diff options
Diffstat (limited to 'src/VBox/Runtime/common/time/time.cpp')
-rw-r--r-- | src/VBox/Runtime/common/time/time.cpp | 1644 |
1 files changed, 1644 insertions, 0 deletions
diff --git a/src/VBox/Runtime/common/time/time.cpp b/src/VBox/Runtime/common/time/time.cpp new file mode 100644 index 00000000..f629cb24 --- /dev/null +++ b/src/VBox/Runtime/common/time/time.cpp @@ -0,0 +1,1644 @@ +/* $Id: time.cpp $ */ +/** @file + * IPRT - Time. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP RTLOGGROUP_TIME +#include <iprt/time.h> +#include "internal/iprt.h" + +#include <iprt/assert.h> +#include <iprt/ctype.h> +#include <iprt/errcore.h> +#include <iprt/string.h> +#include "internal/time.h" + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** The max year we possibly could implode. */ +#define RTTIME_MAX_YEAR (292 + 1970) +/** The min year we possibly could implode. */ +#define RTTIME_MIN_YEAR (-293 + 1970) + +/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */ +#define RTTIME_MAX_DAY (365*292+71 + 101-1) +/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */ +#define RTTIME_MIN_DAY (365*-293-70 + 264-1) + +/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */ +#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 ) +/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */ +#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 ) + +/** + * Asserts that a_pTime is normalized. + */ +#define RTTIME_ASSERT_NORMALIZED(a_pTime) \ + do \ + { \ + Assert(RT_ABS((a_pTime)->offUTC) <= 840); \ + Assert((a_pTime)->u32Nanosecond < 1000000000); \ + Assert((a_pTime)->u8Second < 60); \ + Assert((a_pTime)->u8Minute < 60); \ + Assert((a_pTime)->u8Hour < 24); \ + Assert((a_pTime)->u8Month >= 1 && (a_pTime)->u8Month <= 12); \ + Assert((a_pTime)->u8WeekDay < 7); \ + Assert((a_pTime)->u16YearDay >= 1); \ + Assert((a_pTime)->u16YearDay <= (rtTimeIsLeapYear((a_pTime)->i32Year) ? 366 : 365)); \ + Assert((a_pTime)->u8MonthDay >= 1 && (a_pTime)->u8MonthDay <= 31); \ + } while (0) + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +/** + * Days per month in a common year. + */ +static const uint8_t g_acDaysInMonths[12] = +{ + /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */ + 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 +}; + +/** + * Days per month in a leap year. + */ +static const uint8_t g_acDaysInMonthsLeap[12] = +{ + /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */ + 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 +}; + +/** + * The day of year for each month in a common year. + */ +static const uint16_t g_aiDayOfYear[12 + 1] = +{ + 1, /* Jan */ + 1+31, /* Feb */ + 1+31+28, /* Mar */ + 1+31+28+31, /* Apr */ + 1+31+28+31+30, /* May */ + 1+31+28+31+30+31, /* Jun */ + 1+31+28+31+30+31+30, /* Jul */ + 1+31+28+31+30+31+30+31, /* Aug */ + 1+31+28+31+30+31+30+31+31, /* Sep */ + 1+31+28+31+30+31+30+31+31+30, /* Oct */ + 1+31+28+31+30+31+30+31+31+30+31, /* Nov */ + 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */ + 1+31+28+31+30+31+30+31+31+30+31+30+31 +}; + +/** + * The day of year for each month in a leap year. + */ +static const uint16_t g_aiDayOfYearLeap[12 + 1] = +{ + 1, /* Jan */ + 1+31, /* Feb */ + 1+31+29, /* Mar */ + 1+31+29+31, /* Apr */ + 1+31+29+31+30, /* May */ + 1+31+29+31+30+31, /* Jun */ + 1+31+29+31+30+31+30, /* Jul */ + 1+31+29+31+30+31+30+31, /* Aug */ + 1+31+29+31+30+31+30+31+31, /* Sep */ + 1+31+29+31+30+31+30+31+31+30, /* Oct */ + 1+31+29+31+30+31+30+31+31+30+31, /* Nov */ + 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */ + 1+31+29+31+30+31+30+31+31+30+31+30+31 +}; + +/** The index of 1970 in g_aoffYear */ +#define OFF_YEAR_IDX_EPOCH 300 +/** The year of the first index. */ +#define OFF_YEAR_IDX_0_YEAR 1670 + +/** + * The number of days the 1st of January a year is offseted from 1970-01-01. + */ +static const int32_t g_aoffYear[] = +{ +/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70, +/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67, +/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65, +/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63, +/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61, +/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58, +/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56, +/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53, +/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51, +/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48, +/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46, +/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43, +/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41, +/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39, +/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37, +/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34, +/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32, +/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29, +/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27, +/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24, +/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22, +/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19, +/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17, +/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15, +/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13, +/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10, +/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 , +/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 , +/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 , +/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 , +/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 , +/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 , +/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 , +/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 , +/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 , +/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 , +/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 , +/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 , +/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 , +/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 , +/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 , +/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 , +/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 , +/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 , +/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 , +/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 , +/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 , +/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 , +/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 , +/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 , +/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 , +/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 , +/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 , +/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 , +/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 , +/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 , +/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 , +/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 , +/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 , +/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73 +}; + +/* generator code: +#include <stdio.h> +bool isLeapYear(int iYear) +{ + return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0); +} +void printYear(int iYear, int iLeap) +{ + if (!(iYear % 10)) + printf("\n/" "*%d:*" "/", iYear + 1970); + printf(" 365*%4d+%-3d,", iYear, iLeap); +} +int main() +{ + int iYear = 0; + int iLeap = 0; + while (iYear > -300) + iLeap -= isLeapYear(1970 + --iYear); + while (iYear < 300) + { + printYear(iYear, iLeap); + iLeap += isLeapYear(1970 + iYear++); + } + printf("\n"); + return 0; +} +*/ + +/** RFC-1123 week day names. */ +static const char * const g_apszWeekDays[7] = +{ + "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun" +}; +/** RFC-1123 month of the year names. */ +static const char * const g_apszMonths[1+12] = +{ + "000", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" +}; + + +/** + * Checks if a year is a leap year or not. + * + * @returns true if it's a leap year. + * @returns false if it's a common year. + * @param i32Year The year in question. + */ +DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year) +{ + return i32Year % 4 == 0 + && ( i32Year % 100 != 0 + || i32Year % 400 == 0); +} + + +/** + * Checks if a year is a leap year or not. + * + * @returns true if it's a leap year. + * @returns false if it's a common year. + * @param i32Year The year in question. + */ +RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year) +{ + return rtTimeIsLeapYear(i32Year); +} +RT_EXPORT_SYMBOL(RTTimeIsLeapYear); + + +/** + * Explodes a time spec (UTC). + * + * @returns pTime. + * @param pTime Where to store the exploded time. + * @param pTimeSpec The time spec to exploded. + */ +RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec) +{ + int64_t i64Div; + int32_t i32Div; + int32_t i32Rem; + unsigned iYear; + const uint16_t *paiDayOfYear; + int iMonth; + + AssertMsg(VALID_PTR(pTime), ("%p\n", pTime)); + AssertMsg(VALID_PTR(pTimeSpec), ("%p\n", pTime)); + + /* + * The simple stuff first. + */ + pTime->fFlags = RTTIME_FLAGS_TYPE_UTC; + i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch; + i32Rem = (int32_t)(i64Div % 1000000000); + i64Div /= 1000000000; + if (i32Rem < 0) + { + i32Rem += 1000000000; + i64Div--; + } + pTime->u32Nanosecond = i32Rem; + + /* second */ + i32Rem = (int32_t)(i64Div % 60); + i64Div /= 60; + if (i32Rem < 0) + { + i32Rem += 60; + i64Div--; + } + pTime->u8Second = i32Rem; + + /* minute */ + i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */ + i32Rem = i32Div % 60; + i32Div /= 60; + if (i32Rem < 0) + { + i32Rem += 60; + i32Div--; + } + pTime->u8Minute = i32Rem; + + /* hour */ + i32Rem = i32Div % 24; + i32Div /= 24; /* days relative to 1970-01-01 */ + if (i32Rem < 0) + { + i32Rem += 24; + i32Div--; + } + pTime->u8Hour = i32Rem; + + /* weekday - 1970-01-01 was a Thursday (3) */ + pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7; + + /* + * We've now got a number of days relative to 1970-01-01. + * To get the correct year number we have to mess with leap years. Fortunately, + * the representation we've got only supports a few hundred years, so we can + * generate a table and perform a simple two way search from the modulus 365 derived. + */ + iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365; + while (g_aoffYear[iYear + 1] <= i32Div) + iYear++; + while (g_aoffYear[iYear] > i32Div) + iYear--; + pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR; + i32Div -= g_aoffYear[iYear]; + pTime->u16YearDay = i32Div + 1; + + /* + * Figuring out the month is done in a manner similar to the year, only here we + * ensure that the index is matching or too small. + */ + if (rtTimeIsLeapYear(pTime->i32Year)) + { + pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; + paiDayOfYear = &g_aiDayOfYearLeap[0]; + } + else + { + pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR; + paiDayOfYear = &g_aiDayOfYear[0]; + } + iMonth = i32Div / 32; + i32Div++; + while (paiDayOfYear[iMonth + 1] <= i32Div) + iMonth++; + pTime->u8Month = iMonth + 1; + i32Div -= paiDayOfYear[iMonth]; + pTime->u8MonthDay = i32Div + 1; + + /* This is for UTC timespecs, so, no offset. */ + pTime->offUTC = 0; + + return pTime; +} +RT_EXPORT_SYMBOL(RTTimeExplode); + + +/** + * Implodes exploded time to a time spec (UTC). + * + * @returns pTime on success. + * @returns NULL if the pTime data is invalid. + * @param pTimeSpec Where to store the imploded UTC time. + * If pTime specifies a time which outside the range, maximum or + * minimum values will be returned. + * @param pTime Pointer to the exploded time to implode. + * The fields u8Month, u8WeekDay and u8MonthDay are not used, + * and all the other fields are expected to be within their + * bounds. Use RTTimeNormalize() or RTTimeLocalNormalize() to + * calculate u16YearDay and normalize the ranges of the fields. + */ +RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime) +{ + int32_t i32Days; + uint32_t u32Secs; + int64_t i64Nanos; + + /* + * Validate input. + */ + AssertReturn(VALID_PTR(pTimeSpec), NULL); + AssertReturn(VALID_PTR(pTime), NULL); + AssertReturn(pTime->u32Nanosecond < 1000000000, NULL); + AssertReturn(pTime->u8Second < 60, NULL); + AssertReturn(pTime->u8Minute < 60, NULL); + AssertReturn(pTime->u8Hour < 24, NULL); + AssertReturn(pTime->u16YearDay >= 1, NULL); + AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL); + AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL); + Assert(pTime->offUTC >= -840 && pTime->offUTC <= 840); + + /* + * Do the conversion to nanoseconds. + */ + i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR] + + pTime->u16YearDay - 1; + AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL); + + u32Secs = pTime->u8Second + + pTime->u8Minute * 60 + + pTime->u8Hour * 3600; + i64Nanos = (uint64_t)pTime->u32Nanosecond + + u32Secs * UINT64_C(1000000000); + AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL); + AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL); + + i64Nanos += i32Days * UINT64_C(86400000000000); + if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL) + i64Nanos -= pTime->offUTC * RT_NS_1MIN; + + pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos; + return pTimeSpec; +} +RT_EXPORT_SYMBOL(RTTimeImplode); + + +/** + * Internal worker for RTTimeNormalize and RTTimeLocalNormalize. + */ +static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime) +{ + unsigned uSecond; + unsigned uMinute; + unsigned uHour; + bool fLeapYear; + + /* + * Fix the YearDay and Month/MonthDay. + */ + fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + if (!pTime->u16YearDay) + { + /* + * The Month+MonthDay must present, overflow adjust them and calc the year day. + */ + AssertMsgReturn( pTime->u8Month + && pTime->u8MonthDay, + ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay), + NULL); + while (pTime->u8Month > 12) + { + pTime->u8Month -= 12; + pTime->i32Year++; + fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); + } + + for (;;) + { + unsigned cDaysInMonth = fLeapYear + ? g_acDaysInMonthsLeap[pTime->u8Month - 1] + : g_acDaysInMonths[pTime->u8Month - 1]; + if (pTime->u8MonthDay <= cDaysInMonth) + break; + pTime->u8MonthDay -= cDaysInMonth; + if (pTime->u8Month != 12) + pTime->u8Month++; + else + { + pTime->u8Month = 1; + pTime->i32Year++; + fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); + } + } + + pTime->u16YearDay = pTime->u8MonthDay - 1 + + (fLeapYear + ? g_aiDayOfYearLeap[pTime->u8Month - 1] + : g_aiDayOfYear[pTime->u8Month - 1]); + } + else + { + /* + * Are both YearDay and Month/MonthDay valid? + * Check that they don't overflow and match, if not use YearDay (simpler). + */ + bool fRecalc = true; + if ( pTime->u8Month + && pTime->u8MonthDay) + { + do + { + uint16_t u16YearDay; + + /* If you change one, zero the other to make clear what you mean. */ + AssertBreak(pTime->u8Month <= 12); + AssertBreak(pTime->u8MonthDay <= (fLeapYear + ? g_acDaysInMonthsLeap[pTime->u8Month - 1] + : g_acDaysInMonths[pTime->u8Month - 1])); + u16YearDay = pTime->u8MonthDay - 1 + + (fLeapYear + ? g_aiDayOfYearLeap[pTime->u8Month - 1] + : g_aiDayOfYear[pTime->u8Month - 1]); + AssertBreak(u16YearDay == pTime->u16YearDay); + fRecalc = false; + } while (0); + } + if (fRecalc) + { + const uint16_t *paiDayOfYear; + + /* overflow adjust YearDay */ + while (pTime->u16YearDay > (fLeapYear ? 366 : 365)) + { + pTime->u16YearDay -= fLeapYear ? 366 : 365; + pTime->i32Year++; + fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); + } + + /* calc Month and MonthDay */ + paiDayOfYear = fLeapYear + ? &g_aiDayOfYearLeap[0] + : &g_aiDayOfYear[0]; + pTime->u8Month = 1; + while (pTime->u16YearDay >= paiDayOfYear[pTime->u8Month]) + pTime->u8Month++; + Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12); + pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1; + } + } + + /* + * Fixup time overflows. + * Use unsigned int values internally to avoid overflows. + */ + uSecond = pTime->u8Second; + uMinute = pTime->u8Minute; + uHour = pTime->u8Hour; + + while (pTime->u32Nanosecond >= 1000000000) + { + pTime->u32Nanosecond -= 1000000000; + uSecond++; + } + + while (uSecond >= 60) + { + uSecond -= 60; + uMinute++; + } + + while (uMinute >= 60) + { + uMinute -= 60; + uHour++; + } + + while (uHour >= 24) + { + uHour -= 24; + + /* This is really a RTTimeIncDay kind of thing... */ + if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month])) + { + pTime->u16YearDay++; + pTime->u8MonthDay++; + } + else if (pTime->u8Month != 12) + { + pTime->u16YearDay++; + pTime->u8Month++; + pTime->u8MonthDay = 1; + } + else + { + pTime->i32Year++; + fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); + pTime->u16YearDay = 1; + pTime->u8Month = 1; + pTime->u8MonthDay = 1; + } + } + + pTime->u8Second = uSecond; + pTime->u8Minute = uMinute; + pTime->u8Hour = uHour; + + /* + * Correct the leap year flag. + * Assert if it's wrong, but ignore if unset. + */ + if (fLeapYear) + { + Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR)); + pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR; + pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; + } + else + { + Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR)); + pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR; + pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR; + } + + + /* + * Calc week day. + * + * 1970-01-01 was a Thursday (3), so find the number of days relative to + * that point. We use the table when possible and a slow+stupid+brute-force + * algorithm for points outside it. Feel free to optimize the latter by + * using some clever formula. + */ + if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR + && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear)) + { + int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR] + + pTime->u16YearDay -1; + pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7; + } + else + { + int32_t i32Year = pTime->i32Year; + if (i32Year >= 1970) + { + uint64_t offDays = pTime->u16YearDay - 1; + while (--i32Year >= 1970) + offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365; + pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7); + } + else + { + int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay; + while (++i32Year < 1970) + offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365; + pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7; + } + } + return pTime; +} + + +/** + * Normalizes the fields of a time structure. + * + * It is possible to calculate year-day from month/day and vice + * versa. If you adjust any of these, make sure to zero the + * other so you make it clear which of the fields to use. If + * it's ambiguous, the year-day field is used (and you get + * assertions in debug builds). + * + * All the time fields and the year-day or month/day fields will + * be adjusted for overflows. (Since all fields are unsigned, there + * is no underflows.) It is possible to exploit this for simple + * date math, though the recommended way of doing that to implode + * the time into a timespec and do the math on that. + * + * @returns pTime on success. + * @returns NULL if the data is invalid. + * + * @param pTime The time structure to normalize. + * + * @remarks This function doesn't work with