summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMR3/CPUM.cpp
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-05-06 03:01:46 +0000
commitf8fe689a81f906d1b91bb3220acde2a4ecb14c5b (patch)
tree26484e9d7e2c67806c2d1760196ff01aaa858e8c /src/VBox/VMM/VMMR3/CPUM.cpp
parentInitial commit. (diff)
downloadvirtualbox-upstream.tar.xz
virtualbox-upstream.zip
Adding upstream version 6.0.4-dfsg.upstream/6.0.4-dfsgupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/VBox/VMM/VMMR3/CPUM.cpp')
-rw-r--r--src/VBox/VMM/VMMR3/CPUM.cpp4228
1 files changed, 4228 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMR3/CPUM.cpp b/src/VBox/VMM/VMMR3/CPUM.cpp
new file mode 100644
index 00000000..9f301998
--- /dev/null
+++ b/src/VBox/VMM/VMMR3/CPUM.cpp
@@ -0,0 +1,4228 @@
+/* $Id: CPUM.cpp $ */
+/** @file
+ * CPUM - CPU Monitor / Manager.
+ */
+
+/*
+ * Copyright (C) 2006-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+/** @page pg_cpum CPUM - CPU Monitor / Manager
+ *
+ * The CPU Monitor / Manager keeps track of all the CPU registers. It is
+ * also responsible for lazy FPU handling and some of the context loading
+ * in raw mode.
+ *
+ * There are three CPU contexts, the most important one is the guest one (GC).
+ * When running in raw-mode (RC) there is a special hyper context for the VMM
+ * part that floats around inside the guest address space. When running in
+ * raw-mode, CPUM also maintains a host context for saving and restoring
+ * registers across world switches. This latter is done in cooperation with the
+ * world switcher (@see pg_vmm).
+ *
+ * @see grp_cpum
+ *
+ * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
+ *
+ * TODO: proper write up, currently just some notes.
+ *
+ * The ring-0 FPU handling per OS:
+ *
+ * - 64-bit Windows uses XMM registers in the kernel as part of the calling
+ * convention (Visual C++ doesn't seem to have a way to disable
+ * generating such code either), so CR0.TS/EM are always zero from what I
+ * can tell. We are also forced to always load/save the guest XMM0-XMM15
+ * registers when entering/leaving guest context. Interrupt handlers
+ * using FPU/SSE will offically have call save and restore functions
+ * exported by the kernel, if the really really have to use the state.
+ *
+ * - 32-bit windows does lazy FPU handling, I think, probably including
+ * lazying saving. The Windows Internals book states that it's a bad
+ * idea to use the FPU in kernel space. However, it looks like it will
+ * restore the FPU state of the current thread in case of a kernel \#NM.
+ * Interrupt handlers should be same as for 64-bit.
+ *
+ * - Darwin allows taking \#NM in kernel space, restoring current thread's
+ * state if I read the code correctly. It saves the FPU state of the
+ * outgoing thread, and uses CR0.TS to lazily load the state of the
+ * incoming one. No idea yet how the FPU is treated by interrupt
+ * handlers, i.e. whether they are allowed to disable the state or
+ * something.
+ *
+ * - Linux also allows \#NM in kernel space (don't know since when), and
+ * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
+ * loads the incoming unless configured to agressivly load it. Interrupt
+ * handlers can ask whether they're allowed to use the FPU, and may
+ * freely trash the state if Linux thinks it has saved the thread's state
+ * already. This is a problem.
+ *
+ * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
+ * context. When switching threads, the kernel will save the state of
+ * the outgoing thread and lazy load the incoming one using CR0.TS.
+ * There are a few routines in seeblk.s which uses the SSE unit in ring-0
+ * to do stuff, HAT are among the users. The routines there will
+ * manually clear CR0.TS and save the XMM registers they use only if
+ * CR0.TS was zero upon entry. They will skip it when not, because as
+ * mentioned above, the FPU state is saved when switching away from a
+ * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
+ * preserve. This is a problem if we restore CR0.TS to 1 after loading
+ * the guest state.
+ *
+ * - FreeBSD - no idea yet.
+ *
+ * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
+ * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
+ * FPU states.
+ *
+ * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
+ * saving and restoring the host and guest states. The motivation for this
+ * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
+ *
+ * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
+ * state and only restore it once we've restore the host FPU state. This has the
+ * accidental side effect of triggering Solaris to preserve XMM registers in
+ * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
+ * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
+ *
+ *
+ * @section sec_cpum_logging Logging Level Assignments.
+ *
+ * Following log level assignments:
+ * - Log6 is used for FPU state management.
+ * - Log7 is used for FPU state actualization.
+ *
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_CPUM
+#include <VBox/vmm/cpum.h>
+#include <VBox/vmm/cpumdis.h>
+#include <VBox/vmm/cpumctx-v1_6.h>
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/apic.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/em.h>
+#include <VBox/vmm/iem.h>
+#include <VBox/vmm/selm.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/patm.h>
+#include <VBox/vmm/hm.h>
+#include <VBox/vmm/ssm.h>
+#include "CPUMInternal.h"
+#include <VBox/vmm/vm.h>
+
+#include <VBox/param.h>
+#include <VBox/dis.h>
+#include <VBox/err.h>
+#include <VBox/log.h>
+#include <iprt/asm-amd64-x86.h>
+#include <iprt/assert.h>
+#include <iprt/cpuset.h>
+#include <iprt/mem.h>
+#include <iprt/mp.h>
+#include <iprt/string.h>
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/**
+ * This was used in the saved state up to the early life of version 14.
+ *
+ * It indicates that we may have some out-of-sync hidden segement registers.
+ * It is only relevant for raw-mode.
+ */
+#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
+
+
+/*********************************************************************************************************************************
+* Structures and Typedefs *
+*********************************************************************************************************************************/
+
+/**
+ * What kind of cpu info dump to perform.
+ */
+typedef enum CPUMDUMPTYPE
+{
+ CPUMDUMPTYPE_TERSE,
+ CPUMDUMPTYPE_DEFAULT,
+ CPUMDUMPTYPE_VERBOSE
+} CPUMDUMPTYPE;
+/** Pointer to a cpu info dump type. */
+typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
+
+
+/*********************************************************************************************************************************
+* Internal Functions *
+*********************************************************************************************************************************/
+static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
+static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
+static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
+static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
+static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
+static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
+
+
+/*********************************************************************************************************************************
+* Global Variables *
+*********************************************************************************************************************************/
+/** Saved state field descriptors for CPUMCTX. */
+static const SSMFIELD g_aCpumCtxFields[] =
+{
+ SSMFIELD_ENTRY( CPUMCTX, rdi),
+ SSMFIELD_ENTRY( CPUMCTX, rsi),
+ SSMFIELD_ENTRY( CPUMCTX, rbp),
+ SSMFIELD_ENTRY( CPUMCTX, rax),
+ SSMFIELD_ENTRY( CPUMCTX, rbx),
+ SSMFIELD_ENTRY( CPUMCTX, rdx),
+ SSMFIELD_ENTRY( CPUMCTX, rcx),
+ SSMFIELD_ENTRY( CPUMCTX, rsp),
+ SSMFIELD_ENTRY( CPUMCTX, rflags),
+ SSMFIELD_ENTRY( CPUMCTX, rip),
+ SSMFIELD_ENTRY( CPUMCTX, r8),
+ SSMFIELD_ENTRY( CPUMCTX, r9),
+ SSMFIELD_ENTRY( CPUMCTX, r10),
+ SSMFIELD_ENTRY( CPUMCTX, r11),
+ SSMFIELD_ENTRY( CPUMCTX, r12),
+ SSMFIELD_ENTRY( CPUMCTX, r13),
+ SSMFIELD_ENTRY( CPUMCTX, r14),
+ SSMFIELD_ENTRY( CPUMCTX, r15),
+ SSMFIELD_ENTRY( CPUMCTX, es.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, es.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, cr0),
+ SSMFIELD_ENTRY( CPUMCTX, cr2),
+ SSMFIELD_ENTRY( CPUMCTX, cr3),
+ SSMFIELD_ENTRY( CPUMCTX, cr4),
+ SSMFIELD_ENTRY( CPUMCTX, dr[0]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[1]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[2]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[3]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[6]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[7]),
+ SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
+ SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
+ SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
+ SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
+ SSMFIELD_ENTRY( CPUMCTX, msrEFER),
+ SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrPAT),
+ SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
+ SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
+ SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
+ SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
+ SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
+ SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
+ SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
+ SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for SVM nested hardware-virtualization
+ * Host State. */
+static const SSMFIELD g_aSvmHwvirtHostState[] =
+{
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
+ SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
+ SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for CPUMCTX. */
+static const SSMFIELD g_aCpumX87Fields[] =
+{
+ SSMFIELD_ENTRY( X86FXSTATE, FCW),
+ SSMFIELD_ENTRY( X86FXSTATE, FSW),
+ SSMFIELD_ENTRY( X86FXSTATE, FTW),
+ SSMFIELD_ENTRY( X86FXSTATE, FOP),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
+ SSMFIELD_ENTRY( X86FXSTATE, CS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
+ SSMFIELD_ENTRY( X86FXSTATE, DS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
+ SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for X86XSAVEHDR. */
+static const SSMFIELD g_aCpumXSaveHdrFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for X86XSAVEYMMHI. */
+static const SSMFIELD g_aCpumYmmHiFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
+ SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for X86XSAVEBNDREGS. */
+static const SSMFIELD g_aCpumBndRegsFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
+ SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
+ SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
+ SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for X86XSAVEBNDCFG. */
+static const SSMFIELD g_aCpumBndCfgFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
+ SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
+ SSMFIELD_ENTRY_TERM()
+};
+
+#if 0 /** @todo */
+/** Saved state field descriptors for X86XSAVEOPMASK. */
+static const SSMFIELD g_aCpumOpmaskFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
+ SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
+ SSMFIELD_ENTRY_TERM()
+};
+#endif
+
+/** Saved state field descriptors for X86XSAVEZMMHI256. */
+static const SSMFIELD g_aCpumZmmHi256Fields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
+ SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for X86XSAVEZMM16HI. */
+static const SSMFIELD g_aCpumZmm16HiFields[] =
+{
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
+ SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
+ SSMFIELD_ENTRY_TERM()
+};
+
+
+
+/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
+ * registeres changed. */
+static const SSMFIELD g_aCpumX87FieldsMem[] =
+{
+ SSMFIELD_ENTRY( X86FXSTATE, FCW),
+ SSMFIELD_ENTRY( X86FXSTATE, FSW),
+ SSMFIELD_ENTRY( X86FXSTATE, FTW),
+ SSMFIELD_ENTRY( X86FXSTATE, FOP),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
+ SSMFIELD_ENTRY( X86FXSTATE, CS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
+ SSMFIELD_ENTRY( X86FXSTATE, DS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
+ SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
+ SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
+};
+
+/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
+ * registeres changed. */
+static const SSMFIELD g_aCpumCtxFieldsMem[] =
+{
+ SSMFIELD_ENTRY( CPUMCTX, rdi),
+ SSMFIELD_ENTRY( CPUMCTX, rsi),
+ SSMFIELD_ENTRY( CPUMCTX, rbp),
+ SSMFIELD_ENTRY( CPUMCTX, rax),
+ SSMFIELD_ENTRY( CPUMCTX, rbx),
+ SSMFIELD_ENTRY( CPUMCTX, rdx),
+ SSMFIELD_ENTRY( CPUMCTX, rcx),
+ SSMFIELD_ENTRY( CPUMCTX, rsp),
+ SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
+ SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
+ SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
+ SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, es.Sel),
+ SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
+ SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
+ SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
+ SSMFIELD_ENTRY( CPUMCTX, rflags),
+ SSMFIELD_ENTRY( CPUMCTX, rip),
+ SSMFIELD_ENTRY( CPUMCTX, r8),
+ SSMFIELD_ENTRY( CPUMCTX, r9),
+ SSMFIELD_ENTRY( CPUMCTX, r10),
+ SSMFIELD_ENTRY( CPUMCTX, r11),
+ SSMFIELD_ENTRY( CPUMCTX, r12),
+ SSMFIELD_ENTRY( CPUMCTX, r13),
+ SSMFIELD_ENTRY( CPUMCTX, r14),
+ SSMFIELD_ENTRY( CPUMCTX, r15),
+ SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, es.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, cr0),
+ SSMFIELD_ENTRY( CPUMCTX, cr2),
+ SSMFIELD_ENTRY( CPUMCTX, cr3),
+ SSMFIELD_ENTRY( CPUMCTX, cr4),
+ SSMFIELD_ENTRY( CPUMCTX, dr[0]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[1]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[2]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[3]),
+ SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
+ SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, dr[6]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[7]),
+ SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
+ SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
+ SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
+ SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
+ SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
+ SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
+ SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
+ SSMFIELD_ENTRY( CPUMCTX, msrEFER),
+ SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrPAT),
+ SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
+ SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for CPUMCTX_VER1_6. */
+static const SSMFIELD g_aCpumX87FieldsV16[] =
+{
+ SSMFIELD_ENTRY( X86FXSTATE, FCW),
+ SSMFIELD_ENTRY( X86FXSTATE, FSW),
+ SSMFIELD_ENTRY( X86FXSTATE, FTW),
+ SSMFIELD_ENTRY( X86FXSTATE, FOP),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
+ SSMFIELD_ENTRY( X86FXSTATE, CS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
+ SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
+ SSMFIELD_ENTRY( X86FXSTATE, DS),
+ SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
+ SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
+ SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
+ SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
+ SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
+ SSMFIELD_ENTRY_TERM()
+};
+
+/** Saved state field descriptors for CPUMCTX_VER1_6. */
+static const SSMFIELD g_aCpumCtxFieldsV16[] =
+{
+ SSMFIELD_ENTRY( CPUMCTX, rdi),
+ SSMFIELD_ENTRY( CPUMCTX, rsi),
+ SSMFIELD_ENTRY( CPUMCTX, rbp),
+ SSMFIELD_ENTRY( CPUMCTX, rax),
+ SSMFIELD_ENTRY( CPUMCTX, rbx),
+ SSMFIELD_ENTRY( CPUMCTX, rdx),
+ SSMFIELD_ENTRY( CPUMCTX, rcx),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
+ SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
+ SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
+ SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, es.Sel),
+ SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
+ SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
+ SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
+ SSMFIELD_ENTRY( CPUMCTX, rflags),
+ SSMFIELD_ENTRY( CPUMCTX, rip),
+ SSMFIELD_ENTRY( CPUMCTX, r8),
+ SSMFIELD_ENTRY( CPUMCTX, r9),
+ SSMFIELD_ENTRY( CPUMCTX, r10),
+ SSMFIELD_ENTRY( CPUMCTX, r11),
+ SSMFIELD_ENTRY( CPUMCTX, r12),
+ SSMFIELD_ENTRY( CPUMCTX, r13),
+ SSMFIELD_ENTRY( CPUMCTX, r14),
+ SSMFIELD_ENTRY( CPUMCTX, r15),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, es.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
+ SSMFIELD_ENTRY( CPUMCTX, cr0),
+ SSMFIELD_ENTRY( CPUMCTX, cr2),
+ SSMFIELD_ENTRY( CPUMCTX, cr3),
+ SSMFIELD_ENTRY( CPUMCTX, cr4),
+ SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, dr[0]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[1]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[2]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[3]),
+ SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
+ SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, dr[6]),
+ SSMFIELD_ENTRY( CPUMCTX, dr[7]),
+ SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
+ SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
+ SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
+ SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
+ SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
+ SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
+ SSMFIELD_ENTRY( CPUMCTX, msrEFER),
+ SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrPAT),
+ SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
+ SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
+ SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
+ SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
+ SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
+ SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
+ SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
+ SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
+ SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
+ SSMFIELD_ENTRY_TERM()
+};
+
+
+/**
+ * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
+ *
+ * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
+ * (last instruction pointer, last data pointer, last opcode) except when the ES
+ * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
+ * clear these registers there is potential, local FPU leakage from a process
+ * using the FPU to another.
+ *
+ * See AMD Instruction Reference for FXSAVE, FXRSTOR.
+ *
+ * @param pVM The cross context VM structure.
+ */
+static void cpumR3CheckLeakyFpu(PVM pVM)
+{
+ uint32_t u32CpuVersion = ASMCpuId_EAX(1);
+ uint32_t const u32Family = u32CpuVersion >> 8;
+ if ( u32Family >= 6 /* K7 and higher */
+ && ASMIsAmdCpu())
+ {
+ uint32_t cExt = ASMCpuId_EAX(0x80000000);
+ if (ASMIsValidExtRange(cExt))
+ {
+ uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
+ if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
+ {
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ pVM->aCpus[i].cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
+ Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
+ }
+ }
+ }
+}
+
+
+/**
+ * Frees memory allocated for the SVM hardware virtualization state.
+ *
+ * @param pVM The cross context VM structure.
+ */
+static void cpumR3FreeSvmHwVirtState(PVM pVM)
+{
+ Assert(pVM->cpum.s.GuestFeatures.fSvm);
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
+ }
+ pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
+
+ if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
+ }
+
+ if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
+ }
+ }
+}
+
+
+/**
+ * Allocates memory for the SVM hardware virtualization state.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+static int cpumR3AllocSvmHwVirtState(PVM pVM)
+{
+ Assert(pVM->cpum.s.GuestFeatures.fSvm);
+
+ int rc = VINF_SUCCESS;
+ LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
+ pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
+
+ /*
+ * Allocate the nested-guest VMCB.
+ */
+ SUPPAGE SupNstGstVmcbPage;
+ RT_ZERO(SupNstGstVmcbPage);
+ SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
+ Assert(SVM_VMCB_PAGES == 1);
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
+ rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
+ &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
+ break;
+ }
+ pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
+
+ /*
+ * Allocate the MSRPM (MSR Permission bitmap).
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
+ rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
+ SVM_MSRPM_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the IOPM (IO Permission bitmap).
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
+ rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
+ SVM_IOPM_PAGES));
+ break;
+ }
+ }
+
+ /* On any failure, cleanup. */
+ if (RT_FAILURE(rc))
+ cpumR3FreeSvmHwVirtState(pVM);
+
+ return rc;
+}
+
+
+/**
+ * Resets per-VCPU SVM hardware virtualization state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
+ Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
+
+ memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
+ pCtx->hwvirt.svm.uMsrHSavePa = 0;
+ pCtx->hwvirt.svm.uPrevPauseTick = 0;
+}
+
+
+/**
+ * Frees memory allocated for the VMX hardware virtualization state.
+ *
+ * @param pVM The cross context VM structure.
+ */
+static void cpumR3FreeVmxHwVirtState(PVM pVM)
+{
+ Assert(pVM->cpum.s.GuestFeatures.fVmx);
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3 = NULL;
+ }
+ if (pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3)
+ {
+ SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
+ pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3 = NULL;
+ }
+ }
+}
+
+
+/**
+ * Allocates memory for the VMX hardware virtualization state.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+static int cpumR3AllocVmxHwVirtState(PVM pVM)
+{
+ int rc = VINF_SUCCESS;
+ LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n",
+ pVM->cCpus * ( VMX_V_VMCS_PAGES + VMX_V_VIRT_APIC_PAGES + VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * 2
+ + VMX_V_AUTOMSR_AREA_PAGES)));
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
+
+ /*
+ * Allocate the nested-guest current VMCS.
+ */
+ Assert(VMX_V_VMCS_PAGES == 1);
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
+ rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pVmcsR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the nested-guest shadow VMCS.
+ */
+ Assert(VMX_V_VMCS_PAGES == 1);
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
+ rc = SUPR3PageAllocEx(VMX_V_VMCS_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pShadowVmcsR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the Virtual-APIC page.
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
+ rc = SUPR3PageAllocEx(VMX_V_VIRT_APIC_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVirtApicPageR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's Virtual-APIC page\n", pVCpu->idCpu,
+ VMX_V_VIRT_APIC_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the VMREAD-bitmap.
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
+ rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmreadBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
+ VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
+ break;
+ }
+
+ /*
+ * Allocatge the VMWRITE-bitmap.
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
+ rc = SUPR3PageAllocEx(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES, 0 /* fFlags */,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvVmwriteBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
+ VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the MSR auto-load/store area.
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
+ rc = SUPR3PageAllocEx(VMX_V_AUTOMSR_AREA_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pAutoMsrAreaR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's auto-load/store MSR area\n", pVCpu->idCpu,
+ VMX_V_AUTOMSR_AREA_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the MSR bitmap.
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
+ rc = SUPR3PageAllocEx(VMX_V_MSR_BITMAP_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvMsrBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
+ VMX_V_MSR_BITMAP_PAGES));
+ break;
+ }
+
+ /*
+ * Allocate the I/O bitmaps (A and B).
+ */
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
+ rc = SUPR3PageAllocEx(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES, 0 /* fFlags */,
+ (void **)&pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3,
+ &pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR0, NULL /* paPages */);
+ if (RT_FAILURE(rc))
+ {
+ Assert(!pVCpu->cpum.s.Guest.hwvirt.vmx.pvIoBitmapR3);
+ LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
+ VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
+ break;
+ }
+ }
+
+ /* On any failure, cleanup. */
+ if (RT_FAILURE(rc))
+ cpumR3FreeVmxHwVirtState(pVM);
+
+ return rc;
+}
+
+
+/**
+ * Resets per-VCPU VMX hardware virtualization state.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
+{
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
+ Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
+ Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
+
+ memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
+ memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_VMCS_SIZE);
+ pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
+ pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
+ pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
+ pCtx->hwvirt.vmx.fInVmxRootMode = false;
+ pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
+ /* Don't reset diagnostics here. */
+}
+
+
+/**
+ * Displays the host and guest VMX features.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs "terse", "default" or "verbose".
+ */
+DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ RT_NOREF(pszArgs);
+ PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
+ PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
+ if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
+ || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
+ || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
+ {
+#define VMXFEATDUMP(a_szDesc, a_Var) \
+ pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
+
+ pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
+ pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
+ VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
+ /* Basic. */
+ VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
+ /* Pin-based controls. */
+ VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
+ VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
+ VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
+ VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
+ VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
+ /* Processor-based controls. */
+ VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
+ VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
+ VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
+ VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
+ VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
+ VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
+ VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
+ VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
+ VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
+ VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
+ VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
+ VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
+ VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
+ VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
+ VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
+ VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
+ VMXFEATDUMP("MonitorTrapFlag - Monitor trap flag ", fVmxMonitorTrapFlag);
+ VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
+ VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
+ VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
+ VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
+ /* Secondary processor-based controls. */
+ VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
+ VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
+ VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
+ VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
+ VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
+ VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
+ VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
+ VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
+ VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
+ VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
+ VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
+ VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
+ VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
+ VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
+ VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
+ VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
+ VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
+ VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
+ VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
+ /* VM-entry controls. */
+ VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
+ VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
+ VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
+ VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
+ /* VM-exit controls. */
+ VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
+ VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
+ VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
+ VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
+ VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
+ VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
+ VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
+ VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
+ /* Miscellaneous data. */
+ VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
+ VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
+ VMXFEATDUMP("VmwriteAll - Write allowed to read-only VMCS fields ", fVmxVmwriteAll);
+ VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
+#undef VMXFEATDUMP
+ }
+ else
+ pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
+}
+
+
+/**
+ * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
+ * or NEM) is allowed.
