diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-05-06 03:01:46 +0000 |
commit | f8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch) | |
tree | 26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMR0/NEMR0Native-win.cpp | |
parent | Initial commit. (diff) | |
download | virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.tar.xz virtualbox-f8fe689a81f906d1b91bb3220acde2a4ecb14c5b.zip |
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMR0/NEMR0Native-win.cpp')
-rw-r--r-- | src/VBox/VMM/VMMR0/NEMR0Native-win.cpp | 2628 |
1 files changed, 2628 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR0/NEMR0Native-win.cpp b/src/VBox/VMM/VMMR0/NEMR0Native-win.cpp new file mode 100644 index 00000000..796428a8 --- /dev/null +++ b/src/VBox/VMM/VMMR0/NEMR0Native-win.cpp @@ -0,0 +1,2628 @@ +/* $Id: NEMR0Native-win.cpp $ */ +/** @file + * NEM - Native execution manager, native ring-0 Windows backend. + */ + +/* + * Copyright (C) 2018-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_NEM +#define VMCPU_INCL_CPUM_GST_CTX +#include <iprt/nt/nt.h> +#include <iprt/nt/hyperv.h> +#include <iprt/nt/vid.h> +#include <winerror.h> + +#include <VBox/vmm/nem.h> +#include <VBox/vmm/iem.h> +#include <VBox/vmm/em.h> +#include <VBox/vmm/apic.h> +#include <VBox/vmm/pdm.h> +#include <VBox/vmm/dbgftrace.h> +#include "NEMInternal.h" +#include <VBox/vmm/gvm.h> +#include <VBox/vmm/vm.h> +#include <VBox/vmm/gvmm.h> +#include <VBox/param.h> + +#include <iprt/dbg.h> +#include <iprt/memobj.h> +#include <iprt/string.h> +#include <iprt/time.h> + + +/* Assert compile context sanity. */ +#ifndef RT_OS_WINDOWS +# error "Windows only file!" +#endif +#ifndef RT_ARCH_AMD64 +# error "AMD64 only file!" +#endif + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +typedef uint32_t DWORD; /* for winerror.h constants */ + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +static uint64_t (*g_pfnHvlInvokeHypercall)(uint64_t uCallInfo, uint64_t HCPhysInput, uint64_t HCPhysOutput); + +/** + * WinHvr.sys!WinHvDepositMemory + * + * This API will try allocates cPages on IdealNode and deposit it to the + * hypervisor for use with the given partition. The memory will be freed when + * VID.SYS calls WinHvWithdrawAllMemory when the partition is cleanedup. + * + * Apparently node numbers above 64 has a different meaning. + */ +static NTSTATUS (*g_pfnWinHvDepositMemory)(uintptr_t idPartition, size_t cPages, uintptr_t IdealNode, size_t *pcActuallyAdded); + + +/********************************************************************************************************************************* +* Internal Functions * +*********************************************************************************************************************************/ +NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PVM pVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, + uint32_t cPages, uint32_t fFlags); +NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages); +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) +NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx); +NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3); +NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux); +NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue); +#endif +DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, uint32_t uFunction, void *pvInput, uint32_t cbInput, + void *pvOutput, uint32_t cbOutput); + + +/* + * Instantate the code we share with ring-0. + */ +#ifdef NEM_WIN_WITH_RING0_RUNLOOP +# define NEM_WIN_TEMPLATE_MODE_OWN_RUN_API +#else +# undef NEM_WIN_TEMPLATE_MODE_OWN_RUN_API +#endif +#include "../VMMAll/NEMAllNativeTemplate-win.cpp.h" + + + +/** + * Worker for NEMR0InitVM that allocates a hypercall page. + * + * @returns VBox status code. + * @param pHypercallData The hypercall data page to initialize. + */ +static int nemR0InitHypercallData(PNEMR0HYPERCALLDATA pHypercallData) +{ + int rc = RTR0MemObjAllocPage(&pHypercallData->hMemObj, PAGE_SIZE, false /*fExecutable*/); + if (RT_SUCCESS(rc)) + { + pHypercallData->HCPhysPage = RTR0MemObjGetPagePhysAddr(pHypercallData->hMemObj, 0 /*iPage*/); + AssertStmt(pHypercallData->HCPhysPage != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_3); + pHypercallData->pbPage = (uint8_t *)RTR0MemObjAddress(pHypercallData->hMemObj); + AssertStmt(pHypercallData->pbPage, rc = VERR_INTERNAL_ERROR_3); + if (RT_SUCCESS(rc)) + return VINF_SUCCESS; + + /* bail out */ + RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/); + } + pHypercallData->hMemObj = NIL_RTR0MEMOBJ; + pHypercallData->HCPhysPage = NIL_RTHCPHYS; + pHypercallData->pbPage = NULL; + return rc; +} + +/** + * Worker for NEMR0CleanupVM and NEMR0InitVM that cleans up a hypercall page. + * + * @param pHypercallData The hypercall data page to uninitialize. + */ +static void nemR0DeleteHypercallData(PNEMR0HYPERCALLDATA pHypercallData) +{ + /* Check pbPage here since it's NULL, whereas the hMemObj can be either + NIL_RTR0MEMOBJ or 0 (they aren't necessarily the same). */ + if (pHypercallData->pbPage != NULL) + { + RTR0MemObjFree(pHypercallData->hMemObj, true /*fFreeMappings*/); + pHypercallData->pbPage = NULL; + } + pHypercallData->hMemObj = NIL_RTR0MEMOBJ; + pHypercallData->HCPhysPage = NIL_RTHCPHYS; +} + + +/** + * Called by NEMR3Init to make sure we've got what we need. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @thread EMT(0) + */ +VMMR0_INT_DECL(int) NEMR0InitVM(PGVM pGVM, PVM pVM) +{ + AssertCompile(sizeof(pGVM->nem.s) <= sizeof(pGVM->nem.padding)); + AssertCompile(sizeof(pGVM->aCpus[0].nem.s) <= sizeof(pGVM->aCpus[0].nem.padding)); + + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, 0); + AssertRCReturn(rc, rc); + + /* + * We want to perform hypercalls here. The NT kernel started to expose a very low + * level interface to do this thru somewhere between build 14271 and 16299. Since + * we need build 17134 to get anywhere at all, the exact build is not relevant here. + * + * We also need to deposit memory to the hypervisor for use with partition (page + * mapping structures, stuff). + */ + RTDBGKRNLINFO hKrnlInfo; + rc = RTR0DbgKrnlInfoOpen(&hKrnlInfo, 0); + if (RT_SUCCESS(rc)) + { + rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, NULL, "HvlInvokeHypercall", (void **)&g_pfnHvlInvokeHypercall); + if (RT_SUCCESS(rc)) + rc = RTR0DbgKrnlInfoQuerySymbol(hKrnlInfo, "winhvr.sys", "WinHvDepositMemory", (void **)&g_pfnWinHvDepositMemory); + RTR0DbgKrnlInfoRelease(hKrnlInfo); + if (RT_SUCCESS(rc)) + { + /* + * Allocate a page for non-EMT threads to use for hypercalls (update + * statistics and such) and a critical section protecting it. + */ + rc = RTCritSectInit(&pGVM->nem.s.HypercallDataCritSect); + if (RT_SUCCESS(rc)) + { + rc = nemR0InitHypercallData(&pGVM->nem.s.HypercallData); + if (RT_SUCCESS(rc)) + { + /* + * Allocate a page for each VCPU to place hypercall data on. + */ + for (VMCPUID i = 0; i < pGVM->cCpus; i++) + { + rc = nemR0InitHypercallData(&pGVM->aCpus[i].nem.s.HypercallData); + if (RT_FAILURE(rc)) + { + while (i-- > 0) + nemR0DeleteHypercallData(&pGVM->aCpus[i].nem.s.HypercallData); + break; + } + } + if (RT_SUCCESS(rc)) + { + /* + * So far, so good. + */ + return rc; + } + + /* + * Bail out. + */ + nemR0DeleteHypercallData(&pGVM->nem.s.HypercallData); + } + RTCritSectDelete(&pGVM->nem.s.HypercallDataCritSect); + } + } + else + rc = VERR_NEM_MISSING_KERNEL_API; + } + + RT_NOREF(pVM); + return rc; +} + + +/** + * Perform an I/O control operation on the partition handle (VID.SYS). + * + * @returns NT status code. + * @param pGVM The ring-0 VM structure. + * @param uFunction The function to perform. + * @param pvInput The input buffer. This must point within the VM + * structure so we can easily convert to a ring-3 + * pointer if necessary. + * @param cbInput The size of the input. @a pvInput must be NULL when + * zero. + * @param pvOutput The output buffer. This must also point within the + * VM structure for ring-3 pointer magic. + * @param cbOutput The size of the output. @a pvOutput must be NULL + * when zero. + */ +DECLINLINE(NTSTATUS) nemR0NtPerformIoControl(PGVM pGVM, uint32_t uFunction, void *pvInput, uint32_t cbInput, + void *pvOutput, uint32_t cbOutput) +{ +#ifdef RT_STRICT + /* + * Input and output parameters are part of the VM CPU structure. + */ + PVM pVM = pGVM->pVM; + size_t const cbVM = RT_UOFFSETOF_DYN(VM, aCpus[pGVM->cCpus]); + if (pvInput) + AssertReturn(((uintptr_t)pvInput + cbInput) - (uintptr_t)pVM <= cbVM, VERR_INVALID_PARAMETER); + if (pvOutput) + AssertReturn(((uintptr_t)pvOutput + cbOutput) - (uintptr_t)pVM <= cbVM, VERR_INVALID_PARAMETER); +#endif + + int32_t rcNt = STATUS_UNSUCCESSFUL; + int rc = SUPR0IoCtlPerform(pGVM->nem.s.pIoCtlCtx, uFunction, + pvInput, + pvInput ? (uintptr_t)pvInput + pGVM->nem.s.offRing3ConversionDelta : NIL_RTR3PTR, + cbInput, + pvOutput, + pvOutput ? (uintptr_t)pvOutput + pGVM->nem.s.offRing3ConversionDelta : NIL_RTR3PTR, + cbOutput, + &rcNt); + if (RT_SUCCESS(rc) || !NT_SUCCESS((NTSTATUS)rcNt)) + return (NTSTATUS)rcNt; + return STATUS_UNSUCCESSFUL; +} + + +/** + * 2nd part of the initialization, after we've got a partition handle. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @thread EMT(0) + */ +VMMR0_INT_DECL(int) NEMR0InitVMPart2(PGVM pGVM, PVM pVM) +{ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, 0); + AssertRCReturn(rc, rc); + SUPR0Printf("NEMR0InitVMPart2\n"); LogRel(("2: NEMR0InitVMPart2\n")); + Assert(pGVM->nem.s.fMayUseRing0Runloop == false); + + /* + * Copy and validate the I/O control information from ring-3. + */ + NEMWINIOCTL Copy = pVM->nem.s.IoCtlGetHvPartitionId; + AssertLogRelReturn(Copy.uFunction != 0, VERR_NEM_INIT_FAILED); + AssertLogRelReturn(Copy.cbInput == 0, VERR_NEM_INIT_FAILED); + AssertLogRelReturn(Copy.cbOutput == sizeof(HV_PARTITION_ID), VERR_NEM_INIT_FAILED); + pGVM->nem.s.IoCtlGetHvPartitionId = Copy; + + pGVM->nem.s.fMayUseRing0Runloop = pVM->nem.s.fUseRing0Runloop; + + Copy = pVM->nem.s.IoCtlStartVirtualProcessor; + AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); + if (RT_SUCCESS(rc)) + pGVM->nem.s.IoCtlStartVirtualProcessor = Copy; + + Copy = pVM->nem.s.IoCtlStopVirtualProcessor; + AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.cbInput == sizeof(HV_VP_INDEX), rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.cbOutput == 0, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); + if (RT_SUCCESS(rc)) + pGVM->nem.s.IoCtlStopVirtualProcessor = Copy; + + Copy = pVM->nem.s.IoCtlMessageSlotHandleAndGetNext; + AssertLogRelStmt(Copy.uFunction != 0, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt( Copy.cbInput == sizeof(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT) + || Copy.cbInput == RT_OFFSETOF(VID_IOCTL_INPUT_MESSAGE_SLOT_HANDLE_AND_GET_NEXT, cMillies), + rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.cbOutput == 0, VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlGetHvPartitionId.uFunction, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlStartVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); + AssertLogRelStmt(Copy.uFunction != pGVM->nem.s.IoCtlStopVirtualProcessor.uFunction, rc = VERR_NEM_INIT_FAILED); + if (RT_SUCCESS(rc)) + pGVM->nem.s.IoCtlMessageSlotHandleAndGetNext = Copy; + + if ( RT_SUCCESS(rc) + || !pVM->nem.s.fUseRing0Runloop) + { + /* + * Setup of an I/O control context for the partition handle for later use. + */ + rc = SUPR0IoCtlSetupForHandle(pGVM->pSession, pVM->nem.s.hPartitionDevice, 0, &pGVM->nem.s.pIoCtlCtx); + AssertLogRelRCReturn(rc, rc); + pGVM->nem.s.offRing3ConversionDelta = (uintptr_t)pVM->pVMR3 - (uintptr_t)pGVM->pVM; + + /* + * Get the partition ID. + */ + PVMCPU pVCpu = &pGVM->pVM->aCpus[0]; + NTSTATUS rcNt = nemR0NtPerformIoControl(pGVM, pGVM->nem.s.IoCtlGetHvPartitionId.uFunction, NULL, 0, + &pVCpu->nem.s.uIoCtlBuf.idPartition, sizeof(pVCpu->nem.s.uIoCtlBuf.idPartition)); + AssertLogRelMsgReturn(NT_SUCCESS(rcNt), ("IoCtlGetHvPartitionId failed: %#x\n", rcNt), VERR_NEM_INIT_FAILED); + pGVM->nem.s.idHvPartition = pVCpu->nem.s.uIoCtlBuf.idPartition; + AssertLogRelMsgReturn(pGVM->nem.s.idHvPartition == pVM->nem.s.idHvPartition, + ("idHvPartition mismatch: r0=%#RX64, r3=%#RX64\n", pGVM->nem.s.idHvPartition, pVM->nem.s.idHvPartition), + VERR_NEM_INIT_FAILED); + } + + return rc; +} + + +/** + * Cleanup the NEM parts of the VM in ring-0. + * + * This is always called and must deal the state regardless of whether + * NEMR0InitVM() was called or not. So, take care here. + * + * @param pGVM The ring-0 VM handle. + */ +VMMR0_INT_DECL(void) NEMR0CleanupVM(PGVM pGVM) +{ + pGVM->nem.s.idHvPartition = HV_PARTITION_ID_INVALID; + + /* Clean up I/O control context. */ + if (pGVM->nem.s.pIoCtlCtx) + { + int rc = SUPR0IoCtlCleanup(pGVM->nem.s.pIoCtlCtx); + AssertRC(rc); + pGVM->nem.s.pIoCtlCtx = NULL; + } + + /* Free the hypercall pages. */ + VMCPUID i = pGVM->cCpus; + while (i-- > 0) + nemR0DeleteHypercallData(&pGVM->aCpus[i].nem.s.HypercallData); + + /* The non-EMT one too. */ + if (RTCritSectIsInitialized(&pGVM->nem.s.HypercallDataCritSect)) + RTCritSectDelete(&pGVM->nem.s.HypercallDataCritSect); + nemR0DeleteHypercallData(&pGVM->nem.s.HypercallData); +} + + +#if 0 /* for debugging GPA unmapping. */ +static int nemR3WinDummyReadGpa(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys) +{ + PHV_INPUT_READ_GPA pIn = (PHV_INPUT_READ_GPA)pGVCpu->nem.s.pbHypercallData; + PHV_OUTPUT_READ_GPA pOut = (PHV_OUTPUT_READ_GPA)(pIn + 1); + pIn->PartitionId = pGVM->nem.s.idHvPartition; + pIn->VpIndex = pGVCpu->idCpu; + pIn->ByteCount = 0x10; + pIn->BaseGpa = GCPhys; + pIn->ControlFlags.AsUINT64 = 0; + pIn->ControlFlags.CacheType = HvCacheTypeX64WriteCombining; + memset(pOut, 0xfe, sizeof(*pOut)); + uint64_t volatile uResult = g_pfnHvlInvokeHypercall(HvCallReadGpa, pGVCpu->nem.s.HCPhysHypercallData, + pGVCpu->nem.s.HCPhysHypercallData + sizeof(*pIn)); + LogRel(("nemR3WinDummyReadGpa: %RGp -> %#RX64; code=%u rsvd=%u abData=%.16Rhxs\n", + GCPhys, uResult, pOut->AccessResult.ResultCode, pOut->AccessResult.Reserved, pOut->Data)); + __debugbreak(); + + return uResult != 0 ? VERR_READ_ERROR : VINF_SUCCESS; +} +#endif + + +/** + * Worker for NEMR0MapPages and others. + */ +NEM_TMPL_STATIC int nemR0WinMapPages(PGVM pGVM, PVM pVM, PGVMCPU pGVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, + uint32_t cPages, uint32_t fFlags) +{ + /* + * Validate. + */ + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + AssertReturn(cPages > 0, VERR_OUT_OF_RANGE); + AssertReturn(cPages <= NEM_MAX_MAP_PAGES, VERR_OUT_OF_RANGE); + AssertReturn(!(fFlags & ~(HV_MAP_GPA_MAYBE_ACCESS_MASK & ~HV_MAP_GPA_DUNNO_ACCESS)), VERR_INVALID_FLAGS); + AssertMsgReturn(!(GCPhysDst & X86_PAGE_OFFSET_MASK), ("GCPhysDst=%RGp\n", GCPhysDst), VERR_OUT_OF_RANGE); + AssertReturn(GCPhysDst < _1E, VERR_OUT_OF_RANGE); + if (GCPhysSrc != GCPhysDst) + { + AssertMsgReturn(!(GCPhysSrc & X86_PAGE_OFFSET_MASK), ("GCPhysSrc=%RGp\n", GCPhysSrc), VERR_OUT_OF_RANGE); + AssertReturn(GCPhysSrc < _1E, VERR_OUT_OF_RANGE); + } + + /* + * Compose and make the hypercall. + * Ring-3 is not allowed to fill in the host physical addresses of the call. + */ + for (uint32_t iTries = 0;; iTries++) + { + HV_INPUT_MAP_GPA_PAGES *pMapPages = (HV_INPUT_MAP_GPA_PAGES *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pMapPages, VERR_INTERNAL_ERROR_3); + pMapPages->TargetPartitionId = pGVM->nem.s.idHvPartition; + pMapPages->TargetGpaBase = GCPhysDst >> X86_PAGE_SHIFT; + pMapPages->MapFlags = fFlags; + pMapPages->u32ExplicitPadding = 0; + for (uint32_t iPage = 0; iPage < cPages; iPage++, GCPhysSrc += X86_PAGE_SIZE) + { + RTHCPHYS HCPhys = NIL_RTGCPHYS; + int rc = PGMPhysGCPhys2HCPhys(pVM, GCPhysSrc, &HCPhys); + AssertRCReturn(rc, rc); + pMapPages->PageList[iPage] = HCPhys >> X86_PAGE_SHIFT; + } + + uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallMapGpaPages | ((uint64_t)cPages << 32), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0); + Log6(("NEMR0MapPages: %RGp/%RGp L %u prot %#x -> %#RX64\n", + GCPhysDst, GCPhysSrc - cPages * X86_PAGE_SIZE, cPages, fFlags, uResult)); + if (uResult == ((uint64_t)cPages << 32)) + return VINF_SUCCESS; + + /* + * If the partition is out of memory, try donate another 512 pages to + * it (2MB). VID.SYS does multiples of 512 pages, nothing smaller. + */ + if ( uResult != HV_STATUS_INSUFFICIENT_MEMORY + || iTries > 16 + || g_pfnWinHvDepositMemory == NULL) + { + LogRel(("g_pfnHvlInvokeHypercall/MapGpaPages -> %#RX64\n", uResult)); + return VERR_NEM_MAP_PAGES_FAILED; + } + + size_t cPagesAdded = 0; + NTSTATUS rcNt = g_pfnWinHvDepositMemory(pGVM->nem.s.idHvPartition, 512, 0, &cPagesAdded); + if (!cPagesAdded) + { + LogRel(("g_pfnWinHvDepositMemory -> %#x / %#RX64\n", rcNt, uResult)); + return VERR_NEM_MAP_PAGES_FAILED; + } + } +} + + +/** + * Maps pages into the guest physical address space. + * + * Generally the caller will be under the PGM lock already, so no extra effort + * is needed to make sure all changes happens under it. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + * @thread EMT(idCpu) + */ +VMMR0_INT_DECL(int) NEMR0MapPages(PGVM pGVM, PVM pVM, VMCPUID idCpu) +{ + /* + * Unpack the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + + RTGCPHYS const GCPhysSrc = pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc; + RTGCPHYS const GCPhysDst = pVCpu->nem.s.Hypercall.MapPages.GCPhysDst; + uint32_t const cPages = pVCpu->nem.s.Hypercall.MapPages.cPages; + HV_MAP_GPA_FLAGS const fFlags = pVCpu->nem.s.Hypercall.MapPages.fFlags; + + /* + * Do the work. + */ + rc = nemR0WinMapPages(pGVM, pVM, pGVCpu, GCPhysSrc, GCPhysDst, cPages, fFlags); + } + return rc; +} + + +/** + * Worker for NEMR0UnmapPages and others. + */ +NEM_TMPL_STATIC int nemR0WinUnmapPages(PGVM pGVM, PGVMCPU pGVCpu, RTGCPHYS GCPhys, uint32_t cPages) +{ + /* + * Validate input. + */ + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + AssertReturn(cPages > 0, VERR_OUT_OF_RANGE); + AssertReturn(cPages <= NEM_MAX_UNMAP_PAGES, VERR_OUT_OF_RANGE); + AssertMsgReturn(!(GCPhys & X86_PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_OUT_OF_RANGE); + AssertReturn(GCPhys < _1E, VERR_OUT_OF_RANGE); + + /* + * Compose and make the hypercall. + */ + HV_INPUT_UNMAP_GPA_PAGES *pUnmapPages = (HV_INPUT_UNMAP_GPA_PAGES *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pUnmapPages, VERR_INTERNAL_ERROR_3); + pUnmapPages->TargetPartitionId = pGVM->nem.s.idHvPartition; + pUnmapPages->TargetGpaBase = GCPhys >> X86_PAGE_SHIFT; + pUnmapPages->fFlags = 0; + + uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallUnmapGpaPages | ((uint64_t)cPages << 32), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0); + Log6(("NEMR0UnmapPages: %RGp L %u -> %#RX64\n", GCPhys, cPages, uResult)); + if (uResult == ((uint64_t)cPages << 32)) + { +#if 1 /* Do we need to do this? Hopefully not... */ + uint64_t volatile uR = g_pfnHvlInvokeHypercall(HvCallUncommitGpaPages | ((uint64_t)cPages << 32), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0); + AssertMsg(uR == ((uint64_t)cPages << 32), ("uR=%#RX64\n", uR)); NOREF(uR); +#endif + return VINF_SUCCESS; + } + + LogRel(("g_pfnHvlInvokeHypercall/UnmapGpaPages -> %#RX64\n", uResult)); + return VERR_NEM_UNMAP_PAGES_FAILED; +} + + +/** + * Unmaps pages from the guest physical address space. + * + * Generally the caller will be under the PGM lock already, so no extra effort + * is needed to make sure all changes happens under it. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + * @thread EMT(idCpu) + */ +VMMR0_INT_DECL(int) NEMR0UnmapPages(PGVM pGVM, PVM pVM, VMCPUID idCpu) +{ + /* + * Unpack the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + + RTGCPHYS const GCPhys = pVCpu->nem.s.Hypercall.UnmapPages.GCPhys; + uint32_t const cPages = pVCpu->nem.s.Hypercall.UnmapPages.cPages; + + /* + * Do the work. + */ + rc = nemR0WinUnmapPages(pGVM, pGVCpu, GCPhys, cPages); + } + return rc; +} + + +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) +/** + * Worker for NEMR0ExportState. + * + * Intention is to use it internally later. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pGVCpu The ring-0 VCPU handle. + * @param pCtx The CPU context structure to import into. + */ +NEM_TMPL_STATIC int nemR0WinExportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx) +{ + PVMCPU pVCpu = &pGVM->pVM->aCpus[pGVCpu->idCpu]; + HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = pGVCpu->idCpu; + pInput->RsvdZ = 0; + + uint64_t const fWhat = ~pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK); + if ( !fWhat + && pVCpu->nem.s.fCurrentInterruptWindows == pVCpu->nem.s.fDesiredInterruptWindows) + return VINF_SUCCESS; + uintptr_t iReg = 0; + + /* GPRs */ + if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) + { + if (fWhat & CPUMCTX_EXTRN_RAX) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRax; + pInput->Elements[iReg].Value.Reg64 = pCtx->rax; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RCX) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRcx; + pInput->Elements[iReg].Value.Reg64 = pCtx->rcx; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RDX) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRdx; + pInput->Elements[iReg].Value.Reg64 = pCtx->rdx; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RBX) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRbx; + pInput->Elements[iReg].Value.Reg64 = pCtx->rbx; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RSP) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRsp; + pInput->Elements[iReg].Value.Reg64 = pCtx->rsp; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RBP) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRbp; + pInput->Elements[iReg].Value.Reg64 = pCtx->rbp; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RSI) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRsi; + pInput->Elements[iReg].Value.Reg64 = pCtx->rsi; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RDI) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRdi; + pInput->Elements[iReg].Value.Reg64 = pCtx->rdi; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_R8_R15) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR8; + pInput->Elements[iReg].Value.Reg64 = pCtx->r8; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR9; + pInput->Elements[iReg].Value.Reg64 = pCtx->r9; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR10; + pInput->Elements[iReg].Value.Reg64 = pCtx->r10; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR11; + pInput->Elements[iReg].Value.Reg64 = pCtx->r11; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR12; + pInput->Elements[iReg].Value.Reg64 = pCtx->r12; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR13; + pInput->Elements[iReg].Value.Reg64 = pCtx->r13; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR14; + pInput->Elements[iReg].Value.Reg64 = pCtx->r14; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterR15; + pInput->Elements[iReg].Value.Reg64 = pCtx->r15; + iReg++; + } + } + + /* RIP & Flags */ + if (fWhat & CPUMCTX_EXTRN_RIP) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRip; + pInput->Elements[iReg].Value.Reg64 = pCtx->rip; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_RFLAGS) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterRflags; + pInput->Elements[iReg].Value.Reg64 = pCtx->rflags.u; + iReg++; + } + + /* Segments */ +# define COPY_OUT_SEG(a_idx, a_enmName, a_SReg) \ + do { \ + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[a_idx]); \ + pInput->Elements[a_idx].Name = a_enmName; \ + pInput->Elements[a_idx].Value.Segment.Base = (a_SReg).u64Base; \ + pInput->Elements[a_idx].Value.Segment.Limit = (a_SReg).u32Limit; \ + pInput->Elements[a_idx].Value.Segment.Selector = (a_SReg).Sel; \ + pInput->Elements[a_idx].Value.Segment.Attributes = (a_SReg).Attr.u; \ + } while (0) + if (fWhat & CPUMCTX_EXTRN_SREG_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CS) + { + COPY_OUT_SEG(iReg, HvX64RegisterCs, pCtx->cs); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_ES) + { + COPY_OUT_SEG(iReg, HvX64RegisterEs, pCtx->es); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SS) + { + COPY_OUT_SEG(iReg, HvX64RegisterSs, pCtx->ss); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DS) + { + COPY_OUT_SEG(iReg, HvX64RegisterDs, pCtx->ds); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_FS) + { + COPY_OUT_SEG(iReg, HvX64RegisterFs, pCtx->fs); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_GS) + { + COPY_OUT_SEG(iReg, HvX64RegisterGs, pCtx->gs); + iReg++; + } + } + + /* Descriptor tables & task segment. */ + if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fWhat & CPUMCTX_EXTRN_LDTR) + { + COPY_OUT_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_TR) + { + COPY_OUT_SEG(iReg, HvX64RegisterTr, pCtx->tr); + iReg++; + } + + if (fWhat & CPUMCTX_EXTRN_IDTR) + { + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Value.Table.Pad[0] = 0; + pInput->Elements[iReg].Value.Table.Pad[1] = 0; + pInput->Elements[iReg].Value.Table.Pad[2] = 0; + pInput->Elements[iReg].Name = HvX64RegisterIdtr; + pInput->Elements[iReg].Value.Table.Limit = pCtx->idtr.cbIdt; + pInput->Elements[iReg].Value.Table.Base = pCtx->idtr.pIdt; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_GDTR) + { + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Value.Table.Pad[0] = 0; + pInput->Elements[iReg].Value.Table.Pad[1] = 0; + pInput->Elements[iReg].Value.Table.Pad[2] = 0; + pInput->Elements[iReg].Name = HvX64RegisterGdtr; + pInput->Elements[iReg].Value.Table.Limit = pCtx->gdtr.cbGdt; + pInput->Elements[iReg].Value.Table.Base = pCtx->gdtr.pGdt; + iReg++; + } + } + + /* Control registers. */ + if (fWhat & CPUMCTX_EXTRN_CR_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CR0) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCr0; + pInput->Elements[iReg].Value.Reg64 = pCtx->cr0; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR2) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCr2; + pInput->Elements[iReg].Value.Reg64 = pCtx->cr2; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR3) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCr3; + pInput->Elements[iReg].Value.Reg64 = pCtx->cr3; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR4) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCr4; + pInput->Elements[iReg].Value.Reg64 = pCtx->cr4; + iReg++; + } + } + if (fWhat & CPUMCTX_EXTRN_APIC_TPR) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCr8; + pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestCR8(pVCpu); + iReg++; + } + + /** @todo does HvX64RegisterXfem mean XCR0? What about the related MSR. */ + + /* Debug registers. */ +/** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */ + if (fWhat & CPUMCTX_EXTRN_DR0_DR3) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr0; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR0(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[0]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr1; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR1(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr2; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR2(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[2]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr3; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR3(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[3]; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DR6) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr6; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR6(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[6]; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DR7) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDr7; + //pInput->Elements[iReg].Value.Reg64 = CPUMGetHyperDR7(pVCpu); + pInput->Elements[iReg].Value.Reg64 = pCtx->dr[7]; + iReg++; + } + + /* Floating point state. */ + if (fWhat & CPUMCTX_EXTRN_X87) + { + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx0; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[0].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[0].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx1; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[1].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[1].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx2; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[2].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[2].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx3; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[3].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[3].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx4; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[4].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[4].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx5; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[5].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[5].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx6; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[6].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[6].au64[1]; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpMmx7; + pInput->Elements[iReg].Value.Fp.AsUINT128.Low64 = pCtx->pXStateR0->x87.aRegs[7].au64[0]; + pInput->Elements[iReg].Value.Fp.AsUINT128.High64 = pCtx->pXStateR0->x87.aRegs[7].au64[1]; + iReg++; + + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterFpControlStatus; + pInput->Elements[iReg].Value.FpControlStatus.FpControl = pCtx->pXStateR0->x87.FCW; + pInput->Elements[iReg].Value.FpControlStatus.FpStatus = pCtx->pXStateR0->x87.FSW; + pInput->Elements[iReg].Value.FpControlStatus.FpTag = pCtx->pXStateR0->x87.FTW; + pInput->Elements[iReg].Value.FpControlStatus.Reserved = pCtx->pXStateR0->x87.FTW >> 8; + pInput->Elements[iReg].Value.FpControlStatus.LastFpOp = pCtx->pXStateR0->x87.FOP; + pInput->Elements[iReg].Value.FpControlStatus.LastFpRip = (pCtx->pXStateR0->x87.FPUIP) + | ((uint64_t)pCtx->pXStateR0->x87.CS << 32) + | ((uint64_t)pCtx->pXStateR0->x87.Rsrvd1 << 48); + iReg++; +/** @todo we've got trouble if if we try write just SSE w/o X87. */ + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmmControlStatus; + pInput->Elements[iReg].Value.XmmControlStatus.LastFpRdp = (pCtx->pXStateR0->x87.FPUDP) + | ((uint64_t)pCtx->pXStateR0->x87.DS << 32) + | ((uint64_t)pCtx->pXStateR0->x87.Rsrvd2 << 48); + pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControl = pCtx->pXStateR0->x87.MXCSR; + pInput->Elements[iReg].Value.XmmControlStatus.XmmStatusControlMask = pCtx->pXStateR0->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */ + iReg++; + } + + /* Vector state. */ + if (fWhat & CPUMCTX_EXTRN_SSE_AVX) + { + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm0; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[0].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[0].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm1; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[1].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[1].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm2; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[2].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[2].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm3; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[3].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[3].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm4; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[4].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[4].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm5; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[5].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[5].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm6; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[6].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[6].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm7; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[7].