + Assert(++cPages); + } + AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages)); + pPool->cModifiedPages = 0; + pgmUnlock(pVM); +} + + +/** + * Handle SyncCR3 pool tasks + * + * @returns VBox status code. + * @retval VINF_SUCCESS if successfully added. + * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only) + * @param pVCpu The cross context virtual CPU structure. + * @remark Should only be used when monitoring is available, thus placed in + * the PGMPOOL_WITH_MONITORING \#ifdef. + */ +int pgmPoolSyncCR3(PVMCPU pVCpu) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags)); + + /* + * When monitoring shadowed pages, we reset the modification counters on CR3 sync. + * Occasionally we will have to clear all the shadow page tables because we wanted + * to monitor a page which was mapped by too many shadowed page tables. This operation + * sometimes referred to as a 'lightweight flush'. + */ +# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */ + if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) + pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/); +# else /* !IN_RING3 */ + if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) + { + Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n")); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */ + + /* Make sure all other VCPUs return to ring 3. */ + if (pVM->cCpus > 1) + { + VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING); + PGM_INVL_ALL_VCPU_TLBS(pVM); + } + return VINF_PGM_SYNC_CR3; + } +# endif /* !IN_RING3 */ + else + { + pgmPoolMonitorModifiedClearAll(pVM); + + /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */ + if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) + { + Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n")); + return pgmPoolSyncCR3(pVCpu); + } + } + return VINF_SUCCESS; +} + + +/** + * Frees up at least one user entry. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if successfully added. + * + * @param pPool The pool. + * @param iUser The user index. + */ +static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser) +{ + STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser); + /* + * Just free cached pages in a braindead fashion. + */ + /** @todo walk the age list backwards and free the first with usage. */ + int rc = VINF_SUCCESS; + do + { + int rc2 = pgmPoolCacheFreeOne(pPool, iUser); + if (RT_FAILURE(rc2) && rc == VINF_SUCCESS) + rc = rc2; + } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX); + return rc; +} + + +/** + * Inserts a page into the cache. + * + * This will create user node for the page, insert it into the GCPhys + * hash, and insert it into the age list. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if successfully added. + * + * @param pPool The pool. + * @param pPage The cached page. + * @param GCPhys The GC physical address of the page we're gonna shadow. + * @param iUser The user index. + * @param iUserTable The user table index. + */ +DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable) +{ + int rc = VINF_SUCCESS; + PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); + + LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys); + + if (iUser != NIL_PGMPOOL_IDX) + { +#ifdef VBOX_STRICT + /* + * Check that the entry doesn't already exists. + */ + if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) + { + uint16_t i = pPage->iUserHead; + do + { + Assert(i < pPool->cMaxUsers); + AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); + i = paUsers[i].iNext; + } while (i != NIL_PGMPOOL_USER_INDEX); + } +#endif + + /* + * Find free a user node. + */ + uint16_t i = pPool->iUserFreeHead; + if (i == NIL_PGMPOOL_USER_INDEX) + { + rc = pgmPoolTrackFreeOneUser(pPool, iUser); + if (RT_FAILURE(rc)) + return rc; + i = pPool->iUserFreeHead; + } + + /* + * Unlink the user node from the free list, + * initialize and insert it into the user list. + */ + pPool->iUserFreeHead = paUsers[i].iNext; + paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX; + paUsers[i].iUser = iUser; + paUsers[i].iUserTable = iUserTable; + pPage->iUserHead = i; + } + else + pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; + + + /* + * Insert into cache and enable monitoring of the guest page if enabled. + * + * Until we implement caching of all levels, including the CR3 one, we'll + * have to make sure we don't try monitor & cache any recursive reuse of + * a monitored CR3 page. Because all windows versions are doing this we'll + * have to be able to do combined access monitoring, CR3 + PT and + * PD + PT (guest PAE). + * + * Update: + * We're now cooperating with the CR3 monitor if an uncachable page is found. + */ + const bool fCanBeMonitored = true; + pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */ + if (fCanBeMonitored) + { + rc = pgmPoolMonitorInsert(pPool, pPage); + AssertRC(rc); + } + return rc; +} + + +/** + * Adds a user reference to a page. + * + * This will move the page to the head of the + * + * @returns VBox status code. + * @retval VINF_SUCCESS if successfully added. + * + * @param pPool The pool. + * @param pPage The cached page. + * @param iUser The user index. + * @param iUserTable The user table. + */ +static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) +{ + Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable)); + PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); + Assert(iUser != NIL_PGMPOOL_IDX); + +# ifdef VBOX_STRICT + /* + * Check that the entry doesn't already exists. We only allow multiple + * users of top-level paging structures (SHW_POOL_ROOT_IDX). + */ + if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) + { + uint16_t i = pPage->iUserHead; + do + { + Assert(i < pPool->cMaxUsers); + /** @todo this assertion looks odd... Shouldn't it be && here? */ + AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable)); + i = paUsers[i].iNext; + } while (i != NIL_PGMPOOL_USER_INDEX); + } +# endif + + /* + * Allocate a user node. + */ + uint16_t i = pPool->iUserFreeHead; + if (i == NIL_PGMPOOL_USER_INDEX) + { + int rc = pgmPoolTrackFreeOneUser(pPool, iUser); + if (RT_FAILURE(rc)) + return rc; + i = pPool->iUserFreeHead; + } + pPool->iUserFreeHead = paUsers[i].iNext; + + /* + * Initialize the user node and insert it. + */ + paUsers[i].iNext = pPage->iUserHead; + paUsers[i].iUser = iUser; + paUsers[i].iUserTable = iUserTable; + pPage->iUserHead = i; + +# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPage->fDirty) + pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */); +# endif + + /* + * Tell the cache to update its replacement stats for this page. + */ + pgmPoolCacheUsed(pPool, pPage); + return VINF_SUCCESS; +} + + +/** + * Frees a user record associated with a page. + * + * This does not clear the entry in the user table, it simply replaces the + * user record to the chain of free records. + * + * @param pPool The pool. + * @param pPage The shadow page. + * @param iUser The shadow page pool index of the user table. + * @param iUserTable The index into the user table (shadowed). + * + * @remarks Don't call this for root pages. + */ +static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) +{ + Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable)); + PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); + Assert(iUser != NIL_PGMPOOL_IDX); + + /* + * Unlink and free the specified user entry. + */ + + /* Special: For PAE and 32-bit paging, there is usually no more than one user. */ + uint16_t i = pPage->iUserHead; + if ( i != NIL_PGMPOOL_USER_INDEX + && paUsers[i].iUser == iUser + && paUsers[i].iUserTable == iUserTable) + { + pPage->iUserHead = paUsers[i].iNext; + + paUsers[i].iUser = NIL_PGMPOOL_IDX; + paUsers[i].iNext = pPool->iUserFreeHead; + pPool->iUserFreeHead = i; + return; + } + + /* General: Linear search. */ + uint16_t iPrev = NIL_PGMPOOL_USER_INDEX; + while (i != NIL_PGMPOOL_USER_INDEX) + { + if ( paUsers[i].iUser == iUser + && paUsers[i].iUserTable == iUserTable) + { + if (iPrev != NIL_PGMPOOL_USER_INDEX) + paUsers[iPrev].iNext = paUsers[i].iNext; + else + pPage->iUserHead = paUsers[i].iNext; + + paUsers[i].iUser = NIL_PGMPOOL_IDX; + paUsers[i].iNext = pPool->iUserFreeHead; + pPool->iUserFreeHead = i; + return; + } + iPrev = i; + i = paUsers[i].iNext; + } + + /* Fatal: didn't find it */ + AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n", + iUser, iUserTable, pPage->GCPhys)); +} + + +#if 0 /* unused */ +/** + * Gets the entry size of a shadow table. + * + * @param enmKind The kind of page. + * + * @returns The size of the entry in bytes. That is, 4 or 8. + * @returns If the kind is not for a table, an assertion is raised and 0 is + * returned. + */ +DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind) +{ + switch (enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_32BIT_PD_PHYS: + return 4; + + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_PAE_PDPT: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + return 8; + + default: + AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); + } +} +#endif /* unused */ + +#if 0 /* unused */ +/** + * Gets the