+ *
+ * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
+ * otherwise.
+ * @param pVM The cross context VM structure.
+ */
+static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
+{
+ AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
+#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
+ if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
+ || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
+ return true;
+#else
+ NOREF(pVM);
+#endif
+ return false;
+}
+
+
+/**
+ * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
+ * and no hardware-assisted nested-guest execution is
+ * possible for this VM.
+ * @param pGuestFeatures The guest features to use (only VMX features are
+ * accessed).
+ * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
+ *
+ * @remarks This function ASSUMES the VMX guest-features are already exploded!
+ */
+static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
+{
+ bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
+
+ Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
+ Assert(pGuestFeatures->fVmx);
+
+ /*
+ * We don't support the following MSRs yet:
+ * - True Pin-based VM-execution controls.
+ * - True Processor-based VM-execution controls.
+ * - True VM-entry VM-execution controls.
+ * - True VM-exit VM-execution controls.
+ * - EPT/VPID capabilities.
+ */
+
+ /* Feature control. */
+ pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
+
+ /* Basic information. */
+ {
+ uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
+ | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
+ | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
+ | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
+ | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
+ | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
+ | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
+ pGuestVmxMsrs->u64Basic = u64Basic;
+ }
+
+ /* Pin-based VM-execution controls. */
+ {
+ uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
+ | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
+ | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
+ uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
+ uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
+ AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
+ fAllowed0, fAllowed1, fFeatures));
+ pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
+ }
+
+ /* Processor-based VM-execution controls. */
+ {
+ uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
+ | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
+ | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
+ | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
+ | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
+ | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
+ uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
+ uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
+ AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
+ fAllowed1, fFeatures));
+ pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
+ }
+
+ /* Secondary processor-based VM-execution controls. */
+ if (pGuestFeatures->fVmxSecondaryExecCtls)
+ {
+ uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
+ | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
+ | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
+ | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
+ | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
+ | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
+ | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
+ | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
+ | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
+ | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
+ | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
+ | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
+ | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
+ | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
+ | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
+ | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
+ uint32_t const fAllowed0 = 0;
+ uint32_t const fAllowed1 = fFeatures;
+ pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
+ }
+
+ /* VM-exit controls. */
+ {
+ uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
+ | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
+ | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
+ | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
+ | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
+ | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
+ | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
+ | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
+ /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
+ uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
+ uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
+ AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
+ fAllowed1, fFeatures));
+ pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
+ }
+
+ /* VM-entry controls. */
+ {
+ uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
+ | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
+ | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
+ | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
+ uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
+ uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
+ AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
+ fAllowed1, fFeatures));
+ pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
+ }
+
+ /* Miscellaneous data. */
+ {
+ uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
+
+ uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
+ uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
+ pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
+ | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
+ | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
+ | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
+ | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
+ | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
+ | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
+ | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
+ | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
+ | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
+ | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
+ }
+
+ /* CR0 Fixed-0. */
+ pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX: VMX_V_CR0_FIXED0;
+
+ /* CR0 Fixed-1. */
+ {
+ /*
+ * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
+ * This is different from CR4 fixed-1 bits which are reported as per the
+ * CPU features and/or micro-architecture/generation. Why? Ask Intel.
+ */
+ uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
+ pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | VMX_V_CR0_FIXED0; /* Make sure the CR0 MB1 bits are not clear. */
+ }
+
+ /* CR4 Fixed-0. */
+ pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
+
+ /* CR4 Fixed-1. */
+ {
+ uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
+ pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | VMX_V_CR4_FIXED0; /* Make sure the CR4 MB1 bits are not clear. */
+ }
+
+ /* VMCS Enumeration. */
+ pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
+
+ /* VM Functions. */
+ if (pGuestFeatures->fVmxVmFunc)
+ pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
+}
+
+
+#if 0
+/**
+ * Checks whether the given guest CPU VMX features are compatible with the provided
+ * base features.
+ *
+ * @returns @c true if compatible, @c false otherwise.
+ * @param pVM The cross context VM structure.
+ * @param pBase The base VMX CPU features.
+ * @param pGst The guest VMX CPU features.
+ *
+ * @remarks Only VMX feature bits are examined.
+ */
+static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
+{
+ if (cpumR3IsHwAssistVmxNstGstExecAllowed(pVM))
+ {
+ uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
+ | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
+ | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
+ | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
+ | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
+ | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
+ | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
+ | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
+ | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
+ | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
+ | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
+ | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
+ | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
+ | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
+ | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
+ | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
+ | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
+ | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
+ | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
+ | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
+ | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
+ | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
+ | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
+ | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
+ | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
+ | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
+ | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
+ | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
+ | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
+ | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
+ | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
+ | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
+
+ uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
+ | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
+ | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
+ | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
+ | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
+ | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
+ | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
+ | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
+ | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
+ | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
+ | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
+ | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
+ | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
+ | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
+ | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
+ | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
+ | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
+ | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
+ | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
+ | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
+ | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
+ | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
+ | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
+ | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
+ | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
+ | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
+ | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
+ | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
+ | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
+ | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
+ | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
+ | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
+
+ if ((fBase | fGst) != fBase)
+ return false;
+ return true;
+ }
+ return true;
+}
+#endif
+
+
+/**
+ * Initializes VMX guest features and MSRs.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
+ * and no hardware-assisted nested-guest execution is
+ * possible for this VM.
+ * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
+ */
+void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
+{
+ Assert(pVM);
+ Assert(pGuestVmxMsrs);
+
+ /*
+ * Initialize the set of VMX features we emulate.
+ *
+ * Note! Some bits might be reported as 1 always if they fall under the
+ * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
+ */
+ CPUMFEATURES EmuFeat;
+ RT_ZERO(EmuFeat);
+ EmuFeat.fVmx = 1;
+ EmuFeat.fVmxInsOutInfo = 0;
+ EmuFeat.fVmxExtIntExit = 1;
+ EmuFeat.fVmxNmiExit = 1;
+ EmuFeat.fVmxVirtNmi = 0;
+ EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
+ EmuFeat.fVmxPostedInt = 0;
+ EmuFeat.fVmxIntWindowExit = 1;
+ EmuFeat.fVmxTscOffsetting = 1;
+ EmuFeat.fVmxHltExit = 1;
+ EmuFeat.fVmxInvlpgExit = 1;
+ EmuFeat.fVmxMwaitExit = 1;
+ EmuFeat.fVmxRdpmcExit = 1;
+ EmuFeat.fVmxRdtscExit = 1;
+ EmuFeat.fVmxCr3LoadExit = 1;
+ EmuFeat.fVmxCr3StoreExit = 1;
+ EmuFeat.fVmxCr8LoadExit = 1;
+ EmuFeat.fVmxCr8StoreExit = 1;
+ EmuFeat.fVmxUseTprShadow = 0;
+ EmuFeat.fVmxNmiWindowExit = 0;
+ EmuFeat.fVmxMovDRxExit = 1;
+ EmuFeat.fVmxUncondIoExit = 1;
+ EmuFeat.fVmxUseIoBitmaps = 1;
+ EmuFeat.fVmxMonitorTrapFlag = 0;
+ EmuFeat.fVmxUseMsrBitmaps = 1;
+ EmuFeat.fVmxMonitorExit = 1;
+ EmuFeat.fVmxPauseExit = 1;
+ EmuFeat.fVmxSecondaryExecCtls = 1;
+ EmuFeat.fVmxVirtApicAccess = 0;
+ EmuFeat.fVmxEpt = 0;
+ EmuFeat.fVmxDescTableExit = 1;
+ EmuFeat.fVmxRdtscp = 1;
+ EmuFeat.fVmxVirtX2ApicMode = 0;
+ EmuFeat.fVmxVpid = 0;
+ EmuFeat.fVmxWbinvdExit = 1;
+ EmuFeat.fVmxUnrestrictedGuest = 0;
+ EmuFeat.fVmxApicRegVirt = 0;
+ EmuFeat.fVmxVirtIntDelivery = 0;
+ EmuFeat.fVmxPauseLoopExit = 0;
+ EmuFeat.fVmxRdrandExit = 0;
+ EmuFeat.fVmxInvpcid = 1;
+ EmuFeat.fVmxVmFunc = 0;
+ EmuFeat.fVmxVmcsShadowing = 0;
+ EmuFeat.fVmxRdseedExit = 0;
+ EmuFeat.fVmxPml = 0;
+ EmuFeat.fVmxEptXcptVe = 0;
+ EmuFeat.fVmxXsavesXrstors = 0;
+ EmuFeat.fVmxUseTscScaling = 0;
+ EmuFeat.fVmxEntryLoadDebugCtls = 1;
+ EmuFeat.fVmxIa32eModeGuest = 1;
+ EmuFeat.fVmxEntryLoadEferMsr = 1;
+ EmuFeat.fVmxEntryLoadPatMsr = 0;
+ EmuFeat.fVmxExitSaveDebugCtls = 1;
+ EmuFeat.fVmxHostAddrSpaceSize = 1;
+ EmuFeat.fVmxExitAckExtInt = 0;
+ EmuFeat.fVmxExitSavePatMsr = 0;
+ EmuFeat.fVmxExitLoadPatMsr = 0;
+ EmuFeat.fVmxExitSaveEferMsr = 1;
+ EmuFeat.fVmxExitLoadEferMsr = 1;
+ EmuFeat.fVmxSavePreemptTimer = 0;
+ EmuFeat.fVmxExitSaveEferLma = 1;
+ EmuFeat.fVmxIntelPt = 0;
+ EmuFeat.fVmxVmwriteAll = 0;
+ EmuFeat.fVmxEntryInjectSoftInt = 0;
+
+ /*
+ * Merge guest features.
+ *
+ * When hardware-assisted VMX may be used, any feature we emulate must also be supported
+ * by the hardware, hence we merge our emulated features with the host features below.