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[7].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm8; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[8].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[8].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm9; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[9].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[9].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm10; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[10].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[10].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm11; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[11].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[11].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm12; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[12].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[12].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm13; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[13].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[13].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm14; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[14].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[14].uXmm.s.Hi; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterXmm15; + pInput->Elements[iReg].Value.Reg128.Low64 = pCtx->pXStateR0->x87.aXMM[15].uXmm.s.Lo; + pInput->Elements[iReg].Value.Reg128.High64 = pCtx->pXStateR0->x87.aXMM[15].uXmm.s.Hi; + iReg++; + } + + /* MSRs */ + // HvX64RegisterTsc - don't touch + if (fWhat & CPUMCTX_EXTRN_EFER) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterEfer; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrEFER; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterKernelGsBase; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrKERNELGSBASE; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterSysenterCs; + pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.cs; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterSysenterEip; + pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.eip; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterSysenterEsp; + pInput->Elements[iReg].Value.Reg64 = pCtx->SysEnter.esp; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterStar; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrSTAR; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterLstar; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrLSTAR; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterCstar; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrCSTAR; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterSfmask; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrSFMASK; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterApicBase; + pInput->Elements[iReg].Value.Reg64 = APICGetBaseMsrNoCheck(pVCpu); + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterPat; + pInput->Elements[iReg].Value.Reg64 = pCtx->msrPAT; + iReg++; +# if 0 /** @todo HvX64RegisterMtrrCap is read only? Seems it's not even readable. */ + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrCap; + pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32MtrrCap(pVCpu); + iReg++; +# endif + + PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); + + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrDefType; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrDefType; + iReg++; + + /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */ + + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix64k00000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix64K_00000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16k80000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_80000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix16kA0000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix16K_A0000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC0000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C0000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kC8000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_C8000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD0000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D0000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kD8000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_D8000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE0000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E0000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kE8000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_E8000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF0000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F0000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterMtrrFix4kF8000; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MtrrFix4K_F8000; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterTscAux; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.TscAux; + iReg++; + +# if 0 /** @todo Why can't we write these on Intel systems? Not that we really care... */ + const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM); + if (enmCpuVendor != CPUMCPUVENDOR_AMD) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterIa32MiscEnable; + pInput->Elements[iReg].Value.Reg64 = pCtxMsrs->msr.MiscEnable; + iReg++; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterIa32FeatureControl; + pInput->Elements[iReg].Value.Reg64 = CPUMGetGuestIa32FeatureControl(pVCpu); + iReg++; + } +# endif + } + + /* event injection (clear it). */ + if (fWhat & CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvRegisterPendingInterruption; + pInput->Elements[iReg].Value.Reg64 = 0; + iReg++; + } + + /* Interruptibility state. This can get a little complicated since we get + half of the state via HV_X64_VP_EXECUTION_STATE. */ + if ( (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) + == (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI) ) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvRegisterInterruptState; + pInput->Elements[iReg].Value.Reg64 = 0; + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) + && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip) + pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1; + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1; + iReg++; + } + else if (fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT) + { + if ( pVCpu->nem.s.fLastInterruptShadow + || ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) + && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip)) + { + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvRegisterInterruptState; + pInput->Elements[iReg].Value.Reg64 = 0; + if ( VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) + && EMGetInhibitInterruptsPC(pVCpu) == pCtx->rip) + pInput->Elements[iReg].Value.InterruptState.InterruptShadow = 1; + /** @todo Retrieve NMI state, currently assuming it's zero. (yes this may happen on I/O) */ + //if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + // pInput->Elements[iReg].Value.InterruptState.NmiMasked = 1; + iReg++; + } + } + else + Assert(!(fWhat & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)); + + /* Interrupt windows. Always set if active as Hyper-V seems to be forgetful. */ + uint8_t const fDesiredIntWin = pVCpu->nem.s.fDesiredInterruptWindows; + if ( fDesiredIntWin + || pVCpu->nem.s.fCurrentInterruptWindows != fDesiredIntWin) + { + pVCpu->nem.s.fCurrentInterruptWindows = pVCpu->nem.s.fDesiredInterruptWindows; + HV_REGISTER_ASSOC_ZERO_PADDING_AND_HI64(&pInput->Elements[iReg]); + pInput->Elements[iReg].Name = HvX64RegisterDeliverabilityNotifications; + pInput->Elements[iReg].Value.DeliverabilityNotifications.AsUINT64 = fDesiredIntWin; + Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.NmiNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_NMI)); + Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptNotification == RT_BOOL(fDesiredIntWin & NEM_WIN_INTW_F_REGULAR)); + Assert(pInput->Elements[iReg].Value.DeliverabilityNotifications.InterruptPriority == (fDesiredIntWin & NEM_WIN_INTW_F_PRIO_MASK) >> NEM_WIN_INTW_F_PRIO_SHIFT); + iReg++; + } + + /// @todo HvRegisterPendingEvent0 + /// @todo HvRegisterPendingEvent1 + + /* + * Set the registers. + */ + Assert((uintptr_t)&pInput->Elements[iReg] - (uintptr_t)pGVCpu->nem.s.HypercallData.pbPage < PAGE_SIZE); /* max is 127 */ + + /* + * Make the hypercall. + */ + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, iReg), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0 /*GCPhysOutput*/); + AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(iReg), + ("uResult=%RX64 iRegs=%#x\n", uResult, iReg), + VERR_NEM_SET_REGISTERS_FAILED); + //LogFlow(("nemR0WinExportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtrn=%#018RX64 -> %#018RX64\n", uResult, iReg, fWhat, pCtx->fExtrn, + // pCtx->fExtrn | CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM )); + pCtx->fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_NEM_WIN_MASK | CPUMCTX_EXTRN_KEEPER_NEM; + return VINF_SUCCESS; +} +#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ + + +/** + * Export the state to the native API (out of CPUMCTX). + * + * @returns VBox status code + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + */ +VMMR0_INT_DECL(int) NEMR0ExportState(PGVM pGVM, PVM pVM, VMCPUID idCpu) +{ +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) + /* + * Validate the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + /* + * Call worker. + */ + rc = nemR0WinExportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx); + } + return rc; +#else + RT_NOREF(pGVM, pVM, idCpu); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) +/** + * Worker for NEMR0ImportState. + * + * Intention is to use it internally later. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pGVCpu The ring-0 VCPU handle. + * @param pCtx The CPU context structure to import into. + * @param fWhat What to import, CPUMCTX_EXTRN_XXX. + * @param fCanUpdateCr3 Whether it's safe to update CR3 or not. + */ +NEM_TMPL_STATIC int nemR0WinImportState(PGVM pGVM, PGVMCPU pGVCpu, PCPUMCTX pCtx, uint64_t fWhat, bool fCanUpdateCr3) +{ + HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + Assert(pCtx == &pGVCpu->pVCpu->cpum.GstCtx); + + fWhat &= pCtx->fExtrn; + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = pGVCpu->idCpu; + pInput->fFlags = 0; + + /* GPRs */ + uintptr_t iReg = 0; + if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) + { + if (fWhat & CPUMCTX_EXTRN_RAX) + pInput->Names[iReg++] = HvX64RegisterRax; + if (fWhat & CPUMCTX_EXTRN_RCX) + pInput->Names[iReg++] = HvX64RegisterRcx; + if (fWhat & CPUMCTX_EXTRN_RDX) + pInput->Names[iReg++] = HvX64RegisterRdx; + if (fWhat & CPUMCTX_EXTRN_RBX) + pInput->Names[iReg++] = HvX64RegisterRbx; + if (fWhat & CPUMCTX_EXTRN_RSP) + pInput->Names[iReg++] = HvX64RegisterRsp; + if (fWhat & CPUMCTX_EXTRN_RBP) + pInput->Names[iReg++] = HvX64RegisterRbp; + if (fWhat & CPUMCTX_EXTRN_RSI) + pInput->Names[iReg++] = HvX64RegisterRsi; + if (fWhat & CPUMCTX_EXTRN_RDI) + pInput->Names[iReg++] = HvX64RegisterRdi; + if (fWhat & CPUMCTX_EXTRN_R8_R15) + { + pInput->Names[iReg++] = HvX64RegisterR8; + pInput->Names[iReg++] = HvX64RegisterR9; + pInput->Names[iReg++] = HvX64RegisterR10; + pInput->Names[iReg++] = HvX64RegisterR11; + pInput->Names[iReg++] = HvX64RegisterR12; + pInput->Names[iReg++] = HvX64RegisterR13; + pInput->Names[iReg++] = HvX64RegisterR14; + pInput->Names[iReg++] = HvX64RegisterR15; + } + } + + /* RIP & Flags */ + if (fWhat & CPUMCTX_EXTRN_RIP) + pInput->Names[iReg++] = HvX64RegisterRip; + if (fWhat & CPUMCTX_EXTRN_RFLAGS) + pInput->Names[iReg++] = HvX64RegisterRflags; + + /* Segments */ + if (fWhat & CPUMCTX_EXTRN_SREG_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CS) + pInput->Names[iReg++] = HvX64RegisterCs; + if (fWhat & CPUMCTX_EXTRN_ES) + pInput->Names[iReg++] = HvX64RegisterEs; + if (fWhat & CPUMCTX_EXTRN_SS) + pInput->Names[iReg++] = HvX64RegisterSs; + if (fWhat & CPUMCTX_EXTRN_DS) + pInput->Names[iReg++] = HvX64RegisterDs; + if (fWhat & CPUMCTX_EXTRN_FS) + pInput->Names[iReg++] = HvX64RegisterFs; + if (fWhat & CPUMCTX_EXTRN_GS) + pInput->Names[iReg++] = HvX64RegisterGs; + } + + /* Descriptor tables and the task segment. */ + if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fWhat & CPUMCTX_EXTRN_LDTR) + pInput->Names[iReg++] = HvX64RegisterLdtr; + if (fWhat & CPUMCTX_EXTRN_TR) + pInput->Names[iReg++] = HvX64RegisterTr; + if (fWhat & CPUMCTX_EXTRN_IDTR) + pInput->Names[iReg++] = HvX64RegisterIdtr; + if (fWhat & CPUMCTX_EXTRN_GDTR) + pInput->Names[iReg++] = HvX64RegisterGdtr; + } + + /* Control registers. */ + if (fWhat & CPUMCTX_EXTRN_CR_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CR0) + pInput->Names[iReg++] = HvX64RegisterCr0; + if (fWhat & CPUMCTX_EXTRN_CR2) + pInput->Names[iReg++] = HvX64RegisterCr2; + if (fWhat & CPUMCTX_EXTRN_CR3) + pInput->Names[iReg++] = HvX64RegisterCr3; + if (fWhat & CPUMCTX_EXTRN_CR4) + pInput->Names[iReg++] = HvX64RegisterCr4; + } + if (fWhat & CPUMCTX_EXTRN_APIC_TPR) + pInput->Names[iReg++] = HvX64RegisterCr8; + + /* Debug registers. */ + if (fWhat & CPUMCTX_EXTRN_DR7) + pInput->Names[iReg++] = HvX64RegisterDr7; + if (fWhat & CPUMCTX_EXTRN_DR0_DR3) + { + if (!(fWhat & CPUMCTX_EXTRN_DR7) && (pCtx->fExtrn & CPUMCTX_EXTRN_DR7)) + { + fWhat |= CPUMCTX_EXTRN_DR7; + pInput->Names[iReg++] = HvX64RegisterDr7; + } + pInput->Names[iReg++] = HvX64RegisterDr0; + pInput->Names[iReg++] = HvX64RegisterDr1; + pInput->Names[iReg++] = HvX64RegisterDr2; + pInput->Names[iReg++] = HvX64RegisterDr3; + } + if (fWhat & CPUMCTX_EXTRN_DR6) + pInput->Names[iReg++] = HvX64RegisterDr6; + + /* Floating point state. */ + if (fWhat & CPUMCTX_EXTRN_X87) + { + pInput->Names[iReg++] = HvX64RegisterFpMmx0; + pInput->Names[iReg++] = HvX64RegisterFpMmx1; + pInput->Names[iReg++] = HvX64RegisterFpMmx2; + pInput->Names[iReg++] = HvX64RegisterFpMmx3; + pInput->Names[iReg++] = HvX64RegisterFpMmx4; + pInput->Names[iReg++] = HvX64RegisterFpMmx5; + pInput->Names[iReg++] = HvX64RegisterFpMmx6; + pInput->Names[iReg++] = HvX64RegisterFpMmx7; + pInput->Names[iReg++] = HvX64RegisterFpControlStatus; + } + if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) + pInput->Names[iReg++] = HvX64RegisterXmmControlStatus; + + /* Vector state. */ + if (fWhat & CPUMCTX_EXTRN_SSE_AVX) + { + pInput->Names[iReg++] = HvX64RegisterXmm0; + pInput->Names[iReg++] = HvX64RegisterXmm1; + pInput->Names[iReg++] = HvX64RegisterXmm2; + pInput->Names[iReg++] = HvX64RegisterXmm3; + pInput->Names[iReg++] = HvX64RegisterXmm4; + pInput->Names[iReg++] = HvX64RegisterXmm5; + pInput->Names[iReg++] = HvX64RegisterXmm6; + pInput->Names[iReg++] = HvX64RegisterXmm7; + pInput->Names[iReg++] = HvX64RegisterXmm8; + pInput->Names[iReg++] = HvX64RegisterXmm9; + pInput->Names[iReg++] = HvX64RegisterXmm10; + pInput->Names[iReg++] = HvX64RegisterXmm11; + pInput->Names[iReg++] = HvX64RegisterXmm12; + pInput->Names[iReg++] = HvX64RegisterXmm13; + pInput->Names[iReg++] = HvX64RegisterXmm14; + pInput->Names[iReg++] = HvX64RegisterXmm15; + } + + /* MSRs */ + // HvX64RegisterTsc - don't touch + if (fWhat & CPUMCTX_EXTRN_EFER) + pInput->Names[iReg++] = HvX64RegisterEfer; + if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + pInput->Names[iReg++] = HvX64RegisterKernelGsBase; + if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + pInput->Names[iReg++] = HvX64RegisterSysenterCs; + pInput->Names[iReg++] = HvX64RegisterSysenterEip; + pInput->Names[iReg++] = HvX64RegisterSysenterEsp; + } + if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + pInput->Names[iReg++] = HvX64RegisterStar; + pInput->Names[iReg++] = HvX64RegisterLstar; + pInput->Names[iReg++] = HvX64RegisterCstar; + pInput->Names[iReg++] = HvX64RegisterSfmask; + } + +# ifdef LOG_ENABLED + const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pGVM->pVM); +# endif + if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) + { + pInput->Names[iReg++] = HvX64RegisterApicBase; /// @todo APIC BASE + pInput->Names[iReg++] = HvX64RegisterPat; +# if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */ + pInput->Names[iReg++] = HvX64RegisterMtrrCap; +# endif + pInput->Names[iReg++] = HvX64RegisterMtrrDefType; + pInput->Names[iReg++] = HvX64RegisterMtrrFix64k00000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix16k80000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix16kA0000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC0000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kC8000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD0000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kD8000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE0000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kE8000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF0000; + pInput->Names[iReg++] = HvX64RegisterMtrrFix4kF8000; + pInput->Names[iReg++] = HvX64RegisterTscAux; +# if 0 /** @todo why can't we read HvX64RegisterIa32MiscEnable? */ + if (enmCpuVendor != CPUMCPUVENDOR_AMD) + pInput->Names[iReg++] = HvX64RegisterIa32MiscEnable; +# endif +# ifdef LOG_ENABLED + if (enmCpuVendor != CPUMCPUVENDOR_AMD) + pInput->Names[iReg++] = HvX64RegisterIa32FeatureControl; +# endif + } + + /* Interruptibility. */ + if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) + { + pInput->Names[iReg++] = HvRegisterInterruptState; + pInput->Names[iReg++] = HvX64RegisterRip; + } + + /* event injection */ + pInput->Names[iReg++] = HvRegisterPendingInterruption; + pInput->Names[iReg++] = HvRegisterPendingEvent0; + pInput->Names[iReg++] = HvRegisterPendingEvent1; + size_t const cRegs = iReg; + size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF_DYN(HV_INPUT_GET_VP_REGISTERS, Names[cRegs]), 32); + + HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); + Assert((uintptr_t)&paValues[cRegs] - (uintptr_t)pGVCpu->nem.s.HypercallData.pbPage < PAGE_SIZE); /* (max is around 168 registers) */ + RT_BZERO(paValues, cRegs * sizeof(paValues[0])); + + /* + * Make the hypercall. + */ + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, cRegs), + pGVCpu->nem.s.HypercallData.HCPhysPage, + pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput); + AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(cRegs), + ("uResult=%RX64 cRegs=%#x\n", uResult, cRegs), + VERR_NEM_GET_REGISTERS_FAILED); + //LogFlow(("nemR0WinImportState: uResult=%#RX64 iReg=%zu fWhat=%#018RX64 fExtr=%#018RX64\n", uResult, cRegs, fWhat, pCtx->fExtrn)); + + /* + * Copy information to the CPUM context. + */ + PVMCPU pVCpu = &pGVM->pVM->aCpus[pGVCpu->idCpu]; + iReg = 0; + + /* GPRs */ + if (fWhat & CPUMCTX_EXTRN_GPRS_MASK) + { + if (fWhat & CPUMCTX_EXTRN_RAX) + { + Assert(pInput->Names[iReg] == HvX64RegisterRax); + pCtx->rax = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RCX) + { + Assert(pInput->Names[iReg] == HvX64RegisterRcx); + pCtx->rcx = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RDX) + { + Assert(pInput->Names[iReg] == HvX64RegisterRdx); + pCtx->rdx = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RBX) + { + Assert(pInput->Names[iReg] == HvX64RegisterRbx); + pCtx->rbx = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RSP) + { + Assert(pInput->Names[iReg] == HvX64RegisterRsp); + pCtx->rsp = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RBP) + { + Assert(pInput->Names[iReg] == HvX64RegisterRbp); + pCtx->rbp = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RSI) + { + Assert(pInput->Names[iReg] == HvX64RegisterRsi); + pCtx->rsi = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RDI) + { + Assert(pInput->Names[iReg] == HvX64RegisterRdi); + pCtx->rdi = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_R8_R15) + { + Assert(pInput->Names[iReg] == HvX64RegisterR8); + Assert(pInput->Names[iReg + 7] == HvX64RegisterR15); + pCtx->r8 = paValues[iReg++].Reg64; + pCtx->r9 = paValues[iReg++].Reg64; + pCtx->r10 = paValues[iReg++].Reg64; + pCtx->r11 = paValues[iReg++].Reg64; + pCtx->r12 = paValues[iReg++].Reg64; + pCtx->r13 = paValues[iReg++].Reg64; + pCtx->r14 = paValues[iReg++].Reg64; + pCtx->r15 = paValues[iReg++].Reg64; + } + } + + /* RIP & Flags */ + if (fWhat & CPUMCTX_EXTRN_RIP) + { + Assert(pInput->Names[iReg] == HvX64RegisterRip); + pCtx->rip = paValues[iReg++].Reg64; + } + if (fWhat & CPUMCTX_EXTRN_RFLAGS) + { + Assert(pInput->Names[iReg] == HvX64RegisterRflags); + pCtx->rflags.u = paValues[iReg++].Reg64; + } + + /* Segments */ +# define COPY_BACK_SEG(a_idx, a_enmName, a_SReg) \ + do { \ + Assert(pInput->Names[a_idx] == a_enmName); \ + (a_SReg).u64Base = paValues[a_idx].Segment.Base; \ + (a_SReg).u32Limit = paValues[a_idx].Segment.Limit; \ + (a_SReg).ValidSel = (a_SReg).Sel = paValues[a_idx].Segment.Selector; \ + (a_SReg).Attr.u = paValues[a_idx].Segment.Attributes; \ + (a_SReg).fFlags = CPUMSELREG_FLAGS_VALID; \ + } while (0) + if (fWhat & CPUMCTX_EXTRN_SREG_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CS) + { + COPY_BACK_SEG(iReg, HvX64RegisterCs, pCtx->cs); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_ES) + { + COPY_BACK_SEG(iReg, HvX64RegisterEs, pCtx->es); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SS) + { + COPY_BACK_SEG(iReg, HvX64RegisterSs, pCtx->ss); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DS) + { + COPY_BACK_SEG(iReg, HvX64RegisterDs, pCtx->ds); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_FS) + { + COPY_BACK_SEG(iReg, HvX64RegisterFs, pCtx->fs); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_GS) + { + COPY_BACK_SEG(iReg, HvX64RegisterGs, pCtx->gs); + iReg++; + } + } + /* Descriptor