entry size of a guest table. + * + * @param enmKind The kind of page. + * + * @returns The size of the entry in bytes. That is, 0, 4 or 8. + * @returns If the kind is not for a table, an assertion is raised and 0 is + * returned. + */ +DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind) +{ + switch (enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + return 4; + + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_PAE_PDPT: + return 8; + + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_32BIT_PD_PHYS: + /** @todo can we return 0? (nobody is calling this...) */ + AssertFailed(); + return 0; + + default: + AssertFatalMsgFailed(("enmKind=%d\n", enmKind)); + } +} +#endif /* unused */ + + +/** + * Checks one shadow page table entry for a mapping of a physical page. + * + * @returns true / false indicating removal of all relevant PTEs + * + * @param pVM The cross context VM structure. + * @param pPhysPage The guest page in question. + * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) + * @param iShw The shadow page table. + * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown + */ +static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte) +{ + LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte)); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + bool fRet = false; + + /* + * Assert sanity. + */ + Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE); + AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw)); + PPGMPOOLPAGE pPage = &pPool->aPages[iShw]; + + /* + * Then, clear the actual mappings to the page in the shadow PT. + */ + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + { + const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; + PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); + uint32_t u32AndMask = 0; + uint32_t u32OrMask = 0; + + if (!fFlushPTEs) + { + switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) + { + case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */ + case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */ + u32OrMask = X86_PTE_RW; + u32AndMask = UINT32_MAX; + fRet = true; + STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); + break; + + case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */ + u32OrMask = 0; + u32AndMask = ~X86_PTE_RW; + fRet = true; + STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); + break; + default: + /* (shouldn't be here, will assert below) */ + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + break; + } + } + else + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + + /* Update the counter if we're removing references. */ + if (!u32AndMask) + { + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + } + + if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) + { + X86PTE Pte; + + Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte])); + Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask; + if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) + Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */ + + ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); + return fRet; + } +#ifdef LOG_ENABLED + Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++) + if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) + { + Log(("i=%d cFound=%d\n", i, ++cFound)); + } +#endif + AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind)); + /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/ + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */ + { + const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; + PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); + uint64_t u64OrMask = 0; + uint64_t u64AndMask = 0; + + if (!fFlushPTEs) + { + switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage)) + { + case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */ + case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */ + u64OrMask = X86_PTE_RW; + u64AndMask = UINT64_MAX; + fRet = true; + STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); + break; + + case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */ + u64OrMask = 0; + u64AndMask = ~(uint64_t)X86_PTE_RW; + fRet = true; + STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep); + break; + + default: + /* (shouldn't be here, will assert below) */ + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + break; + } + } + else + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + + /* Update the counter if we're removing references. */ + if (!u64AndMask) + { + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + } + + if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64) + { + X86PTEPAE Pte; + + Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte]))); + Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask; + if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY) + Pte.n.u1Write = 0; /* need to disallow writes when dirty bit tracking is still active. */ + + PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); + return fRet; + } +#ifdef LOG_ENABLED + Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64)); + for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++) + if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64) + Log(("i=%d cFound=%d\n", i, ++cFound)); +#endif + AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte]))); + /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/ + break; + } + +#ifdef PGM_WITH_LARGE_PAGES + /* Large page case only. */ + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + { + Assert(pVM->pgm.s.fNestedPaging); + + const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS; + PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage); + + if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) + { + Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte])); + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + pPD->a[iPte].u = 0; + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD); + + /* Update the counter as we're removing references. */ + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + + return fRet; + } +# ifdef LOG_ENABLED + Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++) + if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) + Log(("i=%d cFound=%d\n", i, ++cFound)); +# endif + AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/ + break; + } + + /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */ + case PGMPOOLKIND_PAE_PD_PHYS: + { + Assert(pVM->pgm.s.fNestedPaging); + + const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS; + PX86PD pPD = (PX86PD)PGMPOOL_PAGE_2_PTR(pVM, pPage); + + if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) + { + Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte])); + STAM_COUNTER_INC(&pPool->StatTrackFlushEntry); + pPD->a[iPte].u = 0; + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD); + + /* Update the counter as we're removing references. */ + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + return fRet; + } +# ifdef LOG_ENABLED + Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++) + if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64) + Log(("i=%d cFound=%d\n", i, ++cFound)); +# endif + AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent)); + /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/ + break; + } +#endif /* PGM_WITH_LARGE_PAGES */ + + default: + AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw)); + } + + /* not reached. */ +#ifndef _MSC_VER + return fRet; +#endif +} + + +/** + * Scans one shadow page table for mappings of a physical page. + * + * @param pVM The cross context VM structure. + * @param pPhysPage The guest page in question. + * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) + * @param iShw The shadow page table. + */ +static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool); + + /* We should only come here with when there's only one reference to this physical page. */ + Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1); + + Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw)); + STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f); + bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage)); + if (!fKeptPTEs) + PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); + STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f); +} + + +/** + * Flushes a list of shadow page tables mapping the same physical page. + * + * @param pVM The cross context VM structure. + * @param pPhysPage The guest page in question. + * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) + * @param iPhysExt The physical cross reference extent list to flush. + */ +static void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + bool fKeepList = false; + + STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f); + Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt)); + + const uint16_t iPhysExtStart = iPhysExt; + PPGMPOOLPHYSEXT pPhysExt; + do + { + Assert(iPhysExt < pPool->cMaxPhysExts); + pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; + for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) + { + if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX) + { + bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]); + if (!fKeptPTEs) + { + pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; + pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + else + fKeepList = true; + } + } + /* next */ + iPhysExt = pPhysExt->iNext; + } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); + + if (!fKeepList) + { + /* insert the list into the free list and clear the ram range entry. */ + pPhysExt->iNext = pPool->iPhysExtFreeHead; + pPool->iPhysExtFreeHead = iPhysExtStart; + /* Invalidate the tracking data. */ + PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); + } + + STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f); +} + + +/** + * Flushes all shadow page table mappings of the given guest page. + * + * This is typically called when the host page backing the guest one has been + * replaced or when the page protection was changed due to a guest access + * caught by the monitoring. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if all references has been successfully cleared. + * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page + * pool cleaning. FF and sync flags are set. + * + * @param pVM The cross context VM structure. + * @param GCPhysPage GC physical address of the page in question + * @param pPhysPage The guest page in question. + * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change) + * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be + * flushed, it is NOT touched if this isn't necessary. + * The caller MUST initialized this to @a false. + */ +int pgmPoolTrackUpdateGCPhys(PVM pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs) +{ + PVMCPU pVCpu = VMMGetCpu(pVM); + pgmLock(pVM); + int rc = VINF_SUCCESS; + +#ifdef PGM_WITH_LARGE_PAGES + /* Is this page part of a large page? */ + if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE) + { + RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK; + GCPhysPage &= X86_PDE_PAE_PG_MASK; + + /* Fetch the large page base. */ + PPGMPAGE pLargePage; + if (GCPhysBase != GCPhysPage) + { + pLargePage = pgmPhysGetPage(pVM, GCPhysBase); + AssertFatal(pLargePage); + } + else + pLargePage = pPhysPage; + + Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage)); + + if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE) + { + /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */ + PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED); + pVM->pgm.s.cLargePagesDisabled++; + + /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */ + rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs); + + *pfFlushTLBs = true; + pgmUnlock(pVM); + return rc; + } + } +#else + NOREF(GCPhysPage); +#endif /* PGM_WITH_LARGE_PAGES */ + + const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage); + if (u16) + { + /* + * The zero page is currently screwing up the tracking and we'll + * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC + * is defined, zero pages won't normally be mapped. Some kind of solution + * will be needed for this problem of course, but it will have to wait... + */ + if ( PGM_PAGE_IS_ZERO(pPhysPage) + || PGM_PAGE_IS_BALLOONED(pPhysPage)) + rc = VINF_PGM_GCPHYS_ALIASED; + else + { +# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) /** @todo we can drop this now. */ + /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and + pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */ + uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu); +# endif + + if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) + { + Assert(PGMPOOL_TD_GET_CREFS(u16) == 1); + pgmPoolTrackFlushGCPhysPT(pVM, + pPhysPage, + fFlushPTEs, + PGMPOOL_TD_GET_IDX(u16)); + } + else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) + pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16)); + else + rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage); + *pfFlushTLBs = true; + +# if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset); +# endif + } + } + + if (rc == VINF_PGM_GCPHYS_ALIASED) + { + pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL; + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + rc = VINF_PGM_SYNC_CR3; + } + pgmUnlock(pVM); + return rc; +} + + +/** + * Scans all shadow page tables for mappings of a physical page. + * + * This may be slow, but it's most likely more efficient than cleaning + * out the entire page pool / cache. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if all references has been successfully cleared. + * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and + * a page pool cleaning. + * + * @param pVM The cross context VM structure. + * @param pPhysPage The guest page in question. + */ +int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s); + LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n", + pPool->cUsedPages, pPool->cPresent, pPhysPage)); + + /* + * There is a limit to what makes sense. + */ + if ( pPool->cPresent > 1024 + && pVM->cCpus == 1) + { + LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); + STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); + return VINF_PGM_GCPHYS_ALIASED; + } + + /* + * Iterate all the pages until we've encountered all that in use. + * This is simple but not quite optimal solution. + */ + const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P; /** @todo drop X86_PTE_P here as we always test if present separately, anyway. */ + const uint32_t u32 = u64; /** @todo move into the 32BIT_PT_xx case */ + unsigned cLeft = pPool->cUsedPages; + unsigned iPage = pPool->cCurPages; + while (--iPage >= PGMPOOL_IDX_FIRST) + { + PPGMPOOLPAGE pPage = &pPool->aPages[iPage]; + if ( pPage->GCPhys != NIL_RTGCPHYS + && pPage->cPresent) + { + switch (pPage->enmKind) + { + /* + * We only care about shadow page tables. + */ + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + { + unsigned cPresent = pPage->cPresent; + PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) + if (pPT->a[i].n.u1Present) + { + if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32) + { + //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i])); + pPT->a[i].u = 0; + + /* Update the counter as we're removing references. */ + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + } + if (!--cPresent) + break; + } + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + { + unsigned cPresent = pPage->cPresent; + PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) + if (PGMSHWPTEPAE_IS_P(pPT->a[i])) + { + if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64) + { + //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); + PGMSHWPTEPAE_SET(pPT->a[i], 0); /// @todo why not atomic? + + /* Update the counter as we're removing references. */ + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + } + if (!--cPresent) + break; + } + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); + break; + } +#ifndef IN_RC + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + { + unsigned cPresent = pPage->cPresent; + PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++) + if (pPT->a[i].n.u1Present) + { + if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64) + { + //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i])); + pPT->a[i].u = 0; + + /* Update the counter as we're removing references. */ + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + } + if (!--cPresent) + break; + } + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT); + break; + } +#endif + } + if (!--cLeft) + break; + } + } + + PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); + STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s); + + /* + * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush. + */ + if (pPool->cPresent > 1024) + { + LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent)); + return VINF_PGM_GCPHYS_ALIASED; + } + + return VINF_SUCCESS; +} + + +/** + * Clears the user entry in a user table. + * + * This is used to remove all references to a page when flushing it. + */ +static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser) +{ + Assert(pUser->iUser != NIL_PGMPOOL_IDX); + Assert(pUser->iUser < pPool->cCurPages); + uint32_t iUserTable = pUser->iUserTable; + + /* + * Map the user page. Ignore references made by fictitious pages. + */ + PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser]; + LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind))); + union + { + uint64_t *pau64; + uint32_t *pau32; + } u; + if (pUserPage->idx < PGMPOOL_IDX_FIRST) + { + Assert(!pUserPage->pvPageR3); + return; + } + u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage); + + + /* Safety precaution in case we change the paging for other modes too in the future. */ + Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage); + +#ifdef VBOX_STRICT + /* + * Some sanity checks. + */ + switch (pUserPage->enmKind) + { + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_32BIT_PD_PHYS: + Assert(iUserTable < X86_PG_ENTRIES); + break; + case PGMPOOLKIND_PAE_PDPT: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + case PGMPOOLKIND_PAE_PDPT_PHYS: + Assert(iUserTable < 4); + Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); + break; + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PD_PHYS: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + break; + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING)); + break; + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); + break; + case PGMPOOLKIND_64BIT_PML4: + Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT)); + /* GCPhys >> PAGE_SHIFT is the index here */ + break; + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + break; + + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + break; + + case PGMPOOLKIND_ROOT_NESTED: + Assert(iUserTable < X86_PG_PAE_ENTRIES); + break; + + default: + AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind)); + break; + } +#endif /* VBOX_STRICT */ + + /* + * Clear the entry in the user page. + */ + switch (pUserPage->enmKind) + { + /* 32-bit entries */ + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_32BIT_PD_PHYS: + ASMAtomicWriteU32(&u.pau32[iUserTable], 0); + break; + + /* 64-bit entries */ + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: +#ifdef IN_RC + /* + * In 32 bits PAE mode we *must* invalidate the TLB when changing a + * PDPT entry; the CPU fetches them only during cr3 load, so any + * non-present PDPT will continue to cause page faults. + */ + ASMReloadCR3(); +#endif + RT_FALL_THRU(); + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_PAE_PDPT: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + ASMAtomicWriteU64(&u.pau64[iUserTable], 0); + break; + + default: + AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable)); + } + PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64); +} + + +/** + * Clears all users of a page. + */ +static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + /* + * Free all the user records. + */ + LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys)); + + PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); + uint16_t i = pPage->iUserHead; + while (i != NIL_PGMPOOL_USER_INDEX) + { + /* Clear enter in user table. */ + pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]); + + /* Free it. */ + const uint16_t iNext = paUsers[i].iNext; + paUsers[i].iUser = NIL_PGMPOOL_IDX; + paUsers[i].iNext = pPool->iUserFreeHead; + pPool->iUserFreeHead = i; + + /* Next. */ + i = iNext; + } + pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; +} + + +/** + * Allocates a new physical cross reference extent. + * + * @returns Pointer to the allocated extent on success. NULL if we're out of them. + * @param pVM The cross context VM structure. + * @param piPhysExt Where to store the phys ext index. + */ +PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + uint16_t iPhysExt = pPool->iPhysExtFreeHead; + if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) + { + STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures); + return NULL; + } + PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; + pPool->iPhysExtFreeHead = pPhysExt->iNext; + pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX; + *piPhysExt = iPhysExt; + return pPhysExt; +} + + +/** + * Frees a physical cross reference extent. + * + * @param pVM The cross context VM structure. + * @param iPhysExt The extent to free. + */ +void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + Assert(iPhysExt < pPool->cMaxPhysExts); + PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; + for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) + { + pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; + pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + pPhysExt->iNext = pPool->iPhysExtFreeHead; + pPool->iPhysExtFreeHead = iPhysExt; +} + + +/** + * Frees a physical cross reference extent. + * + * @param pVM The cross context VM structure. + * @param iPhysExt The extent to free. + */ +void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + const uint16_t iPhysExtStart = iPhysExt; + PPGMPOOLPHYSEXT pPhysExt; + do + { + Assert(iPhysExt < pPool->cMaxPhysExts); + pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt]; + for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++) + { + pPhysExt->aidx[i] = NIL_PGMPOOL_IDX; + pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + + /* next */ + iPhysExt = pPhysExt->iNext; + } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); + + pPhysExt->iNext = pPool->iPhysExtFreeHead; + pPool->iPhysExtFreeHead = iPhysExtStart; +} + + +/** + * Insert a reference into a list of physical cross reference extents. + * + * @returns The new tracking data for PGMPAGE. + * + * @param pVM The cross context VM structure. + * @param iPhysExt The physical extent index of the list head. + * @param iShwPT The shadow page table index. + * @param iPte Page table entry + * + */ +static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte) +{ + PGM_LOCK_ASSERT_OWNER(pVM); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); + + /* + * Special common cases. + */ + if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX) + { + paPhysExts[iPhysExt].aidx[1] = iShwPT; + paPhysExts[iPhysExt].apte[1] = iPte; + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany); + LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); + } + if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX) + { + paPhysExts[iPhysExt].aidx[2] = iShwPT; + paPhysExts[iPhysExt].apte[2] = iPte; + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany); + LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); + } + AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3); + + /* + * General treatment. + */ + const uint16_t iPhysExtStart = iPhysExt; + unsigned cMax = 15; + for (;;) + { + Assert(iPhysExt < pPool->cMaxPhysExts); + for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) + if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX) + { + paPhysExts[iPhysExt].aidx[i] = iShwPT; + paPhysExts[iPhysExt].apte[i] = iPte; + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedMany); + LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart); + } + if (!--cMax) + { + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackOverflows); + pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); + LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); + } + + /* advance */ + iPhysExt = paPhysExts[iPhysExt].iNext; + if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX) + break; + } + + /* + * Add another extent to the list. + */ + PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); + if (!pNew) + { + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackNoExtentsLeft); + pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart); + LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); + } + pNew->iNext = iPhysExtStart; + pNew->aidx[0] = iShwPT; + pNew->apte[0] = iPte; + LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart)); + return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); +} + + +/** + * Add a reference to guest physical page where extents are in use. + * + * @returns The new tracking data for PGMPAGE. + * + * @param pVM The cross context VM structure. + * @param pPhysPage Pointer to the aPages entry in the ram range. + * @param u16 The ram range flags (top 16-bits). + * @param iShwPT The shadow page table index. + * @param iPte Page table entry + */ +uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte) +{ + pgmLock(pVM); + if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT) + { + /* + * Convert to extent list. + */ + Assert(PGMPOOL_TD_GET_CREFS(u16) == 1); + uint16_t iPhysExt; + PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt); + if (pPhysExt) + { + LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT)); + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliased); + pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16); + pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage); + pPhysExt->aidx[1] = iShwPT; + pPhysExt->apte[1] = iPte; + u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt); + } + else + u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED); + } + else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED)) + { + /* + * Insert into the extent list. + */ + u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte); + } + else + STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatTrackAliasedLots); + pgmUnlock(pVM); + return u16; +} + + +/** + * Clear references to guest physical memory. + * + * @param pPool The pool. + * @param pPage The page. + * @param pPhysPage Pointer to the aPages entry in the ram range. + * @param iPte Shadow PTE index + */ +void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte) +{ + PVM pVM = pPool->CTX_SUFF(pVM); + const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage); + AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); + + uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage); + if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED) + { + pgmLock(pVM); + + uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX; + PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); + do + { + Assert(iPhysExt < pPool->cMaxPhysExts); + + /* + * Look for the shadow page and check if it's all freed. + */ + for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) + { + if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx + && paPhysExts[iPhysExt].apte[i] == iPte) + { + paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX; + paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + + for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++) + if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX) + { + Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx)); + pgmUnlock(pVM); + return; + } + + /* we can free the node. */ + const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext; + if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX + && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX) + { + /* lonely node */ + pgmPoolTrackPhysExtFree(pVM, iPhysExt); + Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx)); + PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0); + } + else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX) + { + /* head */ + Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx)); + PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext)); + pgmPoolTrackPhysExtFree(pVM, iPhysExt); + } + else + { + /* in list */ + Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx)); + paPhysExts[iPhysExtPrev].iNext = iPhysExtNext; + pgmPoolTrackPhysExtFree(pVM, iPhysExt); + } + iPhysExt = iPhysExtNext; + pgmUnlock(pVM); + return; + } + } + + /* next */ + iPhysExtPrev = iPhysExt; + iPhysExt = paPhysExts[iPhysExt].iNext; + } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX); + + pgmUnlock(pVM); + AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx)); + } + else /* nothing to do */ + Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage)); +} + +/** + * Clear references to guest physical memory. + * + * This is the same as pgmPoolTracDerefGCPhysHint except that the guest + * physical address is assumed to be correct, so the linear search can be + * skipped and we can assert at an earlier point. + * + * @param pPool The pool. + * @param pPage The page. + * @param HCPhys The host physical address corresponding to the guest page. + * @param GCPhys The guest physical address corresponding to HCPhys. + * @param iPte Shadow PTE index + */ +static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte) +{ + /* + * Lookup the page and check if it checks out before derefing it. + */ + PVM pVM = pPool->CTX_SUFF(pVM); + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys); + if (pPhysPage) + { + Assert(PGM_PAGE_GET_HCPHYS(pPhysPage)); +#ifdef LOG_ENABLED + RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage); + Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys)); +#endif + if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys) + { + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte); + return; + } + + AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n", + HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage))); + } + AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys)); +} + + +/** + * Clear references to guest physical memory. + * + * @param pPool The pool. + * @param pPage The page. + * @param HCPhys The host physical address corresponding to the guest page. + * @param GCPhysHint The guest physical address which may corresponding to HCPhys. + * @param iPte Shadow pte index + */ +void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte) +{ + Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint)); + + /* + * Try the hint first. + */ + RTHCPHYS HCPhysHinted; + PVM pVM = pPool->CTX_SUFF(pVM); + PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint); + if (pPhysPage) + { + HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage); + Assert(HCPhysHinted); + if (HCPhysHinted == HCPhys) + { + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte); + return; + } + } + else + HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef); + + /* + * Damn, the hint didn't work. We'll have to do an expensive linear search. + */ + STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches); + PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX); + while (pRam) + { + unsigned iPage = pRam->cb >> PAGE_SHIFT; + while (iPage-- > 0) + { + if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys) + { + Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n", + HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT))); + Assert(pPage->cPresent); + Assert(pPool->cPresent); + pPage->cPresent--; + pPool->cPresent--; + pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte); + return; + } + } + pRam = pRam->CTX_SUFF(pNext); + } + + AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted)); +} + + +/** + * Clear references to guest physical memory in a 32-bit / 32-bit page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + */ +DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT) +{ + RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + Assert(!(pShwPT->a[i].u & RT_BIT_32(10))); + if (pShwPT->a[i].n.u1Present) + { + Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n", + i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to guest physical memory in a PAE / 32-bit page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table (just a half one). + */ +DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT) +{ + RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 + || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n", + i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to guest physical memory in a PAE / PAE page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + * @param pGstPT The guest page table. + */ +DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT) +{ + RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20); + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++) + { + Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 + || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n", + i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK)); + pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to guest physical memory in a 32-bit / 4MB page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT) +{ + RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); + RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) + { + Assert(!(pShwPT->a[i].u & RT_BIT_32(10))); + if (pShwPT->a[i].n.u1Present) + { + Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n", + i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys)); + pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to guest physical memory in a PAE / 2/4MB page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT) +{ + RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); + RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) + { + Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0 + || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000)); + if (PGMSHWPTEPAE_IS_P(pShwPT->a[i])) + { + Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n", + i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys)); + pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to shadowed pages in an EPT page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPT The shadow page directory pointer table (mapping of the + * page). + */ +DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT) +{ + RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20); + RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent; + for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE) + { + Assert((pShwPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); + if (pShwPT->a[i].n.u1Present) + { + Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n", + i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys)); + pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i); + if (!pPage->cPresent) + break; + } + } +} + + +/** + * Clear references to shadowed pages in a 32 bits page directory. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPD The shadow page directory (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) + { + if ( pShwPD->a[i].n.u1Present + && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING) + ) + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK)); + } + } +} + + +/** + * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPD The shadow page directory (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) + { + if ( pShwPD->a[i].n.u1Present + && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)) + { +#ifdef PGM_WITH_LARGE_PAGES + if (pShwPD->a[i].b.u1Size) + { + Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n", + i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys)); + pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, + pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */, + i); + } + else +#endif + { + Assert((pShwPD->a[i].u & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0); + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK)); + /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ + } + } + } +} + + +/** + * Clear references to shadowed pages in a PAE page directory pointer table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPDPT The shadow page directory pointer table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) +{ + for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++) + { + Assert((pShwPDPT->a[i].u & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0); + if ( pShwPDPT->a[i].n.u1Present + && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING) + ) + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK)); + } + } +} + + +/** + * Clear references to shadowed pages in a 64-bit page directory pointer table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPDPT The shadow page directory pointer table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) + { + Assert((pShwPDPT->a[i].u & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0); + if (pShwPDPT->a[i].n.u1Present) + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK)); + /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ + } + } +} + + +/** + * Clear references to shadowed pages in a 64-bit level 4 page table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPML4 The shadow page directory pointer table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++) + { + Assert((pShwPML4->a[i].u & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0); + if (pShwPML4->a[i].n.u1Present) + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK)); + /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ + } + } +} + + +/** + * Clear references to shadowed pages in an EPT page directory. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPD The shadow page directory (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++) + { + Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); + if (pShwPD->a[i].n.u1Present) + { +#ifdef PGM_WITH_LARGE_PAGES + if (pShwPD->a[i].b.u1Size) + { + Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n", + i, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys)); + pgmPoolTracDerefGCPhys(pPool, pPage, pShwPD->a[i].u & X86_PDE2M_PAE_PG_MASK, + pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */, + i); + } + else +#endif + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK)); + } + /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ + } + } +} + + +/** + * Clear references to shadowed pages in an EPT page directory pointer table. + * + * @param pPool The pool. + * @param pPage The page. + * @param pShwPDPT The shadow page directory pointer table (mapping of the page). + */ +DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT) +{ + for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++) + { + Assert((pShwPDPT->a[i].u & UINT64_C(0xfff0000000000f80)) == 0); + if (pShwPDPT->a[i].n.u1Present) + { + PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK); + if (pSubPage) + pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i); + else + AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK)); + /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */ + } + } +} + + +/** + * Clears all references made by this page. + * + * This includes other shadow pages and GC physical addresses. + * + * @param pPool The pool. + * @param pPage The page. + */ +static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage) +{ + /* + * Map the shadow page and take action according to the page kind. + */ + PVM pVM = pPool->CTX_SUFF(pVM); + void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage); + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + { + STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); + void *pvGst; + int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + { + STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); + void *pvGst; + int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + { + STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); + void *pvGst; + int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc); + pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst); + STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); + break; + } + + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */ + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + { + STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); + pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw); + STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); + break; + } + + case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */ + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + { + STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g); + pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw); + STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g); + break; + } + + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw); + break; + + case PGMPOOLKIND_32BIT_PD_PHYS: + case PGMPOOLKIND_32BIT_PD: + pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw); + break; + + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + case PGMPOOLKIND_PAE_PDPT: + case PGMPOOLKIND_PAE_PDPT_PHYS: + pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw); + break; + + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw); + break; + + case PGMPOOLKIND_64BIT_PML4: + pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw); + break; + + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw); + break; + + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw); + break; + + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw); + break; + + default: + AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind)); + } + + /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */ + STAM_PROFILE_START(&pPool->StatZeroPage, z); + ASMMemZeroPage(pvShw); + STAM_PROFILE_STOP(&pPool->StatZeroPage, z); + pPage->fZeroed = true; + Assert(!pPage->cPresent); + PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw); +} + + +/** + * Flushes a pool page. + * + * This moves the page to the free list after removing all user references to it. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * @param pPool The pool. + * @param pPage The shadow page. + * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!) + */ +int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush) +{ + PVM pVM = pPool->CTX_SUFF(pVM); + bool fFlushRequired = false; + + int rc = VINF_SUCCESS; + STAM_PROFILE_START(&pPool->StatFlushPage, f); + LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n", + pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys)); + + /* + * Reject any attempts at flushing any of the special root pages (shall + * not happen). + */ + AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST, + ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", + pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx), + VINF_SUCCESS); + + pgmLock(pVM); + + /* + * Quietly reject any attempts at flushing the currently active shadow CR3 mapping + */ + if (pgmPoolIsPageLocked(pPage)) + { + AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4 + || pPage->enmKind == PGMPOOLKIND_PAE_PDPT + || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT + || pPage->enmKind == PGMPOOLKIND_32BIT_PD + || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD + || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD + || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD + || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD + || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD + || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED, + ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind)); + Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx)); + pgmUnlock(pVM); + return VINF_SUCCESS; + } + +#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + /* Start a subset so we won't run out of mapping space. */ + PVMCPU pVCpu = VMMGetCpu(pVM); + uint32_t iPrevSubset = PGMRZDynMapPushAutoSubset(pVCpu); +#endif + + /* + * Mark the page as being in need of an ASMMemZeroPage(). + */ + pPage->fZeroed = false; + +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPage->fDirty) + pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */); +#endif + + /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */ + if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX) + fFlushRequired = true; + + /* + * Clear the page. + */ + pgmPoolTrackClearPageUsers(pPool, pPage); + STAM_PROFILE_START(&pPool->StatTrackDeref,a); + pgmPoolTrackDeref(pPool, pPage); + STAM_PROFILE_STOP(&pPool->StatTrackDeref,a); + + /* + * Flush it from the cache. + */ + pgmPoolCacheFlushPage(pPool, pPage); + +#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC) + /* Heavy stuff done. */ + PGMRZDynMapPopAutoSubset(pVCpu, iPrevSubset); +#endif + + /* + * Deregistering the monitoring. + */ + if (pPage->fMonitored) + rc = pgmPoolMonitorFlush(pPool, pPage); + + /* + * Free the page. + */ + Assert(pPage->iNext == NIL_PGMPOOL_IDX); + pPage->iNext = pPool->iFreeHead; + pPool->iFreeHead = pPage->idx; + pPage->enmKind = PGMPOOLKIND_FREE; + pPage->enmAccess = PGMPOOLACCESS_DONTCARE; + pPage->GCPhys = NIL_RTGCPHYS; + pPage->fReusedFlushPending = false; + + pPool->cUsedPages--; + + /* Flush the TLBs of all VCPUs if required. */ + if ( fFlushRequired + && fFlush) + { + PGM_INVL_ALL_VCPU_TLBS(pVM); + } + + pgmUnlock(pVM); + STAM_PROFILE_STOP(&pPool->StatFlushPage, f); + return rc; +} + + +/** + * Frees a usage of a pool page. + * + * The caller is responsible to updating the user table so that it no longer + * references the shadow page. + * + * @param pPool The pool. + * @param pPage The shadow page. + * @param iUser The shadow page pool index of the user table. + * NIL_PGMPOOL_IDX for root pages. + * @param iUserTable The index into the user table (shadowed). Ignored if + * root page. + */ +void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable) +{ + PVM pVM = pPool->CTX_SUFF(pVM); + + STAM_PROFILE_START(&pPool->StatFree, a); + LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n", + pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable)); + AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */ + + pgmLock(pVM); + if (iUser != NIL_PGMPOOL_IDX) + pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable); + if (!pPage->fCached) + pgmPoolFlushPage(pPool, pPage); + pgmUnlock(pVM); + STAM_PROFILE_STOP(&pPool->StatFree, a); +} + + +/** + * Makes one or more free page free. + * + * @returns VBox status code. + * @retval VINF_SUCCESS on success. + * + * @param pPool The pool. + * @param enmKind Page table kind + * @param iUser The user of the page. + */ +static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser) +{ + PVM pVM = pPool->CTX_SUFF(pVM); + LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser)); + NOREF(enmKind); + + /* + * If the pool isn't full grown yet, expand it. + */ + if ( pPool->cCurPages < pPool->cMaxPages +#if defined(IN_RC) + /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */ + && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD + && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD) +#endif + ) + { + STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a); +#ifdef IN_RING3 + int rc = PGMR3PoolGrow(pVM); +#else + int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0); +#endif + if (RT_FAILURE(rc)) + return rc; + STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a); + if (pPool->iFreeHead != NIL_PGMPOOL_IDX) + return VINF_SUCCESS; + } + + /* + * Free one cached page. + */ + return pgmPoolCacheFreeOne(pPool, iUser); +} + + +/** + * Allocates a page from the pool. + * + * This page may actually be a cached page and not in need of any processing + * on the callers part. + * + * @returns VBox status code. + * @retval VINF_SUCCESS if a NEW page was allocated. + * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned. + * + * @param pVM The cross context VM structure. + * @param GCPhys The GC physical address of the page we're gonna shadow. + * For 4MB and 2MB PD entries, it's the first address the + * shadow PT is covering. + * @param enmKind The kind of mapping. + * @param enmAccess Access type for the mapping (only relevant for big pages) + * @param fA20Enabled Whether the A20 gate is enabled or not. + * @param iUser The shadow page pool index of the user table. Root + * pages should pass NIL_PGMPOOL_IDX. + * @param iUserTable The index into the user table (shadowed). Ignored for + * root pages (iUser == NIL_PGMPOOL_IDX). + * @param fLockPage Lock the page + * @param ppPage Where to store the pointer to the page. NULL is stored here on failure. + */ +int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled, + uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + STAM_PROFILE_ADV_START(&pPool->StatAlloc, a); + LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable)); + *ppPage = NULL; + /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates + * (TRPMR3SyncIDT) because of FF priority. Try fix that? + * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */ + + pgmLock(pVM); + + if (pPool->fCacheEnabled) + { + int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage); + if (RT_SUCCESS(rc2)) + { + if (fLockPage) + pgmPoolLockPage(pPool, *ppPage); + pgmUnlock(pVM); + STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); + LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx)); + return rc2; + } + } + + /* + * Allocate a new one. + */ + int rc = VINF_SUCCESS; + uint16_t iNew = pPool->iFreeHead; + if (iNew == NIL_PGMPOOL_IDX) + { + rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser); + if (RT_FAILURE(rc)) + { + pgmUnlock(pVM); + Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc)); + STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); + return rc; + } + iNew = pPool->iFreeHead; + AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_PGM_POOL_IPE); + } + + /* unlink the free head */ + PPGMPOOLPAGE pPage = &pPool->aPages[iNew]; + pPool->iFreeHead = pPage->iNext; + pPage->iNext = NIL_PGMPOOL_IDX; + + /* + * Initialize it. + */ + pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */ + pPage->enmKind = enmKind; + pPage->enmAccess = enmAccess; + pPage->GCPhys = GCPhys; + pPage->fA20Enabled = fA20Enabled; + pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */ + pPage->fMonitored = false; + pPage->fCached = false; + pPage->fDirty = false; + pPage->fReusedFlushPending = false; + pPage->cModifications = 0; + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->cPresent = 0; + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + pPage->idxDirtyEntry = 0; + pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; + pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR; + pPage->cLastAccessHandler = 0; + pPage->cLocked = 0; +# ifdef VBOX_STRICT + pPage->GCPtrDirtyFault = NIL_RTGCPTR; +# endif + + /* + * Insert into the tracking and cache. If this fails, free the page. + */ + int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable); + if (RT_FAILURE(rc3)) + { + pPool->cUsedPages--; + pPage->enmKind = PGMPOOLKIND_FREE; + pPage->enmAccess = PGMPOOLACCESS_DONTCARE; + pPage->GCPhys = NIL_RTGCPHYS; + pPage->iNext = pPool->iFreeHead; + pPool->iFreeHead = pPage->idx; + pgmUnlock(pVM); + STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); + Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3)); + return rc3; + } + + /* + * Commit the allocation, clear the page and return. + */ +#ifdef VBOX_WITH_STATISTICS + if (pPool->cUsedPages > pPool->cUsedPagesHigh) + pPool->cUsedPagesHigh = pPool->cUsedPages; +#endif + + if (!pPage->fZeroed) + { + STAM_PROFILE_START(&pPool->StatZeroPage, z); + void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage); + ASMMemZeroPage(pv); + STAM_PROFILE_STOP(&pPool->StatZeroPage, z); + } + + *ppPage = pPage; + if (fLockPage) + pgmPoolLockPage(pPool, pPage); + pgmUnlock(pVM); + LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n", + rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored)); + STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a); + return rc; +} + + +/** + * Frees a usage of a pool page. + * + * @param pVM The cross context VM structure. + * @param HCPhys The HC physical address of the shadow page. + * @param iUser The shadow page pool index of the user table. + * NIL_PGMPOOL_IDX if root page. + * @param iUserTable The index into the user table (shadowed). Ignored if + * root page. + */ +void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable) +{ + LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable)); + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable); +} + + +/** + * Internal worker for finding a 'in-use' shadow page give by it's physical address. + * + * @returns Pointer to the shadow page structure. + * @param pPool The pool. + * @param HCPhys The HC physical address of the shadow page. + */ +PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys) +{ + PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM)); + + /* + * Look up the page. + */ + PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); + + AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0)); + return pPage; +} + + +/** + * Internal worker for finding a page for debugging purposes, no assertions. + * + * @returns Pointer to the shadow page structure. NULL on if not found. + * @param pPool The pool. + * @param HCPhys The HC physical address of the shadow page. + */ +PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys) +{ + PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM)); + return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); +} + +#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */ + +/** + * Flush the specified page if present + * + * @param pVM The cross context VM structure. + * @param GCPhys Guest physical address of the page to flush + */ +void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + VM_ASSERT_EMT(pVM); + + /* + * Look up the GCPhys in the hash. + */ + GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK; + unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)]; + if (i == NIL_PGMPOOL_IDX) + return; + + do + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + if (pPage->GCPhys - GCPhys < PAGE_SIZE) + { + switch (pPage->enmKind) + { + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + case PGMPOOLKIND_64BIT_PML4: + case PGMPOOLKIND_32BIT_PD: + case PGMPOOLKIND_PAE_PDPT: + { + Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys)); +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + if (pPage->fDirty) + STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage); + else +#endif + STAM_COUNTER_INC(&pPool->StatForceFlushPage); + Assert(!pgmPoolIsPageLocked(pPage)); + pgmPoolMonitorChainFlush(pPool, pPage); + return; + } + + /* ignore, no monitoring. */ + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + case PGMPOOLKIND_ROOT_NESTED: + case PGMPOOLKIND_PAE_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_PHYS: + case PGMPOOLKIND_32BIT_PD_PHYS: + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + break; + + default: + AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx)); + } + } + + /* next */ + i = pPage->iNext; + } while (i != NIL_PGMPOOL_IDX); + return; +} + +#endif /* IN_RING3 */ +#ifdef IN_RING3 + +/** + * Reset CPU on hot plugging. + * + * @param pVM The cross context VM structure. + * @param pVCpu The cross context virtual CPU structure. + */ +void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu) +{ + pgmR3ExitShadowModeBeforePoolFlush(pVCpu); + + pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); +} + + +/** + * Flushes the entire cache. + * + * It will assert a global CR3 flush (FF) and assumes the caller is aware of + * this and execute this CR3 flush. + * + * @param pVM The cross context VM structure. + */ +void pgmR3PoolReset(PVM pVM) +{ + PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); + + PGM_LOCK_ASSERT_OWNER(pVM); + STAM_PROFILE_START(&pPool->StatR3Reset, a); + LogFlow(("pgmR3PoolReset:\n")); + + /* + * If there are no pages in the pool, there is nothing to do. + */ + if (pPool->cCurPages <= PGMPOOL_IDX_FIRST) + { + STAM_PROFILE_STOP(&pPool->StatR3Reset, a); + return; + } + + /* + * Exit the shadow mode since we're going to clear everything, + * including the root page. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + pgmR3ExitShadowModeBeforePoolFlush(&pVM->aCpus[i]); + + /* + * Nuke the free list and reinsert all pages into it. + */ + for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--) + { + PPGMPOOLPAGE pPage = &pPool->aPages[i]; + + Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3)); + if (pPage->fMonitored) + pgmPoolMonitorFlush(pPool, pPage); + pPage->iModifiedNext = NIL_PGMPOOL_IDX; + pPage->iModifiedPrev = NIL_PGMPOOL_IDX; + pPage->iMonitoredNext = NIL_PGMPOOL_IDX; + pPage->iMonitoredPrev = NIL_PGMPOOL_IDX; + pPage->GCPhys = NIL_RTGCPHYS; + pPage->enmKind = PGMPOOLKIND_FREE; + pPage->enmAccess = PGMPOOLACCESS_DONTCARE; + Assert(pPage->idx == i); + pPage->iNext = i + 1; + pPage->fA20Enabled = true; + pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */ + pPage->fSeenNonGlobal = false; + pPage->fMonitored = false; + pPage->fDirty = false; + pPage->fCached = false; + pPage->fReusedFlushPending = false; + pPage->iUserHead = NIL_PGMPOOL_USER_INDEX; + pPage->cPresent = 0; + pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX; + pPage->cModifications = 0; + pPage->iAgeNext = NIL_PGMPOOL_IDX; + pPage->iAgePrev = NIL_PGMPOOL_IDX; + pPage->idxDirtyEntry = 0; + pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR; + pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR; + pPage->cLastAccessHandler = 0; + pPage->cLocked = 0; +#ifdef VBOX_STRICT + pPage->GCPtrDirtyFault = NIL_RTGCPTR; +#endif + } + pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX; + pPool->iFreeHead = PGMPOOL_IDX_FIRST; + pPool->cUsedPages = 0; + + /* + * Zap and reinitialize the user records. + */ + pPool->cPresent = 0; + pPool->iUserFreeHead = 0; + PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers); + const unsigned cMaxUsers = pPool->cMaxUsers; + for (unsigned i = 0; i < cMaxUsers; i++) + { + paUsers[i].iNext = i + 1; + paUsers[i].iUser = NIL_PGMPOOL_IDX; + paUsers[i].iUserTable = 0xfffffffe; + } + paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX; + + /* + * Clear all the GCPhys links and rebuild the phys ext free list. + */ + for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX); + pRam; + pRam = pRam->CTX_SUFF(pNext)) + { + unsigned iPage = pRam->cb >> PAGE_SHIFT; + while (iPage-- > 0) + PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0); + } + + pPool->iPhysExtFreeHead = 0; + PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts); + const unsigned cMaxPhysExts = pPool->cMaxPhysExts; + for (unsigned i = 0; i < cMaxPhysExts; i++) + { + paPhysExts[i].iNext = i + 1; + paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX; + paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE; + } + paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX; + + /* + * Just zap the modified list. + */ + pPool->cModifiedPages = 0; + pPool->iModifiedHead = NIL_PGMPOOL_IDX; + + /* + * Clear the GCPhys hash and the age list. + */ + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++) + pPool->aiHash[i] = NIL_PGMPOOL_IDX; + pPool->iAgeHead = NIL_PGMPOOL_IDX; + pPool->iAgeTail = NIL_PGMPOOL_IDX; + +#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT + /* Clear all dirty pages. */ + pPool->idxFreeDirtyPage = 0; + pPool->cDirtyPages = 0; + for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++) + pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX; +#endif + + /* + * Reinsert active pages into the hash and ensure monitoring chains are correct. + */ + for (VMCPUID i = 0; i < pVM->cCpus; i++) + { + /* + * Re-enter the shadowing mode and assert Sync CR3 FF. + */ + PVMCPU pVCpu = &pVM->aCpus[i]; + pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu); + VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); + VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH); + } + + STAM_PROFILE_STOP(&pPool->StatR3Reset, a); +} + +#endif /* IN_RING3 */ + +#if defined(LOG_ENABLED) || defined(VBOX_STRICT) +/** + * Stringifies a PGMPOOLKIND value. + */ +static const char *pgmPoolPoolKindToStr(uint8_t enmKind) +{ + switch ((PGMPOOLKIND)enmKind) + { + case PGMPOOLKIND_INVALID: + return "PGMPOOLKIND_INVALID"; + case PGMPOOLKIND_FREE: + return "PGMPOOLKIND_FREE"; + case PGMPOOLKIND_32BIT_PT_FOR_PHYS: + return "PGMPOOLKIND_32BIT_PT_FOR_PHYS"; + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT: + return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT"; + case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB: + return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB"; + case PGMPOOLKIND_PAE_PT_FOR_PHYS: + return "PGMPOOLKIND_PAE_PT_FOR_PHYS"; + case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT: + return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT"; + case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB: + return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB"; + case PGMPOOLKIND_PAE_PT_FOR_PAE_PT: + return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT"; + case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB: + return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB"; + case PGMPOOLKIND_32BIT_PD: + return "PGMPOOLKIND_32BIT_PD"; + case PGMPOOLKIND_32BIT_PD_PHYS: + return "PGMPOOLKIND_32BIT_PD_PHYS"; + case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD: + return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD"; + case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD: + return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD"; + case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD: + return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD"; + case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD: + return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD"; + case PGMPOOLKIND_PAE_PD_FOR_PAE_PD: + return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD"; + case PGMPOOLKIND_PAE_PD_PHYS: + return "PGMPOOLKIND_PAE_PD_PHYS"; + case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: + return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT"; + case PGMPOOLKIND_PAE_PDPT: + return "PGMPOOLKIND_PAE_PDPT"; + case PGMPOOLKIND_PAE_PDPT_PHYS: + return "PGMPOOLKIND_PAE_PDPT_PHYS"; + case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT: + return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT"; + case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS: + return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS"; + case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD: + return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD"; + case PGMPOOLKIND_64BIT_PD_FOR_PHYS: + return "PGMPOOLKIND_64BIT_PD_FOR_PHYS"; + case PGMPOOLKIND_64BIT_PML4: + return "PGMPOOLKIND_64BIT_PML4"; + case PGMPOOLKIND_EPT_PDPT_FOR_PHYS: + return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS"; + case PGMPOOLKIND_EPT_PD_FOR_PHYS: + return "PGMPOOLKIND_EPT_PD_FOR_PHYS"; + case PGMPOOLKIND_EPT_PT_FOR_PHYS: + return "PGMPOOLKIND_EPT_PT_FOR_PHYS"; + case PGMPOOLKIND_ROOT_NESTED: + return "PGMPOOLKIND_ROOT_NESTED"; + } + return "Unknown kind!"; +} +#endif /* LOG_ENABLED || VBOX_STRICT */ + |