+ */
+ PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
+ PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
+ Assert(pBaseFeat->fVmx);
+ pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
+ pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
+ pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
+ pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
+ pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
+ pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
+ pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
+ pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
+ pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
+ pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
+ pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
+ pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
+ pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
+ pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
+ pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
+ pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
+ pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
+ pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
+ pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
+ pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
+ pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
+ pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
+ pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
+ pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
+ pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
+ pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
+ pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
+ pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
+ pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
+ pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
+ pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
+ pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
+ pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
+ pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
+ pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
+ pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
+ pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
+ pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
+ pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
+ pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
+ pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
+ pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
+ pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
+ pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
+ pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
+ pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
+ pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
+ pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
+ pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
+ pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
+ pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
+ pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
+ pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
+ pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
+ pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
+ pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
+ pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
+ pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
+ pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
+ pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
+ pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
+ pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
+ pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
+
+ /* Paranoia. */
+ if (!pGuestFeat->fVmxSecondaryExecCtls)
+ {
+ Assert(!pGuestFeat->fVmxVirtApicAccess);
+ Assert(!pGuestFeat->fVmxEpt);
+ Assert(!pGuestFeat->fVmxDescTableExit);
+ Assert(!pGuestFeat->fVmxRdtscp);
+ Assert(!pGuestFeat->fVmxVirtX2ApicMode);
+ Assert(!pGuestFeat->fVmxVpid);
+ Assert(!pGuestFeat->fVmxWbinvdExit);
+ Assert(!pGuestFeat->fVmxUnrestrictedGuest);
+ Assert(!pGuestFeat->fVmxApicRegVirt);
+ Assert(!pGuestFeat->fVmxVirtIntDelivery);
+ Assert(!pGuestFeat->fVmxPauseLoopExit);
+ Assert(!pGuestFeat->fVmxRdrandExit);
+ Assert(!pGuestFeat->fVmxInvpcid);
+ Assert(!pGuestFeat->fVmxVmFunc);
+ Assert(!pGuestFeat->fVmxVmcsShadowing);
+ Assert(!pGuestFeat->fVmxRdseedExit);
+ Assert(!pGuestFeat->fVmxPml);
+ Assert(!pGuestFeat->fVmxEptXcptVe);
+ Assert(!pGuestFeat->fVmxXsavesXrstors);
+ Assert(!pGuestFeat->fVmxUseTscScaling);
+ }
+ if (pGuestFeat->fVmxUnrestrictedGuest)
+ {
+ /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
+ Assert(pGuestFeat->fVmxExitSaveEferLma);
+ }
+
+ /*
+ * Finally initialize the VMX guest MSRs.
+ */
+ cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
+}
+
+
+/**
+ * Gets the host hardware-virtualization MSRs.
+ *
+ * @returns VBox status code.
+ * @param pMsrs Where to store the MSRs.
+ */
+static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
+{
+ Assert(pMsrs);
+
+ uint32_t fCaps = 0;
+ int rc = SUPR3QueryVTCaps(&fCaps);
+ if (RT_SUCCESS(rc))
+ {
+ if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
+ {
+ SUPHWVIRTMSRS HwvirtMsrs;
+ rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
+ if (RT_SUCCESS(rc))
+ {
+ if (fCaps & SUPVTCAPS_VT_X)
+ HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
+ else
+ HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
+ return VINF_SUCCESS;
+ }
+
+ LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
+ return rc;
+ }
+ else
+ {
+ LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
+ return VERR_INTERNAL_ERROR_5;
+ }
+ }
+ else
+ LogRel(("CPUM: No hardware-virtualization capability detected\n"));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Initializes the CPUM.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) CPUMR3Init(PVM pVM)
+{
+ LogFlow(("CPUMR3Init\n"));
+
+ /*
+ * Assert alignment, sizes and tables.
+ */
+ AssertCompileMemberAlignment(VM, cpum.s, 32);
+ AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
+ AssertCompileSizeAlignment(CPUMCTX, 64);
+ AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
+ AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
+ AssertCompileMemberAlignment(VM, cpum, 64);
+ AssertCompileMemberAlignment(VM, aCpus, 64);
+ AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
+ AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
+#ifdef VBOX_STRICT
+ int rc2 = cpumR3MsrStrictInitChecks();
+ AssertRCReturn(rc2, rc2);
+#endif
+
+ /*
+ * Initialize offsets.
+ */
+
+ /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
+ pVM->cpum.s.offCPUMCPU0 = RT_UOFFSETOF(VM, aCpus[0].cpum) - RT_UOFFSETOF(VM, cpum);
+ Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
+
+
+ /* Calculate the offset from CPUMCPU to CPUM. */
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+
+ pVCpu->cpum.s.offCPUM = RT_UOFFSETOF_DYN(VM, aCpus[i].cpum) - RT_UOFFSETOF(VM, cpum);
+ Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
+ }
+
+ /*
+ * Gather info about the host CPU.
+ */
+ if (!ASMHasCpuId())
+ {
+ LogRel(("The CPU doesn't support CPUID!\n"));
+ return VERR_UNSUPPORTED_CPU;
+ }
+
+ pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
+
+ CPUMMSRS HostMsrs;
+ RT_ZERO(HostMsrs);
+ int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
+ AssertLogRelRCReturn(rc, rc);
+
+ PCPUMCPUIDLEAF paLeaves;
+ uint32_t cLeaves;
+ rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
+ AssertLogRelRCReturn(rc, rc);
+
+ rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
+ RTMemFree(paLeaves);
+ AssertLogRelRCReturn(rc, rc);
+ pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
+
+ /*
+ * Check that the CPU supports the minimum features we require.
+ */
+ if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
+ return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
+ if (!pVM->cpum.s.HostFeatures.fMmx)
+ return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
+ if (!pVM->cpum.s.HostFeatures.fTsc)
+ return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
+
+ /*
+ * Setup the CR4 AND and OR masks used in the raw-mode switcher.
+ */
+ pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
+ pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
+
+ /*
+ * Figure out which XSAVE/XRSTOR features are available on the host.
+ */
+ uint64_t fXcr0Host = 0;
+ uint64_t fXStateHostMask = 0;
+ if ( pVM->cpum.s.HostFeatures.fXSaveRstor
+ && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
+ {
+ fXStateHostMask = fXcr0Host = ASMGetXcr0();
+ fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
+ AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
+ ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
+ }
+ pVM->cpum.s.fXStateHostMask = fXStateHostMask;
+ if (VM_IS_RAW_MODE_ENABLED(pVM)) /* For raw-mode, we only use XSAVE/XRSTOR when the guest starts using it (CPUID/CR4 visibility). */
+ fXStateHostMask = 0;
+ LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
+ pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
+
+ /*
+ * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
+ */
+ uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
+ cbMaxXState = RT_ALIGN(cbMaxXState, 128);
+ AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
+
+ uint8_t *pbXStates;
+ rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 3 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
+ MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
+ AssertLogRelRCReturn(rc, rc);
+
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+
+ pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
+ pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
+ pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
+ pbXStates += cbMaxXState;
+
+ pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
+ pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
+ pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
+ pbXStates += cbMaxXState;
+
+ pVCpu->cpum.s.Hyper.pXStateR3 = (PX86XSAVEAREA)pbXStates;
+ pVCpu->cpum.s.Hyper.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
+ pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToR0(pVM, pbXStates);
+ pbXStates += cbMaxXState;
+
+ pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
+ }
+
+ /*
+ * Register saved state data item.
+ */
+ rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
+ NULL, cpumR3LiveExec, NULL,
+ NULL, cpumR3SaveExec, NULL,
+ cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Register info handlers and registers with the debugger facility.
+ */
+ DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
+ &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
+ &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
+ &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
+ &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
+ &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
+ &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
+ DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
+ DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
+ &cpumR3InfoVmxFeatures);
+
+ rc = cpumR3DbgInit(pVM);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Check if we need to workaround partial/leaky FPU handling.
+ */
+ cpumR3CheckLeakyFpu(pVM);
+
+ /*
+ * Initialize the Guest CPUID and MSR states.
+ */
+ rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Allocate memory required by the guest hardware-virtualization structures.
+ * This must be done after initializing CPUID/MSR features as we access the
+ * the VMX/SVM guest features below.
+ */
+ if (pVM->cpum.s.GuestFeatures.fVmx)
+ rc = cpumR3AllocVmxHwVirtState(pVM);
+ else if (pVM->cpum.s.GuestFeatures.fSvm)
+ rc = cpumR3AllocSvmHwVirtState(pVM);
+ else
+ Assert(pVM->aCpus[0].cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
+ if (RT_FAILURE(rc))
+ return rc;
+
+ /*
+ * Workaround for missing cpuid(0) patches when leaf 4 returns GuestInfo.DefCpuId:
+ * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
+ * of processors from (cpuid(4).eax >> 26) + 1.
+ *
+ * Note: this code is obsolete, but let's keep it here for reference.
+ * Purpose is valid when we artificially cap the max std id to less than 4.
+ *
+ * Note: This used to be a separate function CPUMR3SetHwVirt that was called
+ * after VMINITCOMPLETED_HM.
+ */
+ if (VM_IS_RAW_MODE_ENABLED(pVM))
+ {
+ Assert( (pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax & UINT32_C(0xffffc000)) == 0
+ || pVM->cpum.s.aGuestCpuIdPatmStd[0].uEax < 0x4);
+ pVM->cpum.s.aGuestCpuIdPatmStd[4].uEax &= UINT32_C(0x00003fff);
+ }
+
+ CPUMR3Reset(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Applies relocations to data and code managed by this
+ * component. This function will be called at init and
+ * whenever the VMM need to relocate it self inside the GC.
+ *
+ * The CPUM will update the addresses used by the switcher.
+ *
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
+{
+ LogFlow(("CPUMR3Relocate\n"));
+
+ pVM->cpum.s.GuestInfo.paMsrRangesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paMsrRangesR3);
+ pVM->cpum.s.GuestInfo.paCpuIdLeavesRC = MMHyperR3ToRC(pVM, pVM->cpum.s.GuestInfo.paCpuIdLeavesR3);
+
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+ pVCpu->cpum.s.Guest.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Guest.pXStateR3);
+ pVCpu->cpum.s.Host.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Host.pXStateR3);
+ pVCpu->cpum.s.Hyper.pXStateRC = MMHyperR3ToRC(pVM, pVCpu->cpum.s.Hyper.pXStateR3); /** @todo remove me */
+
+ /* Recheck the guest DRx values in raw-mode. */
+ CPUMRecalcHyperDRx(pVCpu, UINT8_MAX, false);
+ }
+}
+
+
+/**
+ * Terminates the CPUM.
+ *
+ * Termination means cleaning up and freeing all resources,
+ * the VM it self is at this point powered off or suspended.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(int) CPUMR3Term(PVM pVM)
+{
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
+
+ memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
+ pVCpu->cpum.s.uMagic = 0;
+ pCtx->dr[5] = 0;
+ }
+#endif
+
+ if (pVM->cpum.s.GuestFeatures.fVmx)
+ cpumR3FreeVmxHwVirtState(pVM);
+ else if (pVM->cpum.s.GuestFeatures.fSvm)
+ cpumR3FreeSvmHwVirtState(pVM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Resets a virtual CPU.
+ *
+ * Used by CPUMR3Reset and CPU hot plugging.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure of the CPU that is
+ * being reset. This may differ from the current EMT.
+ */
+VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
+{
+ /** @todo anything different for VCPU > 0? */
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+
+ /*
+ * Initialize everything to ZERO first.