tables and the task segment. */ + if (fWhat & CPUMCTX_EXTRN_TABLE_MASK) + { + if (fWhat & CPUMCTX_EXTRN_LDTR) + { + COPY_BACK_SEG(iReg, HvX64RegisterLdtr, pCtx->ldtr); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_TR) + { + /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So, + avoid to trigger sanity assertions around the code, always fix this. */ + COPY_BACK_SEG(iReg, HvX64RegisterTr, pCtx->tr); + switch (pCtx->tr.Attr.n.u4Type) + { + case X86_SEL_TYPE_SYS_386_TSS_BUSY: + case X86_SEL_TYPE_SYS_286_TSS_BUSY: + break; + case X86_SEL_TYPE_SYS_386_TSS_AVAIL: + pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; + break; + case X86_SEL_TYPE_SYS_286_TSS_AVAIL: + pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY; + break; + } + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_IDTR) + { + Assert(pInput->Names[iReg] == HvX64RegisterIdtr); + pCtx->idtr.cbIdt = paValues[iReg].Table.Limit; + pCtx->idtr.pIdt = paValues[iReg].Table.Base; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_GDTR) + { + Assert(pInput->Names[iReg] == HvX64RegisterGdtr); + pCtx->gdtr.cbGdt = paValues[iReg].Table.Limit; + pCtx->gdtr.pGdt = paValues[iReg].Table.Base; + iReg++; + } + } + + /* Control registers. */ + bool fMaybeChangedMode = false; + bool fUpdateCr3 = false; + if (fWhat & CPUMCTX_EXTRN_CR_MASK) + { + if (fWhat & CPUMCTX_EXTRN_CR0) + { + Assert(pInput->Names[iReg] == HvX64RegisterCr0); + if (pCtx->cr0 != paValues[iReg].Reg64) + { + CPUMSetGuestCR0(pVCpu, paValues[iReg].Reg64); + fMaybeChangedMode = true; + } + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR2) + { + Assert(pInput->Names[iReg] == HvX64RegisterCr2); + pCtx->cr2 = paValues[iReg].Reg64; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR3) + { + Assert(pInput->Names[iReg] == HvX64RegisterCr3); + if (pCtx->cr3 != paValues[iReg].Reg64) + { + CPUMSetGuestCR3(pVCpu, paValues[iReg].Reg64); + fUpdateCr3 = true; + } + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_CR4) + { + Assert(pInput->Names[iReg] == HvX64RegisterCr4); + if (pCtx->cr4 != paValues[iReg].Reg64) + { + CPUMSetGuestCR4(pVCpu, paValues[iReg].Reg64); + fMaybeChangedMode = true; + } + iReg++; + } + } + if (fWhat & CPUMCTX_EXTRN_APIC_TPR) + { + Assert(pInput->Names[iReg] == HvX64RegisterCr8); + APICSetTpr(pVCpu, (uint8_t)paValues[iReg].Reg64 << 4); + iReg++; + } + + /* Debug registers. */ + if (fWhat & CPUMCTX_EXTRN_DR7) + { + Assert(pInput->Names[iReg] == HvX64RegisterDr7); + if (pCtx->dr[7] != paValues[iReg].Reg64) + CPUMSetGuestDR7(pVCpu, paValues[iReg].Reg64); + pCtx->fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */ + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DR0_DR3) + { + Assert(pInput->Names[iReg] == HvX64RegisterDr0); + Assert(pInput->Names[iReg+3] == HvX64RegisterDr3); + if (pCtx->dr[0] != paValues[iReg].Reg64) + CPUMSetGuestDR0(pVCpu, paValues[iReg].Reg64); + iReg++; + if (pCtx->dr[1] != paValues[iReg].Reg64) + CPUMSetGuestDR1(pVCpu, paValues[iReg].Reg64); + iReg++; + if (pCtx->dr[2] != paValues[iReg].Reg64) + CPUMSetGuestDR2(pVCpu, paValues[iReg].Reg64); + iReg++; + if (pCtx->dr[3] != paValues[iReg].Reg64) + CPUMSetGuestDR3(pVCpu, paValues[iReg].Reg64); + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_DR6) + { + Assert(pInput->Names[iReg] == HvX64RegisterDr6); + if (pCtx->dr[6] != paValues[iReg].Reg64) + CPUMSetGuestDR6(pVCpu, paValues[iReg].Reg64); + iReg++; + } + + /* Floating point state. */ + if (fWhat & CPUMCTX_EXTRN_X87) + { + Assert(pInput->Names[iReg] == HvX64RegisterFpMmx0); + Assert(pInput->Names[iReg + 7] == HvX64RegisterFpMmx7); + pCtx->pXStateR0->x87.aRegs[0].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[0].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[1].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[1].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[2].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[2].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[3].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[3].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[4].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[4].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[5].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[5].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[6].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[6].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + pCtx->pXStateR0->x87.aRegs[7].au64[0] = paValues[iReg].Fp.AsUINT128.Low64; + pCtx->pXStateR0->x87.aRegs[7].au64[1] = paValues[iReg].Fp.AsUINT128.High64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterFpControlStatus); + pCtx->pXStateR0->x87.FCW = paValues[iReg].FpControlStatus.FpControl; + pCtx->pXStateR0->x87.FSW = paValues[iReg].FpControlStatus.FpStatus; + pCtx->pXStateR0->x87.FTW = paValues[iReg].FpControlStatus.FpTag + /*| (paValues[iReg].FpControlStatus.Reserved << 8)*/; + pCtx->pXStateR0->x87.FOP = paValues[iReg].FpControlStatus.LastFpOp; + pCtx->pXStateR0->x87.FPUIP = (uint32_t)paValues[iReg].FpControlStatus.LastFpRip; + pCtx->pXStateR0->x87.CS = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 32); + pCtx->pXStateR0->x87.Rsrvd1 = (uint16_t)(paValues[iReg].FpControlStatus.LastFpRip >> 48); + iReg++; + } + + if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX)) + { + Assert(pInput->Names[iReg] == HvX64RegisterXmmControlStatus); + if (fWhat & CPUMCTX_EXTRN_X87) + { + pCtx->pXStateR0->x87.FPUDP = (uint32_t)paValues[iReg].XmmControlStatus.LastFpRdp; + pCtx->pXStateR0->x87.DS = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 32); + pCtx->pXStateR0->x87.Rsrvd2 = (uint16_t)(paValues[iReg].XmmControlStatus.LastFpRdp >> 48); + } + pCtx->pXStateR0->x87.MXCSR = paValues[iReg].XmmControlStatus.XmmStatusControl; + pCtx->pXStateR0->x87.MXCSR_MASK = paValues[iReg].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */ + iReg++; + } + + /* Vector state. */ + if (fWhat & CPUMCTX_EXTRN_SSE_AVX) + { + Assert(pInput->Names[iReg] == HvX64RegisterXmm0); + Assert(pInput->Names[iReg+15] == HvX64RegisterXmm15); + pCtx->pXStateR0->x87.aXMM[0].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[0].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[1].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[1].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[2].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[2].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[3].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[3].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[4].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[4].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[5].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[5].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[6].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[6].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[7].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[7].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[8].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[8].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[9].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[9].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[10].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[10].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[11].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[11].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[12].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[12].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[13].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[13].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[14].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[14].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + pCtx->pXStateR0->x87.aXMM[15].uXmm.s.Lo = paValues[iReg].Reg128.Low64; + pCtx->pXStateR0->x87.aXMM[15].uXmm.s.Hi = paValues[iReg].Reg128.High64; + iReg++; + } + + + /* MSRs */ + // HvX64RegisterTsc - don't touch + if (fWhat & CPUMCTX_EXTRN_EFER) + { + Assert(pInput->Names[iReg] == HvX64RegisterEfer); + if (paValues[iReg].Reg64 != pCtx->msrEFER) + { + Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrEFER, paValues[iReg].Reg64)); + if ((paValues[iReg].Reg64 ^ pCtx->msrEFER) & MSR_K6_EFER_NXE) + PGMNotifyNxeChanged(pVCpu, RT_BOOL(paValues[iReg].Reg64 & MSR_K6_EFER_NXE)); + pCtx->msrEFER = paValues[iReg].Reg64; + fMaybeChangedMode = true; + } + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE) + { + Assert(pInput->Names[iReg] == HvX64RegisterKernelGsBase); + if (pCtx->msrKERNELGSBASE != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR KERNELGSBASE changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrKERNELGSBASE, paValues[iReg].Reg64)); + pCtx->msrKERNELGSBASE = paValues[iReg].Reg64; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS) + { + Assert(pInput->Names[iReg] == HvX64RegisterSysenterCs); + if (pCtx->SysEnter.cs != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR SYSENTER.CS changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->SysEnter.cs, paValues[iReg].Reg64)); + pCtx->SysEnter.cs = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterSysenterEip); + if (pCtx->SysEnter.eip != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR SYSENTER.EIP changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->SysEnter.eip, paValues[iReg].Reg64)); + pCtx->SysEnter.eip = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterSysenterEsp); + if (pCtx->SysEnter.esp != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR SYSENTER.ESP changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->SysEnter.esp, paValues[iReg].Reg64)); + pCtx->SysEnter.esp = paValues[iReg].Reg64; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS) + { + Assert(pInput->Names[iReg] == HvX64RegisterStar); + if (pCtx->msrSTAR != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR STAR changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrSTAR, paValues[iReg].Reg64)); + pCtx->msrSTAR = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterLstar); + if (pCtx->msrLSTAR != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR LSTAR changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrLSTAR, paValues[iReg].Reg64)); + pCtx->msrLSTAR = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterCstar); + if (pCtx->msrCSTAR != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR CSTAR changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrCSTAR, paValues[iReg].Reg64)); + pCtx->msrCSTAR = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterSfmask); + if (pCtx->msrSFMASK != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR SFMASK changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrSFMASK, paValues[iReg].Reg64)); + pCtx->msrSFMASK = paValues[iReg].Reg64; + iReg++; + } + if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS) + { + Assert(pInput->Names[iReg] == HvX64RegisterApicBase); + const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu); + if (paValues[iReg].Reg64 != uOldBase) + { + Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n", + pVCpu->idCpu, uOldBase, paValues[iReg].Reg64, paValues[iReg].Reg64 ^ uOldBase)); + int rc2 = APICSetBaseMsr(pVCpu, paValues[iReg].Reg64); + AssertLogRelMsg(rc2 == VINF_SUCCESS, ("rc2=%Rrc [%#RX64]\n", rc2, paValues[iReg].Reg64)); + } + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterPat); + if (pCtx->msrPAT != paValues[iReg].Reg64) + Log7(("NEM/%u: MSR PAT changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtx->msrPAT, paValues[iReg].Reg64)); + pCtx->msrPAT = paValues[iReg].Reg64; + iReg++; + +# if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */ + Assert(pInput->Names[iReg] == HvX64RegisterMtrrCap); + if (paValues[iReg].Reg64 != CPUMGetGuestIa32MtrrCap(pVCpu)) + Log7(("NEM/%u: MSR MTRR_CAP changed %RX64 -> %RX64 (!!)\n", pVCpu->idCpu, CPUMGetGuestIa32MtrrCap(pVCpu), paValues[iReg].Reg64)); + iReg++; +# endif + + PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu); + Assert(pInput->Names[iReg] == HvX64RegisterMtrrDefType); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrDefType ) + Log7(("NEM/%u: MSR MTRR_DEF_TYPE changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrDefType, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrDefType = paValues[iReg].Reg64; + iReg++; + + /** @todo we dont keep state for HvX64RegisterMtrrPhysBaseX and HvX64RegisterMtrrPhysMaskX */ + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix64k00000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix64K_00000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_00000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix64K_00000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix64K_00000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16k80000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_80000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_80000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_80000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix16K_80000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix16kA0000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix16K_A0000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_A0000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix16K_A0000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix16K_A0000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC0000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C0000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_C0000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C0000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_C0000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kC8000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_C8000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_C8000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_C8000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_C8000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD0000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D0000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_D0000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D0000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_D0000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kD8000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_D8000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_D8000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_D8000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_D8000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE0000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E0000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_E0000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E0000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_E0000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kE8000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_E8000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_E8000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_E8000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_E8000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF0000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F0000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_F0000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F0000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_F0000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterMtrrFix4kF8000); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MtrrFix4K_F8000 ) + Log7(("NEM/%u: MSR MTRR_FIX16K_F8000 changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MtrrFix4K_F8000, paValues[iReg].Reg64)); + pCtxMsrs->msr.MtrrFix4K_F8000 = paValues[iReg].Reg64; + iReg++; + + Assert(pInput->Names[iReg] == HvX64RegisterTscAux); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.TscAux ) + Log7(("NEM/%u: MSR TSC_AUX changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.TscAux, paValues[iReg].Reg64)); + pCtxMsrs->msr.TscAux = paValues[iReg].Reg64; + iReg++; + +# if 0 /** @todo why can't we even read HvX64RegisterIa32MiscEnable? */ + if (enmCpuVendor != CPUMCPUVENDOR_AMD) + { + Assert(pInput->Names[iReg] == HvX64RegisterIa32MiscEnable); + if (paValues[iReg].Reg64 != pCtxMsrs->msr.MiscEnable) + Log7(("NEM/%u: MSR MISC_ENABLE changed %RX64 -> %RX64\n", pVCpu->idCpu, pCtxMsrs->msr.MiscEnable, paValues[iReg].Reg64)); + pCtxMsrs->msr.MiscEnable = paValues[iReg].Reg64; + iReg++; + } +# endif +# ifdef LOG_ENABLED + if (enmCpuVendor != CPUMCPUVENDOR_AMD) + { + Assert(pInput->Names[iReg] == HvX64RegisterIa32FeatureControl); + if (paValues[iReg].Reg64 != pCtx->hwvirt.vmx.Msrs.u64FeatCtrl) + Log7(("NEM/%u: MSR FEATURE_CONTROL changed %RX64 -> %RX64 (!!)\n", pVCpu->idCpu, pCtx->hwvirt.vmx.Msrs.u64FeatCtrl, paValues[iReg].Reg64)); + iReg++; + } +# endif + } + + /* Interruptibility. */ + if (fWhat & (CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) + { + Assert(pInput->Names[iReg] == HvRegisterInterruptState); + Assert(pInput->Names[iReg + 1] == HvX64RegisterRip); + + if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT)) + { + pVCpu->nem.s.fLastInterruptShadow = paValues[iReg].InterruptState.InterruptShadow; + if (paValues[iReg].InterruptState.InterruptShadow) + EMSetInhibitInterruptsPC(pVCpu, paValues[iReg + 1].Reg64); + else + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); + } + + if (!(pCtx->fExtrn & CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI)) + { + if (paValues[iReg].InterruptState.NmiMasked) + VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); + else + VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); + } + + fWhat |= CPUMCTX_EXTRN_NEM_WIN_INHIBIT_INT | CPUMCTX_EXTRN_NEM_WIN_INHIBIT_NMI; + iReg += 2; + } + + /* Event injection. */ + /// @todo HvRegisterPendingInterruption + Assert(pInput->Names[iReg] == HvRegisterPendingInterruption); + if (paValues[iReg].PendingInterruption.InterruptionPending) + { + Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n", + paValues[iReg].PendingInterruption.InterruptionType, paValues[iReg].PendingInterruption.InterruptionVector, + paValues[iReg].PendingInterruption.DeliverErrorCode, paValues[iReg].PendingInterruption.ErrorCode, + paValues[iReg].PendingInterruption.InstructionLength, paValues[iReg].PendingInterruption.NestedEvent)); + AssertMsg((paValues[iReg].PendingInterruption.AsUINT64 & UINT64_C(0xfc00)) == 0, + ("%#RX64\n", paValues[iReg].PendingInterruption.AsUINT64)); + } + + /// @todo HvRegisterPendingEvent0 + /// @todo HvRegisterPendingEvent1 + + /* Almost done, just update extrn flags and maybe change PGM mode. */ + pCtx->fExtrn &= ~fWhat; + if (!(pCtx->fExtrn & (CPUMCTX_EXTRN_ALL | (CPUMCTX_EXTRN_NEM_WIN_MASK & ~CPUMCTX_EXTRN_NEM_WIN_EVENT_INJECT)))) + pCtx->fExtrn = 0; + + /* Typical. */ + if (!fMaybeChangedMode && !fUpdateCr3) + return VINF_SUCCESS; + + /* + * Slow. + */ + int rc = VINF_SUCCESS; + if (fMaybeChangedMode) + { + rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER); + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1); + } + + if (fUpdateCr3) + { + if (fCanUpdateCr3) + { + LogFlow(("nemR0WinImportState: -> PGMUpdateCR3!\n")); + rc = PGMUpdateCR3(pVCpu, pCtx->cr3); + AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2); + } + else + { + LogFlow(("nemR0WinImportState: -> VERR_NEM_FLUSH_TLB!\n")); + rc = VERR_NEM_FLUSH_TLB; /* Calling PGMFlushTLB w/o long jump setup doesn't work, ring-3 does it. */ + } + } + + return rc; +} +#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ + + +/** + * Import the state from the native API (back to CPUMCTX). + * + * @returns VBox status code + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + * @param fWhat What to import, CPUMCTX_EXTRN_XXX. Set + * CPUMCTX_EXTERN_ALL for everything. + */ +VMMR0_INT_DECL(int) NEMR0ImportState(PGVM pGVM, PVM pVM, VMCPUID idCpu, uint64_t fWhat) +{ +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) + /* + * Validate the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + /* + * Call worker. + */ + rc = nemR0WinImportState(pGVM, pGVCpu, &pVCpu->cpum.GstCtx, fWhat, false /*fCanUpdateCr3*/); + } + return rc; +#else + RT_NOREF(pGVM, pVM, idCpu, fWhat); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) +/** + * Worker for NEMR0QueryCpuTick and the ring-0 NEMHCQueryCpuTick. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pGVCpu The ring-0 VCPU handle. + * @param pcTicks Where to return the current CPU tick count. + * @param pcAux Where to return the hyper-V TSC_AUX value. Optional. + */ +NEM_TMPL_STATIC int nemR0WinQueryCpuTick(PGVM pGVM, PGVMCPU pGVCpu, uint64_t *pcTicks, uint32_t *pcAux) +{ + /* + * Hypercall parameters. + */ + HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = pGVCpu->idCpu; + pInput->fFlags = 0; + pInput->Names[0] = HvX64RegisterTsc; + pInput->Names[1] = HvX64RegisterTscAux; + + size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[2]), 32); + HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); + RT_BZERO(paValues, sizeof(paValues[0]) * 2); + + /* + * Make the hypercall. + */ + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 2), + pGVCpu->nem.s.HypercallData.HCPhysPage, + pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput); + AssertLogRelMsgReturn(uResult == HV_MAKE_CALL_REP_RET(2), ("uResult=%RX64 cRegs=%#x\n", uResult, 2), + VERR_NEM_GET_REGISTERS_FAILED); + + /* + * Get results. + */ + *pcTicks = paValues[0].Reg64; + if (pcAux) + *pcAux = paValues[0].Reg32; + return VINF_SUCCESS; +} +#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ + + +/** + * Queries the TSC and TSC_AUX values, putting the results in . + * + * @returns VBox status code + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + */ +VMMR0_INT_DECL(int) NEMR0QueryCpuTick(PGVM pGVM, PVM pVM, VMCPUID idCpu) +{ +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) + /* + * Validate the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + /* + * Call worker. + */ + pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0; + pVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0; + rc = nemR0WinQueryCpuTick(pGVM, pGVCpu, &pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks, + &pVCpu->nem.s.Hypercall.QueryCpuTick.uAux); + } + return rc; +#else + RT_NOREF(pGVM, pVM, idCpu); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) +/** + * Worker for NEMR0ResumeCpuTickOnAll and the ring-0 NEMHCResumeCpuTickOnAll. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pGVCpu The ring-0 VCPU handle. + * @param uPausedTscValue The TSC value at the time of pausing. + */ +NEM_TMPL_STATIC int nemR0WinResumeCpuTickOnAll(PGVM pGVM, PGVMCPU pGVCpu, uint64_t uPausedTscValue) +{ + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + /* + * Set up the hypercall parameters. + */ + HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = 0; + pInput->RsvdZ = 0; + pInput->Elements[0].Name = HvX64RegisterTsc; + pInput->Elements[0].Pad0 = 0; + pInput->Elements[0].Pad1 = 0; + pInput->Elements[0].Value.Reg128.High64 = 0; + pInput->Elements[0].Value.Reg64 = uPausedTscValue; + + /* + * Disable interrupts and do the first virtual CPU. + */ + RTCCINTREG const fSavedFlags = ASMIntDisableFlags(); + uint64_t const uFirstTsc = ASMReadTSC(); + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0 /* no output */); + AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1), ("uResult=%RX64 uTsc=%#RX64\n", uResult, uPausedTscValue), + ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC); + + /* + * Do secondary processors, adjusting for elapsed TSC and keeping finger crossed + * that we don't introduce too much drift here. + */ + for (VMCPUID iCpu = 1; iCpu < pGVM->cCpus; iCpu++) + { + Assert(pInput->PartitionId == pGVM->nem.s.idHvPartition); + Assert(pInput->RsvdZ == 0); + Assert(pInput->Elements[0].Name == HvX64RegisterTsc); + Assert(pInput->Elements[0].Pad0 == 0); + Assert(pInput->Elements[0].Pad1 == 0); + Assert(pInput->Elements[0].Value.Reg128.High64 == 0); + + pInput->VpIndex = iCpu; + const uint64_t offDelta = (ASMReadTSC() - uFirstTsc); + pInput->Elements[0].Value.Reg64 = uPausedTscValue + offDelta; + + uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0 /* no output */); + AssertLogRelMsgReturnStmt(uResult == HV_MAKE_CALL_REP_RET(1), + ("uResult=%RX64 uTsc=%#RX64 + %#RX64\n", uResult, uPausedTscValue, offDelta), + ASMSetFlags(fSavedFlags), VERR_NEM_SET_TSC); + } + + /* + * Done. + */ + ASMSetFlags(fSavedFlags); + return VINF_SUCCESS; +} +#endif /* NEM_WIN_WITH_RING0_RUNLOOP || NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */ + + +/** + * Sets the TSC register to @a uPausedTscValue on all CPUs. + * + * @returns VBox status code + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. Necessary for getting the + * hypercall page and arguments. + * @param uPausedTscValue The TSC value at the time of pausing. + */ +VMMR0_INT_DECL(int) NEMR0ResumeCpuTickOnAll(PGVM pGVM, PVM pVM, VMCPUID idCpu, uint64_t uPausedTscValue) +{ +#if defined(NEM_WIN_WITH_RING0_RUNLOOP) || defined(NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS) + /* + * Validate the call. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + /* + * Call worker. + */ + pVCpu->nem.s.Hypercall.QueryCpuTick.cTicks = 0; + pVCpu->nem.s.Hypercall.QueryCpuTick.uAux = 0; + rc = nemR0WinResumeCpuTickOnAll(pGVM, pGVCpu, uPausedTscValue); + } + return rc; +#else + RT_NOREF(pGVM, pVM, idCpu, uPausedTscValue); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +VMMR0_INT_DECL(VBOXSTRICTRC) NEMR0RunGuestCode(PGVM pGVM, VMCPUID idCpu) +{ +#ifdef NEM_WIN_WITH_RING0_RUNLOOP + if (pGVM->nem.s.fMayUseRing0Runloop) + { + PVM pVM = pGVM->pVM; + return nemHCWinRunGC(pVM, &pVM->aCpus[idCpu], pGVM, &pGVM->aCpus[idCpu]); + } + return VERR_NEM_RING3_ONLY; +#else + RT_NOREF(pGVM, idCpu); + return VERR_NOT_IMPLEMENTED; +#endif +} + + +/** + * Updates statistics in the VM structure. + * + * @returns VBox status code. + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT, or NIL. Necessary for getting the hypercall + * page and arguments. + */ +VMMR0_INT_DECL(int) NEMR0UpdateStatistics(PGVM pGVM, PVM pVM, VMCPUID idCpu) +{ + /* + * Validate the call. + */ + int rc; + if (idCpu == NIL_VMCPUID) + rc = GVMMR0ValidateGVMandVM(pGVM, pVM); + else + rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + PNEMR0HYPERCALLDATA pHypercallData = idCpu != NIL_VMCPUID + ? &pGVM->aCpus[idCpu].nem.s.HypercallData + : &pGVM->nem.s.HypercallData; + if ( RT_VALID_PTR(pHypercallData->pbPage) + && pHypercallData->HCPhysPage != NIL_RTHCPHYS) + { + if (idCpu == NIL_VMCPUID) + rc = RTCritSectEnter(&pGVM->nem.s.HypercallDataCritSect); + if (RT_SUCCESS(rc)) + { + /* + * Query the memory statistics for the partition. + */ + HV_INPUT_GET_MEMORY_BALANCE *pInput = (HV_INPUT_GET_MEMORY_BALANCE *)pHypercallData->pbPage; + pInput->TargetPartitionId = pGVM->nem.s.idHvPartition; + pInput->ProximityDomainInfo.Flags.ProximityPreferred = 0; + pInput->ProximityDomainInfo.Flags.ProxyimityInfoValid = 0; + pInput->ProximityDomainInfo.Flags.Reserved = 0; + pInput->ProximityDomainInfo.Id = 0; + + HV_OUTPUT_GET_MEMORY_BALANCE *pOutput = (HV_OUTPUT_GET_MEMORY_BALANCE *)(pInput + 1); + RT_ZERO(*pOutput); + + uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetMemoryBalance, + pHypercallData->HCPhysPage, + pHypercallData->HCPhysPage + sizeof(*pInput)); + if (uResult == HV_STATUS_SUCCESS) + { + pVM->nem.s.R0Stats.cPagesAvailable = pOutput->PagesAvailable; + pVM->nem.s.R0Stats.cPagesInUse = pOutput->PagesInUse; + rc = VINF_SUCCESS; + } + else + { + LogRel(("HvCallGetMemoryBalance -> %#RX64 (%#RX64 %#RX64)!!\n", + uResult, pOutput->PagesAvailable, pOutput->PagesInUse)); + rc = VERR_NEM_IPE_0; + } + + if (idCpu == NIL_VMCPUID) + RTCritSectLeave(&pGVM->nem.s.HypercallDataCritSect); + } + } + else + rc = VERR_WRONG_ORDER; + } + return rc; +} + + +#if 1 && defined(DEBUG_bird) +/** + * Debug only interface for poking around and exploring Hyper-V stuff. + * + * @param pGVM The ring-0 VM handle. + * @param pVM The cross context VM handle. + * @param idCpu The calling EMT. + * @param u64Arg What to query. 0 == registers. + */ +VMMR0_INT_DECL(int) NEMR0DoExperiment(PGVM pGVM, PVM pVM, VMCPUID idCpu, uint64_t u64Arg) +{ + /* + * Resolve CPU structures. + */ + int rc = GVMMR0ValidateGVMandVMandEMT(pGVM, pVM, idCpu); + if (RT_SUCCESS(rc)) + { + AssertReturn(g_pfnHvlInvokeHypercall, VERR_NEM_MISSING_KERNEL_API); + + PGVMCPU pGVCpu = &pGVM->aCpus[idCpu]; + PVMCPU pVCpu = &pVM->aCpus[idCpu]; + if (u64Arg == 0) + { + /* + * Query register. + */ + HV_INPUT_GET_VP_REGISTERS *pInput = (HV_INPUT_GET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + + size_t const cbInput = RT_ALIGN_Z(RT_UOFFSETOF(HV_INPUT_GET_VP_REGISTERS, Names[1]), 32); + HV_REGISTER_VALUE *paValues = (HV_REGISTER_VALUE *)((uint8_t *)pInput + cbInput); + RT_BZERO(paValues, sizeof(paValues[0]) * 1); + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = pGVCpu->idCpu; + pInput->fFlags = 0; + pInput->Names[0] = (HV_REGISTER_NAME)pVCpu->nem.s.Hypercall.Experiment.uItem; + + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallGetVpRegisters, 1), + pGVCpu->nem.s.HypercallData.HCPhysPage, + pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput); + pVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1); + pVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; + pVCpu->nem.s.Hypercall.Experiment.uLoValue = paValues[0].Reg128.Low64; + pVCpu->nem.s.Hypercall.Experiment.uHiValue = paValues[0].Reg128.High64; + rc = VINF_SUCCESS; + } + else if (u64Arg == 1) + { + /* + * Query partition property. + */ + HV_INPUT_GET_PARTITION_PROPERTY *pInput = (HV_INPUT_GET_PARTITION_PROPERTY *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + + size_t const cbInput = RT_ALIGN_Z(sizeof(*pInput), 32); + HV_OUTPUT_GET_PARTITION_PROPERTY *pOutput = (HV_OUTPUT_GET_PARTITION_PROPERTY *)((uint8_t *)pInput + cbInput); + pOutput->PropertyValue = 0; + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->PropertyCode = (HV_PARTITION_PROPERTY_CODE)pVCpu->nem.s.Hypercall.Experiment.uItem; + pInput->uPadding = 0; + + uint64_t uResult = g_pfnHvlInvokeHypercall(HvCallGetPartitionProperty, + pGVCpu->nem.s.HypercallData.HCPhysPage, + pGVCpu->nem.s.HypercallData.HCPhysPage + cbInput); + pVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_STATUS_SUCCESS; + pVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; + pVCpu->nem.s.Hypercall.Experiment.uLoValue = pOutput->PropertyValue; + pVCpu->nem.s.Hypercall.Experiment.uHiValue = 0; + rc = VINF_SUCCESS; + } + else if (u64Arg == 2) + { + /* + * Set register. + */ + HV_INPUT_SET_VP_REGISTERS *pInput = (HV_INPUT_SET_VP_REGISTERS *)pGVCpu->nem.s.HypercallData.pbPage; + AssertPtrReturn(pInput, VERR_INTERNAL_ERROR_3); + RT_BZERO(pInput, RT_UOFFSETOF(HV_INPUT_SET_VP_REGISTERS, Elements[1])); + + pInput->PartitionId = pGVM->nem.s.idHvPartition; + pInput->VpIndex = pGVCpu->idCpu; + pInput->RsvdZ = 0; + pInput->Elements[0].Name = (HV_REGISTER_NAME)pVCpu->nem.s.Hypercall.Experiment.uItem; + pInput->Elements[0].Value.Reg128.High64 = pVCpu->nem.s.Hypercall.Experiment.uHiValue; + pInput->Elements[0].Value.Reg128.Low64 = pVCpu->nem.s.Hypercall.Experiment.uLoValue; + + uint64_t uResult = g_pfnHvlInvokeHypercall(HV_MAKE_CALL_INFO(HvCallSetVpRegisters, 1), + pGVCpu->nem.s.HypercallData.HCPhysPage, 0); + pVCpu->nem.s.Hypercall.Experiment.fSuccess = uResult == HV_MAKE_CALL_REP_RET(1); + pVCpu->nem.s.Hypercall.Experiment.uStatus = uResult; + rc = VINF_SUCCESS; + } + else + rc = VERR_INVALID_FUNCTION; + } + return rc; +} +#endif /* DEBUG_bird */ + |