+ */
+ uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
+
+ AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
+ AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateRC));
+ memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
+
+ pVCpu->cpum.s.fUseFlags = fUseFlags;
+
+ pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
+ pCtx->eip = 0x0000fff0;
+ pCtx->edx = 0x00000600; /* P6 processor */
+ pCtx->eflags.Bits.u1Reserved0 = 1;
+
+ pCtx->cs.Sel = 0xf000;
+ pCtx->cs.ValidSel = 0xf000;
+ pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->cs.u64Base = UINT64_C(0xffff0000);
+ pCtx->cs.u32Limit = 0x0000ffff;
+ pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->cs.Attr.n.u1Present = 1;
+ pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
+
+ pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->ds.u32Limit = 0x0000ffff;
+ pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->ds.Attr.n.u1Present = 1;
+ pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
+
+ pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->es.u32Limit = 0x0000ffff;
+ pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->es.Attr.n.u1Present = 1;
+ pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
+
+ pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->fs.u32Limit = 0x0000ffff;
+ pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->fs.Attr.n.u1Present = 1;
+ pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
+
+ pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->gs.u32Limit = 0x0000ffff;
+ pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->gs.Attr.n.u1Present = 1;
+ pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
+
+ pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->ss.u32Limit = 0x0000ffff;
+ pCtx->ss.Attr.n.u1Present = 1;
+ pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
+ pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
+
+ pCtx->idtr.cbIdt = 0xffff;
+ pCtx->gdtr.cbGdt = 0xffff;
+
+ pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->ldtr.u32Limit = 0xffff;
+ pCtx->ldtr.Attr.n.u1Present = 1;
+ pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
+
+ pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pCtx->tr.u32Limit = 0xffff;
+ pCtx->tr.Attr.n.u1Present = 1;
+ pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
+
+ pCtx->dr[6] = X86_DR6_INIT_VAL;
+ pCtx->dr[7] = X86_DR7_INIT_VAL;
+
+ PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
+ pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
+ pFpuCtx->FCW = 0x37f;
+
+ /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
+ IA-32 Processor States Following Power-up, Reset, or INIT */
+ pFpuCtx->MXCSR = 0x1F80;
+ pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
+
+ pCtx->aXcr[0] = XSAVE_C_X87;
+ if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
+ {
+ /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
+ as we don't know what happened before. (Bother optimize later?) */
+ pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
+ }
+
+ /*
+ * MSRs.
+ */
+ /* Init PAT MSR */
+ pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
+
+ /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
+ * The Intel docs don't mention it. */
+ Assert(!pCtx->msrEFER);
+
+ /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
+ is supposed to be here, just trying provide useful/sensible values. */
+ PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
+ if (pRange)
+ {
+ pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
+ | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
+ | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
+ | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
+ pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
+ | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
+ pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
+ }
+
+ /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
+
+ /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
+ * called from each EMT while we're getting called by CPUMR3Reset()
+ * iteratively on the same thread. Fix later. */
+#if 0 /** @todo r=bird: This we will do in TM, not here. */
+ /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
+ CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
+#endif
+
+
+ /* C-state control. Guesses. */
+ pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
+ /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
+ * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
+ * functionality. The default value must be different due to incompatible write mask.
+ */
+ if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
+ pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
+ else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
+ pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
+
+ /*
+ * Hardware virtualization state.
+ */
+ CPUMSetGuestGif(pCtx, true);
+ Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
+ if (pVM->cpum.s.GuestFeatures.fVmx)
+ cpumR3ResetVmxHwVirtState(pVCpu);
+ else if (pVM->cpum.s.GuestFeatures.fSvm)
+ cpumR3ResetSvmHwVirtState(pVCpu);
+}
+
+
+/**
+ * Resets the CPU.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(void) CPUMR3Reset(PVM pVM)
+{
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ CPUMR3ResetCpu(pVM, &pVM->aCpus[i]);
+
+#ifdef VBOX_WITH_CRASHDUMP_MAGIC
+ PCPUMCTX pCtx = &pVM->aCpus[i].cpum.s.Guest;
+
+ /* Magic marker for searching in crash dumps. */
+ strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
+ pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
+ pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
+#endif
+ }
+}
+
+
+
+
+/**
+ * Pass 0 live exec callback.
+ *
+ * @returns VINF_SSM_DONT_CALL_AGAIN.
+ * @param pVM The cross context VM structure.
+ * @param pSSM The saved state handle.
+ * @param uPass The pass (0).
+ */
+static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
+{
+ AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
+ cpumR3SaveCpuId(pVM, pSSM);
+ return VINF_SSM_DONT_CALL_AGAIN;
+}
+
+
+/**
+ * Execute state save operation.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pSSM SSM operation handle.
+ */
+static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
+{
+ /*
+ * Save.
+ */
+ SSMR3PutU32(pSSM, pVM->cCpus);
+ SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+
+ SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
+
+ PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
+ SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
+ SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
+ if (pGstCtx->fXStateMask != 0)
+ SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
+ if (pGstCtx->fXStateMask & XSAVE_C_YMM)
+ {
+ PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
+ SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
+ {
+ PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
+ SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
+ {
+ PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
+ SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
+ {
+ PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
+ SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
+ {
+ PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
+ SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
+ }
+ if (pVM->cpum.s.GuestFeatures.fSvm)
+ {
+ Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
+ SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
+ SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
+ SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
+ SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
+ SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
+ SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
+ SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
+ g_aSvmHwvirtHostState, NULL /* pvUser */);
+ SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
+ SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
+ }
+ SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
+ SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
+ AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
+ SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
+ }
+
+ cpumR3SaveCpuId(pVM, pSSM);
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNSSMINTLOADPREP}
+ */
+static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
+{
+ NOREF(pSSM);
+ pVM->cpum.s.fPendingRestore = true;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * @callback_method_impl{FNSSMINTLOADEXEC}
+ */
+static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
+{
+ int rc; /* Only for AssertRCReturn use. */
+
+ /*
+ * Validate version.
+ */
+ if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
+ && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
+ && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
+ && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
+ && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
+ && uVersion != CPUM_SAVED_STATE_VERSION_MEM
+ && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
+ && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
+ && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
+ && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
+ && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
+ && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
+ {
+ AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
+ return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
+ }
+
+ if (uPass == SSM_PASS_FINAL)
+ {
+ /*
+ * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
+ * really old SSM file versions.)
+ */
+ if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
+ SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
+ else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
+ SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
+
+ /*
+ * Figure x86 and ctx field definitions to use for older states.
+ */
+ uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
+ PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
+ PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
+ if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
+ {
+ paCpumCtx1Fields = g_aCpumX87FieldsV16;
+ paCpumCtx2Fields = g_aCpumCtxFieldsV16;
+ }
+ else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
+ {
+ paCpumCtx1Fields = g_aCpumX87FieldsMem;
+ paCpumCtx2Fields = g_aCpumCtxFieldsMem;
+ }
+
+ /*
+ * The hyper state used to preceed the CPU count. Starting with
+ * XSAVE it was moved down till after we've got the count.
+ */
+ if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
+ {
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+ X86FXSTATE Ign;
+ SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
+ uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
+ uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
+ SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper),
+ fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
+ pVCpu->cpum.s.Hyper.cr3 = uCR3;
+ pVCpu->cpum.s.Hyper.rsp = uRSP;
+ }
+ }
+
+ if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
+ {
+ uint32_t cCpus;
+ rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
+ AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
+ VERR_SSM_UNEXPECTED_DATA);
+ }
+ AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
+ || pVM->cCpus == 1,
+ ("cCpus=%u\n", pVM->cCpus),
+ VERR_SSM_UNEXPECTED_DATA);
+
+ uint32_t cbMsrs = 0;
+ if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
+ {
+ rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
+ AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
+ VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
+ VERR_SSM_UNEXPECTED_DATA);
+ }
+
+ /*
+ * Do the per-CPU restoring.
+ */
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+ PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
+
+ if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
+ {
+ /*
+ * The XSAVE saved state layout moved the hyper state down here.
+ */
+ uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
+ uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
+ rc = SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), 0, g_aCpumCtxFields, NULL);
+ pVCpu->cpum.s.Hyper.cr3 = uCR3;
+ pVCpu->cpum.s.Hyper.rsp = uRSP;
+ AssertRCReturn(rc, rc);
+
+ /*
+ * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
+ */
+ rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
+ rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
+ AssertRCReturn(rc, rc);
+
+ /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
+ if (pGstCtx->fXStateMask != 0)
+ {
+ AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
+ ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
+ pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
+ VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
+ AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
+ ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
+ ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
+ || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
+ == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
+ ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ }
+
+ /* Check that the XCR0 mask is valid (invalid results in #GP). */
+ AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
+ if (pGstCtx->aXcr[0] != XSAVE_C_X87)
+ {
+ AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
+ ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
+ VERR_CPUM_INVALID_XCR0);
+ AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
+ ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
+ ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
+ || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
+ == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
+ ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
+ }
+
+ /* Check that the XCR1 is zero, as we don't implement it yet. */
+ AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
+
+ /*
+ * Restore the individual extended state components we support.
+ */
+ if (pGstCtx->fXStateMask != 0)
+ {
+ rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
+ 0, g_aCpumXSaveHdrFields, NULL);
+ AssertRCReturn(rc, rc);
+ AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
+ ("bmXState=%#RX64 fXStateMask=%#RX64\n",
+ pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
+ VERR_CPUM_INVALID_XSAVE_HDR);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_YMM)
+ {
+ PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
+ SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
+ {
+ PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
+ SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
+ {
+ PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
+ SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
+ {
+ PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
+ SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
+ }
+ if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
+ {
+ PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
+ SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
+ }
+ if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
+ {
+ if (pVM->cpum.s.GuestFeatures.fSvm)
+ {
+ Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
+ SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
+ SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
+ SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
+ SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
+ SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
+ SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
+ SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
+ 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
+ SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
+ SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
+ SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
+ }
+ }
+ /** @todo NSTVMX: Load VMX state. */
+ }
+ else
+ {
+ /*
+ * Pre XSAVE saved state.
+ */
+ SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
+ fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
+ SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
+ }
+
+ /*
+ * Restore a couple of flags and the MSRs.
+ */
+ SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
+ SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
+
+ rc = VINF_SUCCESS;
+ if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
+ rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
+ else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
+ {
+ SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
+ rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
+ }
+ AssertRCReturn(rc, rc);
+
+ /* REM and other may have cleared must-be-one fields in DR6 and
+ DR7, fix these. */
+ pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
+ pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
+ pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
+ pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
+ }
+
+ /* Older states does not have the internal selector register flags
+ and valid selector value. Supply those. */
+ if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
+ {
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+ bool const fValid = !VM_IS_RAW_MODE_ENABLED(pVM)
+ || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
+ && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
+ PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
+ if (fValid)
+ {
+ for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
+ {
+ paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
+ paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
+ }
+
+ pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
+ }
+ else
+ {
+ for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
+ {
+ paSelReg[iSelReg].fFlags = 0;
+ paSelReg[iSelReg].ValidSel = 0;
+ }
+
+ /* This might not be 104% correct, but I think it's close
+ enough for all practical purposes... (REM always loaded
+ LDTR registers.) */
+ pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
+ }
+ pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
+ pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
+ }
+ }
+
+ /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
+ if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
+ && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ pVM->aCpus[iCpu].cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
+
+ /*
+ * A quick sanity check.
+ */
+ for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[iCpu];
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
+ }
+ }
+
+ pVM->cpum.s.fPendingRestore = false;
+
+ /*
+ * Guest CPUIDs.
+ */
+ if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
+ {
+ CPUMMSRS GuestMsrs;
+ RT_ZERO(GuestMsrs);
+ if (pVM->cpum.s.GuestFeatures.fVmx)
+ GuestMsrs.hwvirt.vmx = pVM->aCpus[0].cpum.s.Guest.hwvirt.vmx.Msrs;
+ return cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
+ }
+ return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
+}
+
+
+/**
+ * @callback_method_impl{FNSSMINTLOADDONE}
+ */
+static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
+{
+ if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
+ return VINF_SUCCESS;
+
+ /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
+ if (pVM->cpum.s.fPendingRestore)
+ {
+ LogRel(("CPUM: Missing state!\n"));
+ return VERR_INTERNAL_ERROR_2;
+ }
+
+ bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
+ for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[idCpu];
+
+ /* Notify PGM of the NXE states in case they've changed. */
+ PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
+
+ /* During init. this is done in CPUMR3InitCompleted(). */
+ if (fSupportsLongMode)
+ pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Checks if the CPUM state restore is still pending.
+ *
+ * @returns true / false.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
+{
+ return pVM->cpum.s.fPendingRestore;
+}
+
+
+/**
+ * Formats the EFLAGS value into mnemonics.
+ *
+ * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
+ * @param efl The EFLAGS value.
+ */
+static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
+{
+ /*
+ * Format the flags.
+ */
+ static const struct
+ {
+ const char *pszSet; const char *pszClear; uint32_t fFlag;
+ } s_aFlags[] =
+ {
+ { "vip",NULL, X86_EFL_VIP },
+ { "vif",NULL, X86_EFL_VIF },
+ { "ac", NULL, X86_EFL_AC },
+ { "vm", NULL, X86_EFL_VM },
+ { "rf", NULL, X86_EFL_RF },
+ { "nt", NULL, X86_EFL_NT },
+ { "ov", "nv", X86_EFL_OF },
+ { "dn", "up", X86_EFL_DF },
+ { "ei", "di", X86_EFL_IF },
+ { "tf", NULL, X86_EFL_TF },
+ { "nt", "pl", X86_EFL_SF },
+ { "nz", "zr", X86_EFL_ZF },
+ { "ac", "na", X86_EFL_AF },
+ { "po", "pe", X86_EFL_PF },
+ { "cy", "nc", X86_EFL_CF },
+ };
+ char *psz = pszEFlags;
+ for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
+ {
+ const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
+ if (pszAdd)
+ {
+ strcpy(psz, pszAdd);
+ psz += strlen(pszAdd);
+ *psz++ = ' ';
+ }
+ }
+ psz[-1] = '\0';
+}
+
+
+/**
+ * Formats a full register dump.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pCtx The context to format.
+ * @param pCtxCore The context core to format.
+ * @param pHlp Output functions.
+ * @param enmType The dump type.
+ * @param pszPrefix Register name prefix.
+ */
+static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
+ const char *pszPrefix)
+{
+ NOREF(pVM);
+
+ /*
+ * Format the EFLAGS.
+ */
+ uint32_t efl = pCtxCore->eflags.u32;
+ char szEFlags[80];
+ cpumR3InfoFormatFlags(&szEFlags[0], efl);
+
+ /*
+ * Format the registers.
+ */
+ switch (enmType)
+ {
+ case CPUMDUMPTYPE_TERSE:
+ if (CPUMIsGuestIn64BitCodeEx(pCtx))
+ pHlp->pfnPrintf(pHlp,
+ "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
+ "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
+ "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
+ "%sr14=%016RX64 %sr15=%016RX64\n"
+ "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
+ "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
+ pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
+ pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
+ pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
+ pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
+ pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
+ else
+ pHlp->pfnPrintf(pHlp,
+ "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
+ "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
+ "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
+ pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
+ pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
+ pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
+ break;
+
+ case CPUMDUMPTYPE_DEFAULT:
+ if (CPUMIsGuestIn64BitCodeEx(pCtx))
+ pHlp->pfnPrintf(pHlp,
+ "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
+ "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
+ "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
+ "%sr14=%016RX64 %sr15=%016RX64\n"
+ "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
+ "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
+ "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
+ ,
+ pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
+ pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
+ pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
+ pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
+ pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
+ pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
+ pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
+ else
+ pHlp->pfnPrintf(pHlp,
+ "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
+ "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
+ "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
+ "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
+ ,
+ pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
+ pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
+ pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
+ pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
+ pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
+ break;
+
+ case CPUMDUMPTYPE_VERBOSE:
+ if (CPUMIsGuestIn64BitCodeEx(pCtx))
+ pHlp->pfnPrintf(pHlp,
+ "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
+ "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
+ "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
+ "%sr14=%016RX64 %sr15=%016RX64\n"
+ "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
+ "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
+ "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
+ "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
+ "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
+ "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
+ "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
+ "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
+ "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
+ ,
+ pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
+ pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
+ pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
+ pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
+ pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
+ pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
+ pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
+ pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
+ pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
+ pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
+ pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
+ pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
+ pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
+ pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
+ pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
+ pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
+ else
+ pHlp->pfnPrintf(pHlp,
+ "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
+ "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
+ "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
+ "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
+ "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
+ "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
+ "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
+ "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
+ "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
+ "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
+ "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
+ "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
+ ,
+ pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
+ pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
+ pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
+ pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
+ pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
+ pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
+ pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
+ pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
+ pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
+ pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
+ pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
+ pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
+
+ pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
+ pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
+ pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
+ if (pCtx->CTX_SUFF(pXState))
+ {
+ PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
+ pHlp->pfnPrintf(pHlp,
+ "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
+ "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
+ ,
+ pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
+ pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
+ pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
+ pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
+ );
+ /*
+ * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
+ * not (FP)R0-7 as Intel SDM suggests.
+ */
+ unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
+ for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
+ {
+ unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
+ unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
+ char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
+ unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
+ uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
+ int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
+ iExponent -= 16383; /* subtract bias */
+ /** @todo This isn't entirenly correct and needs more work! */
+ pHlp->pfnPrintf(pHlp,
+ "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
+ pszPrefix, iST, pszPrefix, iFPR,
+ pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
+ uTag, chSign, iInteger, u64Fraction, iExponent);
+ if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
+ pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
+ pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
+ else
+ pHlp->pfnPrintf(pHlp, "\n");
+ }
+
+ /* XMM/YMM/ZMM registers. */
+ if (pCtx->fXStateMask & XSAVE_C_YMM)
+ {
+ PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
+ if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
+ for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
+ pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
+ pszPrefix, i, i < 10 ? " " : "",
+ pYmmHiCtx->aYmmHi[i].au32[3],
+ pYmmHiCtx->aYmmHi[i].au32[2],
+ pYmmHiCtx->aYmmHi[i].au32[1],
+ pYmmHiCtx->aYmmHi[i].au32[0],
+ pFpuCtx->aXMM[i].au32[3],
+ pFpuCtx->aXMM[i].au32[2],
+ pFpuCtx->aXMM[i].au32[1],
+ pFpuCtx->aXMM[i].au32[0]);
+ else
+ {
+ PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
+ for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
+ pHlp->pfnPrintf(pHlp,
+ "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
+ pszPrefix, i, i < 10 ? " " : "",
+ pZmmHi256->aHi256Regs[i].au32[7],
+ pZmmHi256->aHi256Regs[i].au32[6],
+ pZmmHi256->aHi256Regs[i].au32[5],
+ pZmmHi256->aHi256Regs[i].au32[4],
+ pZmmHi256->aHi256Regs[i].au32[3],
+ pZmmHi256->aHi256Regs[i].au32[2],
+ pZmmHi256->aHi256Regs[i].au32[1],
+ pZmmHi256->aHi256Regs[i].au32[0],
+ pYmmHiCtx->aYmmHi[i].au32[3],
+ pYmmHiCtx->aYmmHi[i].au32[2],
+ pYmmHiCtx->aYmmHi[i].au32[1],
+ pYmmHiCtx->aYmmHi[i].au32[0],
+ pFpuCtx->aXMM[i].au32[3],
+ pFpuCtx->aXMM[i].au32[2],
+ pFpuCtx->aXMM[i].au32[1],
+ pFpuCtx->aXMM[i].au32[0]);
+
+ PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
+ for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
+ pHlp->pfnPrintf(pHlp,
+ "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
+ pszPrefix, i + 16,
+ pZmm16Hi->aRegs[i].au32[15],
+ pZmm16Hi->aRegs[i].au32[14],
+ pZmm16Hi->aRegs[i].au32[13],
+ pZmm16Hi->aRegs[i].au32[12],
+ pZmm16Hi->aRegs[i].au32[11],
+ pZmm16Hi->aRegs[i].au32[10],
+ pZmm16Hi->aRegs[i].au32[9],
+ pZmm16Hi->aRegs[i].au32[8],
+ pZmm16Hi->aRegs[i].au32[7],
+ pZmm16Hi->aRegs[i].au32[6],
+ pZmm16Hi->aRegs[i].au32[5],
+ pZmm16Hi->aRegs[i].au32[4],
+ pZmm16Hi->aRegs[i].au32[3],
+ pZmm16Hi->aRegs[i].au32[2],
+ pZmm16Hi->aRegs[i].au32[1],
+ pZmm16Hi->aRegs[i].au32[0]);
+ }
+ }
+ else
+ for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
+ pHlp->pfnPrintf(pHlp,
+ i & 1
+ ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
+ : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
+ pszPrefix, i, i < 10 ? " " : "",
+ pFpuCtx->aXMM[i].au32[3],
+ pFpuCtx->aXMM[i].au32[2],
+ pFpuCtx->aXMM[i].au32[1],
+ pFpuCtx->aXMM[i].au32[0]);
+
+ if (pCtx->fXStateMask & XSAVE_C_OPMASK)
+ {
+ PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
+ for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
+ pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
+ pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
+ pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
+ pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
+ pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
+ }
+
+ if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
+ {
+ PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
+ for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
+ pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
+ pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
+ pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
+ }
+
+ if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
+ {
+ PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
+ pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
+ pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
+ }
+
+ for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
+ if (pFpuCtx->au32RsrvdRest[i])
+ pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
+ pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
+ }
+
+ pHlp->pfnPrintf(pHlp,
+ "%sEFER =%016RX64\n"
+ "%sPAT =%016RX64\n"
+ "%sSTAR =%016RX64\n"
+ "%sCSTAR =%016RX64\n"
+ "%sLSTAR =%016RX64\n"
+ "%sSFMASK =%016RX64\n"
+ "%sKERNELGSBASE =%016RX64\n",
+ pszPrefix, pCtx->msrEFER,
+ pszPrefix, pCtx->msrPAT,
+ pszPrefix, pCtx->msrSTAR,
+ pszPrefix, pCtx->msrCSTAR,
+ pszPrefix, pCtx->msrLSTAR,
+ pszPrefix, pCtx->msrSFMASK,
+ pszPrefix, pCtx->msrKERNELGSBASE);
+ break;
+ }
+}
+
+
+/**
+ * Display all cpu states and any other cpum info.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ cpumR3InfoGuest(pVM, pHlp, pszArgs);
+ cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
+ cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
+ cpumR3InfoHyper(pVM, pHlp, pszArgs);
+ cpumR3InfoHost(pVM, pHlp, pszArgs);
+}
+
+
+/**
+ * Parses the info argument.
+ *
+ * The argument starts with 'verbose', 'terse' or 'default' and then
+ * continues with the comment string.
+ *
+ * @param pszArgs The pointer to the argument string.
+ * @param penmType Where to store the dump type request.
+ * @param ppszComment Where to store the pointer to the comment string.
+ */
+static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
+{
+ if (!pszArgs)
+ {
+ *penmType = CPUMDUMPTYPE_DEFAULT;
+ *ppszComment = "";
+ }
+ else
+ {
+ if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
+ {
+ pszArgs += 7;
+ *penmType = CPUMDUMPTYPE_VERBOSE;
+ }
+ else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
+ {
+ pszArgs += 5;
+ *penmType = CPUMDUMPTYPE_TERSE;
+ }
+ else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
+ {
+ pszArgs += 7;
+ *penmType = CPUMDUMPTYPE_DEFAULT;
+ }
+ else
+ *penmType = CPUMDUMPTYPE_DEFAULT;
+ *ppszComment = RTStrStripL(pszArgs);
+ }
+}
+
+
+/**
+ * Display the guest cpu state.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments.
+ */
+static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ CPUMDUMPTYPE enmType;
+ const char *pszComment;
+ cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
+
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = &pVM->aCpus[0];
+
+ pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
+
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
+}
+
+
+/**
+ * Displays an SVM VMCB control area.
+ *
+ * @param pHlp The info helper functions.
+ * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
+ * @param pszPrefix Caller specified string prefix.
+ */
+static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
+{
+ AssertReturnVoid(pHlp);
+ AssertReturnVoid(pVmcbCtrl);
+
+ pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
+ pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
+ pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
+ pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
+ pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
+ pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
+ pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
+ pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
+ pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
+ pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
+ pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
+ pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
+ pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
+ pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
+ pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
+ pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
+ pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
+ pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
+ pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
+ pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
+ pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
+ pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
+ pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
+ pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
+ pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
+ pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
+ pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
+ pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
+ pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
+ pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
+ pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
+ pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
+ pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
+ pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
+ pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
+ pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
+ pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
+ pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
+ pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
+ pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
+ pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
+ pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
+ pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
+ pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
+ pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
+ pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
+ pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
+ pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
+ pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
+ pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
+ pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
+ pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
+}
+
+
+/**
+ * Helper for dumping the SVM VMCB selector registers.
+ *
+ * @param pHlp The info helper functions.
+ * @param pSel Pointer to the SVM selector register.
+ * @param pszName Name of the selector.
+ * @param pszPrefix Caller specified string prefix.
+ */
+DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
+{
+ /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
+ pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
+ pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
+}
+
+
+/**
+ * Helper for dumping the SVM VMCB GDTR/IDTR registers.
+ *
+ * @param pHlp The info helper functions.
+ * @param pXdtr Pointer to the descriptor table register.
+ * @param pszName Name of the descriptor table register.
+ * @param pszPrefix Caller specified string prefix.
+ */
+DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
+{
+ /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
+ pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
+}
+
+
+/**
+ * Displays an SVM VMCB state-save area.
+ *
+ * @param pHlp The info helper functions.
+ * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
+ * @param pszPrefix Caller specified string prefix.
+ */
+static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
+{
+ AssertReturnVoid(pHlp);
+ AssertReturnVoid(pVmcbStateSave);
+
+ char szEFlags[80];
+ cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
+
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
+ cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
+ cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
+ cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
+ pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
+ pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
+ pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
+ pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
+ pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
+ pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
+ pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
+ pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
+ pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
+ pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
+ pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
+ pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
+ pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
+ pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
+ pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
+ pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
+ pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
+ pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
+ pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
+ pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
+ pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
+ pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
+ pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
+ pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
+ pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
+ pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
+}
+
+
+/**
+ * Displays a virtual-VMCS.
+ *
+ * @param pHlp The info helper functions.
+ * @param pVmcs Pointer to a virtual VMCS.
+ * @param pszPrefix Caller specified string prefix.
+ */
+static void cpumR3InfoVmxVmcs(PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
+{
+ AssertReturnVoid(pHlp);
+ AssertReturnVoid(pVmcs);
+
+ /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
+#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
+ do { \
+ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
+ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
+ } while (0)
+
+#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
+ do { \
+ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
+ (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
+ } while (0)
+
+#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
+ do { \
+ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
+ (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
+ (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
+ } while (0)
+
+#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
+ do { \
+ (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
+ (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
+ } while (0)
+
+ /* Header. */
+ {
+ pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
+ pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, HMGetVmxAbortDesc(pVmcs->enmVmxAbort));
+ pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, HMGetVmxVmcsStateDesc(pVmcs->fVmcsState));
+ }
+
+ /* Control fields. */
+ {
+ /* 16-bit. */
+ pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
+ pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
+ pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
+
+ /* 32-bit. */
+ pHlp->pfnPrintf(pHlp, " %sPinCtls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
+ pHlp->pfnPrintf(pHlp, " %sProcCtls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
+ pHlp->pfnPrintf(pHlp, " %sProcCtls2 = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
+ pHlp->pfnPrintf(pHlp, " %sExitCtls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
+ pHlp->pfnPrintf(pHlp, " %sEntryCtls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
+ pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
+ pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
+ pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
+ pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
+ pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
+ pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
+ {
+ uint32_t const fInfo = pVmcs->u32EntryIntInfo;
+ uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
+ pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxEntryIntInfoTypeDesc(uType));
+ pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
+ }
+ pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
+ pHlp->pfnPrintf(pHlp, " %sVM-entry instruction len = %u bytes\n", pszPrefix, pVmcs->u32EntryInstrLen);
+ pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
+ pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
+ pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
+
+ /* 64-bit. */
+ pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
+ pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
+ pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
+ pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
+ pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
+ pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
+ pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
+ pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
+ pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
+ pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
+ pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
+ pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
+ pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
+ pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
+ pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
+ pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
+ pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
+ pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
+ pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
+ pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
+ pHlp->pfnPrintf(pHlp, " %sXSS-bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssBitmap.u);
+ pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEnclsBitmap.u);
+ pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
+
+ /* Natural width. */
+ pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
+ pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
+ pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
+ pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
+ pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
+ pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
+ pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
+ pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
+ }
+
+ /* Guest state. */
+ {
+ char szEFlags[80];
+ cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
+ pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
+
+ /* 16-bit. */
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "cs", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "ss", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "es", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "ds", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "fs", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "gs", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "ldtr", pszPrefix);
+ CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "tr", pszPrefix);
+ CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
+ CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
+ pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
+ pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
+
+ /* 32-bit. */
+ pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
+ pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
+ pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
+ pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
+ pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
+
+ /* 64-bit. */
+ pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
+ pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
+ pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
+ pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
+ pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
+ pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
+
+ /* Natural width. */
+ pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
+ pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
+ pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
+ pHlp->pfnPrintf(pHlp, " %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
+ pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
+ pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
+ pHlp->pfnPrintf(pHlp, " %srflags = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
+ pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpt.u);
+ pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
+ pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
+ }
+
+ /* Host state. */
+ {
+ pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
+
+ /* 16-bit. */
+ pHlp->pfnPrintf(pHlp, " %scs = %#RX16\n", pszPrefix, pVmcs->HostCs);
+ pHlp->pfnPrintf(pHlp, " %sss = %#RX16\n", pszPrefix, pVmcs->HostSs);
+ pHlp->pfnPrintf(pHlp, " %sds = %#RX16\n", pszPrefix, pVmcs->HostDs);
+ pHlp->pfnPrintf(pHlp, " %ses = %#RX16\n", pszPrefix, pVmcs->HostEs);
+ CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "fs", pszPrefix);
+ CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "gs", pszPrefix);
+ CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "tr", pszPrefix);
+ CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
+ CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
+
+ /* 32-bit. */
+ pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
+
+ /* 64-bit. */
+ pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
+ pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
+
+ /* Natural width. */
+ pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
+ pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
+ pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
+ pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
+ pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
+ pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
+ pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
+ }
+
+ /* Read-only fields. */
+ {
+ pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
+
+ /* 16-bit (none currently). */
+
+ /* 32-bit. */
+ pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
+ pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
+ pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
+ {
+ uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
+ uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
+ pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxExitIntInfoTypeDesc(uType));
+ pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
+ }
+ pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
+ pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
+ {
+ uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
+ uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
+ pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxIdtVectoringInfoTypeDesc(uType));
+ pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
+ pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
+ }
+ pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u bytes\n", pszPrefix, pVmcs->u32RoExitInstrLen);
+ pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
+
+ /* 64-bit. */
+ pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
+
+ /* Natural width. */
+ pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
+ pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
+ pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
+ pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
+ pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
+ }
+
+#undef CPUMVMX_DUMP_HOST_XDTR
+#undef CPUMVMX_DUMP_HOST_FS_GS_TR
+#undef CPUMVMX_DUMP_GUEST_SEGREG
+#undef CPUMVMX_DUMP_GUEST_XDTR
+}
+
+
+/**
+ * Display the guest's hardware-virtualization cpu state.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ RT_NOREF(pszArgs);
+
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = &pVM->aCpus[0];
+
+ /*
+ * Figure out what to dump.
+ *
+ * In the future we may need to dump everything whether or not we're actively in nested-guest mode
+ * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
+ * dump hwvirt. state when the guest CPU is executing a nested-guest.
+ */
+ /** @todo perhaps make this configurable through pszArgs, depending on how much
+ * noise we wish to accept when nested hwvirt. isn't used. */
+#define CPUMHWVIRTDUMP_NONE (0)
+#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
+#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
+#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
+#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
+
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
+ bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
+ bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
+ uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
+ AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
+ Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
+ const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
+ uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
+
+ /*
+ * Dump it.
+ */
+ pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
+
+ if (fDumpState & CPUMHWVIRTDUMP_COMMON)
+ pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
+
+ pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
+ ":" : "");
+ if (fDumpState & CPUMHWVIRTDUMP_SVM)
+ {
+ pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
+
+ char szEFlags[80];
+ cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
+ pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
+ pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
+ pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
+ cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
+ pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
+ cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
+ pHlp->pfnPrintf(pHlp, " HostState:\n");
+ pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
+ pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
+ pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
+ pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
+ pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
+ pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
+ pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
+ pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
+ PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
+ pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
+ pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
+ pSel = &pCtx->hwvirt.svm.HostState.cs;
+ pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
+ pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
+ pSel = &pCtx->hwvirt.svm.HostState.ss;
+ pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
+ pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
+ pSel = &pCtx->hwvirt.svm.HostState.ds;
+ pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
+ pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
+ pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
+ pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
+ pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
+ pCtx->hwvirt.svm.HostState.idtr.cbIdt);
+ pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
+ pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
+ pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
+ pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
+ pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
+ pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
+ pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
+ }
+
+ if (fDumpState & CPUMHWVIRTDUMP_VMX)
+ {
+ pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
+ pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
+ pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
+ pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
+ pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMGetVmxAbortDesc(pCtx->hwvirt.vmx.enmAbort));
+ pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
+ pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
+ pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
+ pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
+ pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
+ pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
+ pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
+ pHlp->pfnPrintf(pHlp, " uVmentryTick = %RX64\n", pCtx->hwvirt.vmx.uVmentryTick);
+ pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
+ pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
+ cpumR3InfoVmxVmcs(pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
+ }
+
+#undef CPUMHWVIRTDUMP_NONE
+#undef CPUMHWVIRTDUMP_COMMON
+#undef CPUMHWVIRTDUMP_SVM
+#undef CPUMHWVIRTDUMP_VMX
+#undef CPUMHWVIRTDUMP_LAST
+#undef CPUMHWVIRTDUMP_ALL
+}
+
+/**
+ * Display the current guest instruction
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ NOREF(pszArgs);
+
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = &pVM->aCpus[0];
+
+ char szInstruction[256];
+ szInstruction[0] = '\0';
+ DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
+ pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
+}
+
+
+/**
+ * Display the hypervisor cpu state.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = &pVM->aCpus[0];
+
+ CPUMDUMPTYPE enmType;
+ const char *pszComment;
+ cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
+ pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
+ cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
+ pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
+}
+
+
+/**
+ * Display the host cpu state.
+ *
+ * @param pVM The cross context VM structure.
+ * @param pHlp The info helper functions.
+ * @param pszArgs Arguments, ignored.
+ */
+static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
+{
+ CPUMDUMPTYPE enmType;
+ const char *pszComment;
+ cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
+ pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
+
+ PVMCPU pVCpu = VMMGetCpu(pVM);
+ if (!pVCpu)
+ pVCpu = &pVM->aCpus[0];
+ PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
+
+ /*
+ * Format the EFLAGS.
+ */
+#if HC_ARCH_BITS == 32
+ uint32_t efl = pCtx->eflags.u32;
+#else
+ uint64_t efl = pCtx->rflags;
+#endif
+ char szEFlags[80];
+ cpumR3InfoFormatFlags(&szEFlags[0], efl);
+
+ /*
+ * Format the registers.
+ */
+#if HC_ARCH_BITS == 32
+ pHlp->pfnPrintf(pHlp,
+ "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
+ "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
+ "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
+ "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
+ "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
+ "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
+ ,
+ /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
+ /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
+ pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
+ pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
+ pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
+ (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
+ pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
+#else
+ pHlp->pfnPrintf(pHlp,
+ "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
+ "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
+ "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
+ " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
+ "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
+ "r14=%016RX64 r15=%016RX64\n"
+ "iopl=%d %31s\n"
+ "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
+ "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
+ "cr4=%016RX64 ldtr=%04x tr=%04x\n"
+ "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
+ "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
+ "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
+ "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
+ "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
+ ,
+ /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
+ pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
+ /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
+ /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
+ pCtx->r11, pCtx->r12, pCtx->r13,
+ pCtx->r14, pCtx->r15,
+ X86_EFL_GET_IOPL(efl), szEFlags,
+ pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
+ pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
+ pCtx->cr4, pCtx->ldtr, pCtx->tr,
+ pCtx->dr0, pCtx->dr1, pCtx->dr2,
+ pCtx->dr3, pCtx->dr6, pCtx->dr7,
+ pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
+ pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
+ pCtx->FSbase, pCtx->GSbase, pCtx->efer);
+#endif
+}
+
+/**
+ * Structure used when disassembling and instructions in DBGF.
+ * This is used so the reader function can get the stuff it needs.
+ */
+typedef struct CPUMDISASSTATE
+{
+ /** Pointer to the CPU structure. */
+ PDISCPUSTATE pCpu;
+ /** Pointer to the VM. */
+ PVM pVM;
+ /** Pointer to the VMCPU. */
+ PVMCPU pVCpu;
+ /** Pointer to the first byte in the segment. */
+ RTGCUINTPTR GCPtrSegBase;
+ /** Pointer to the byte after the end of the segment. (might have wrapped!) */
+ RTGCUINTPTR GCPtrSegEnd;
+ /** The size of the segment minus 1. */
+ RTGCUINTPTR cbSegLimit;
+ /** Pointer to the current page - R3 Ptr. */
+ void const *pvPageR3;
+ /** Pointer to the current page - GC Ptr. */
+ RTGCPTR pvPageGC;
+ /** The lock information that PGMPhysReleasePageMappingLock needs. */
+ PGMPAGEMAPLOCK PageMapLock;
+ /** Whether the PageMapLock is valid or not. */
+ bool fLocked;
+ /** 64 bits mode or not. */
+ bool f64Bits;
+} CPUMDISASSTATE, *PCPUMDISASSTATE;
+
+
+/**
+ * @callback_method_impl{FNDISREADBYTES}
+ */
+static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
+{
+ PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
+ for (;;)
+ {
+ RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
+
+ /*
+ * Need to update the page translation?
+ */
+ if ( !pState->pvPageR3
+ || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
+ {
+ int rc = VINF_SUCCESS;
+
+ /* translate the address */
+ pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
+ if ( VM_IS_RAW_MODE_ENABLED(pState->pVM)
+ && MMHyperIsInsideArea(pState->pVM, pState->pvPageGC))
+ {
+ pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
+ if (!pState->pvPageR3)
+ rc = VERR_INVALID_POINTER;
+ }
+ else
+ {
+ /* Release mapping lock previously acquired. */
+ if (pState->fLocked)
+ PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
+ rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
+ pState->fLocked = RT_SUCCESS_NP(rc);
+ }
+ if (RT_FAILURE(rc))
+ {
+ pState->pvPageR3 = NULL;
+ return rc;
+ }
+ }
+
+ /*
+ * Check the segment limit.
+ */
+ if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
+ return VERR_OUT_OF_SELECTOR_BOUNDS;
+
+ /*
+ * Calc how much we can read.
+ */
+ uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
+ if (!pState->f64Bits)
+ {
+ RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
+ if (cb > cbSeg && cbSeg)
+ cb = cbSeg;
+ }
+ if (cb > cbMaxRead)
+ cb = cbMaxRead;
+
+ /*
+ * Read and advance or exit.
+ */
+ memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
+ offInstr += (uint8_t)cb;
+ if (cb >= cbMinRead)
+ {
+ pDis->cbCachedInstr = offInstr;
+ return VINF_SUCCESS;
+ }
+ cbMinRead -= (uint8_t)cb;
+ cbMaxRead -= (uint8_t)cb;
+ }
+}
+
+
+/**
+ * Disassemble an instruction and return the information in the provided structure.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param pCtx Pointer to the guest CPU context.
+ * @param GCPtrPC Program counter (relative to CS) to disassemble from.
+ * @param pCpu Disassembly state.
+ * @param pszPrefix String prefix for logging (debug only).
+ *
+ */
+VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
+ const char *pszPrefix)
+{
+ CPUMDISASSTATE State;
+ int rc;
+
+ const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
+ State.pCpu = pCpu;
+ State.pvPageGC = 0;
+ State.pvPageR3 = NULL;
+ State.pVM = pVM;
+ State.pVCpu = pVCpu;
+ State.fLocked = false;
+ State.f64Bits = false;
+
+ /*
+ * Get selector information.
+ */
+ DISCPUMODE enmDisCpuMode;
+ if ( (pCtx->cr0 & X86_CR0_PE)
+ && pCtx->eflags.Bits.u1VM == 0)
+ {
+ if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
+ {
+# ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ CPUMGuestLazyLoadHiddenSelectorReg(pVCpu, &pCtx->cs);
+# endif
+ if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
+ return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
+ }
+ State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
+ State.GCPtrSegBase = pCtx->cs.u64Base;
+ State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
+ State.cbSegLimit = pCtx->cs.u32Limit;
+ enmDisCpuMode = (State.f64Bits)
+ ? DISCPUMODE_64BIT
+ : pCtx->cs.Attr.n.u1DefBig
+ ? DISCPUMODE_32BIT
+ : DISCPUMODE_16BIT;
+ }
+ else
+ {
+ /* real or V86 mode */
+ enmDisCpuMode = DISCPUMODE_16BIT;
+ State.GCPtrSegBase = pCtx->cs.Sel * 16;
+ State.GCPtrSegEnd = 0xFFFFFFFF;
+ State.cbSegLimit = 0xFFFFFFFF;
+ }
+
+ /*
+ * Disassemble the instruction.
+ */
+ uint32_t cbInstr;
+#ifndef LOG_ENABLED
+ RT_NOREF_PV(pszPrefix);
+ rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
+ if (RT_SUCCESS(rc))
+ {
+#else
+ char szOutput[160];
+ rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
+ pCpu, &cbInstr, szOutput, sizeof(szOutput));
+ if (RT_SUCCESS(rc))
+ {
+ /* log it */
+ if (pszPrefix)
+ Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
+ else
+ Log(("%s", szOutput));
+#endif
+ rc = VINF_SUCCESS;
+ }
+ else
+ Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
+
+ /* Release mapping lock acquired in cpumR3DisasInstrRead. */
+ if (State.fLocked)
+ PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
+
+ return rc;
+}
+
+
+
+/**
+ * API for controlling a few of the CPU features found in CR4.
+ *
+ * Currently only X86_CR4_TSD is accepted as input.
+ *
+ * @returns VBox status code.
+ *
+ * @param pVM The cross context VM structure.
+ * @param fOr The CR4 OR mask.
+ * @param fAnd The CR4 AND mask.
+ */
+VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
+{
+ AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
+ AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
+
+ pVM->cpum.s.CR4.OrMask &= fAnd;
+ pVM->cpum.s.CR4.OrMask |= fOr;
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
+ *
+ * Only REM should ever call this function!
+ *
+ * @returns The changed flags.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param puCpl Where to return the current privilege level (CPL).
+ */
+VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
+{
+ Assert(!pVCpu->cpum.s.fRawEntered);
+ Assert(!pVCpu->cpum.s.fRemEntered);
+
+ /*
+ * Get the CPL first.
+ */
+ *puCpl = CPUMGetGuestCPL(pVCpu);
+
+ /*
+ * Get and reset the flags.
+ */
+ uint32_t fFlags = pVCpu->cpum.s.fChanged;
+ pVCpu->cpum.s.fChanged = 0;
+
+ /** @todo change the switcher to use the fChanged flags. */
+ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
+ {
+ fFlags |= CPUM_CHANGED_FPU_REM;
+ pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
+ }
+
+ pVCpu->cpum.s.fRemEntered = true;
+ return fFlags;
+}
+
+
+/**
+ * Leaves REM.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fNoOutOfSyncSels This is @c false if there are out of sync
+ * registers.
+ */
+VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
+{
+ Assert(!pVCpu->cpum.s.fRawEntered);
+ Assert(pVCpu->cpum.s.fRemEntered);
+
+ RT_NOREF_PV(fNoOutOfSyncSels);
+
+ pVCpu->cpum.s.fRemEntered = false;
+}
+
+
+/**
+ * Called when the ring-3 init phase completes.
+ *
+ * @returns VBox status code.
+ * @param pVM The cross context VM structure.
+ * @param enmWhat Which init phase.
+ */
+VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
+{
+ switch (enmWhat)
+ {
+ case VMINITCOMPLETED_RING3:
+ {
+ /*
+ * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
+ * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
+ */
+ bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
+ for (VMCPUID i = 0; i < pVM->cCpus; i++)
+ {
+ PVMCPU pVCpu = &pVM->aCpus[i];
+ /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
+ if (fSupportsLongMode)
+ pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
+ }
+
+ /* Register statistic counters for MSRs. */
+ cpumR3MsrRegStats(pVM);
+ break;
+ }
+
+ default:
+ break;
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Called when the ring-0 init phases completed.
+ *
+ * @param pVM The cross context VM structure.
+ */
+VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
+{
+ /*
+ * Enable log buffering as we're going to log a lot of lines.
+ */
+ bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
+
+ /*
+ * Log the cpuid.
+ */
+ RTCPUSET OnlineSet;
+ LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
+ (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
+ RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
+ RTCPUID cCores = RTMpGetCoreCount();
+ if (cCores)
+ LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
+ LogRel(("************************* CPUID dump ************************\n"));
+ DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
+ LogRel(("\n"));
+ DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
+ LogRel(("******************** End of CPUID dump **********************\n"));
+
+ /*
+ * Log VT-x extended features.
+ *
+ * SVM features are currently all covered under CPUID so there is nothing
+ * to do here for SVM.
+ */
+ if (pVM->cpum.s.HostFeatures.fVmx)
+ {
+ LogRel(("*********************** VT-x features ***********************\n"));
+ DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
+ LogRel(("\n"));
+ LogRel(("******************* End of VT-x features ********************\n"));
+ }
+
+ /*
+ * Restore the log buffering state to what it was previously.
+ */
+ RTLogRelSetBuffering(fOldBuffered);
+}
+