local time, only with UTC time. + */ +RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime) +{ + /* + * Validate that we've got the minimum of stuff handy. + */ + AssertReturn(VALID_PTR(pTime), NULL); + AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); + AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL); + AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL); + + pTime = rtTimeNormalizeInternal(pTime); + if (pTime) + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + return pTime; +} +RT_EXPORT_SYMBOL(RTTimeNormalize); + + +/** + * Normalizes the fields of a time structure, assuming local time. + * + * It is possible to calculate year-day from month/day and vice + * versa. If you adjust any of these, make sure to zero the + * other so you make it clear which of the fields to use. If + * it's ambiguous, the year-day field is used (and you get + * assertions in debug builds). + * + * All the time fields and the year-day or month/day fields will + * be adjusted for overflows. (Since all fields are unsigned, there + * is no underflows.) It is possible to exploit this for simple + * date math, though the recommended way of doing that to implode + * the time into a timespec and do the math on that. + * + * @returns pTime on success. + * @returns NULL if the data is invalid. + * + * @param pTime The time structure to normalize. + * + * @remarks This function doesn't work with UTC time, only with local time. + */ +RTDECL(PRTTIME) RTTimeLocalNormalize(PRTTIME pTime) +{ + /* + * Validate that we've got the minimum of stuff handy. + */ + AssertReturn(VALID_PTR(pTime), NULL); + AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); + AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC, ("Use RTTimeNormalize!\n"), NULL); + + pTime = rtTimeNormalizeInternal(pTime); + if (pTime) + pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL; + return pTime; +} +RT_EXPORT_SYMBOL(RTTimeLocalNormalize); + + +/** + * Converts a time spec to a ISO date string. + * + * @returns psz on success. + * @returns NULL on buffer underflow. + * @param pTime The time. Caller should've normalized this. + * @param psz Where to store the string. + * @param cb The size of the buffer. + */ +RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb) +{ + size_t cch; + + /* (Default to UTC if not specified) */ + if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL + && pTime->offUTC) + { + int32_t offUTC = pTime->offUTC; + Assert(offUTC <= 840 && offUTC >= -840); + char chSign; + if (offUTC >= 0) + chSign = '+'; + else + { + chSign = '-'; + offUTC = -offUTC; + } + uint32_t offUTCHour = (uint32_t)offUTC / 60; + uint32_t offUTCMinute = (uint32_t)offUTC % 60; + cch = RTStrPrintf(psz, cb, + "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02d%:02d", + pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond, + chSign, offUTCHour, offUTCMinute); + if ( cch <= 15 + || psz[cch - 6] != chSign) + return NULL; + } + else + { + cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z", + pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond); + if ( cch <= 15 + || psz[cch - 1] != 'Z') + return NULL; + } + return psz; +} +RT_EXPORT_SYMBOL(RTTimeToString); + + +/** + * Converts a time spec to a ISO date string, extended version. + * + * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW + * (negative) or VERR_OUT_OF_RANGE (negative) on failure. + * @param pTime The time. Caller should've normalized this. + * @param psz Where to store the string. + * @param cb The size of the buffer. + * @param cFractionDigits Number of digits in the fraction. Max is 9. + */ +RTDECL(ssize_t) RTTimeToStringEx(PCRTTIME pTime, char *psz, size_t cb, unsigned cFractionDigits) +{ + size_t cch; + + /* Format the fraction. */ + char szFraction[16]; + if (!cFractionDigits) + szFraction[0] = '\0'; + else + { + AssertReturn(cFractionDigits <= 9, VERR_OUT_OF_RANGE); + Assert(pTime->u32Nanosecond <= 999999999); + RTStrPrintf(szFraction, sizeof(szFraction), ".%09RU32", pTime->u32Nanosecond); + szFraction[cFractionDigits + 1] = '\0'; + } + + /* (Default to UTC if not specified) */ + if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL + && pTime->offUTC) + { + int32_t offUTC = pTime->offUTC; + Assert(offUTC <= 840 && offUTC >= -840); + char chSign; + if (offUTC >= 0) + chSign = '+'; + else + { + chSign = '-'; + offUTC = -offUTC; + } + uint32_t offUTCHour = (uint32_t)offUTC / 60; + uint32_t offUTCMinute = (uint32_t)offUTC % 60; + + /* Examples: 2018-09-07T16:12:00+02:00 2018-09-07T16:12:00.123456789+02:00 */ + cch = RTStrPrintf(psz, cb, + "%04RI32-%02u-%02uT%02u:%02u:%02u%s%c%02d%:02d", + pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction, + chSign, offUTCHour, offUTCMinute); + if ( cch >= 24 + && psz[cch - 6] == chSign) + return cch; + } + else + { + /* Examples: 2018-09-07T16:12:00Z 2018-09-07T16:12:00.123456789Z */ + cch = RTStrPrintf(psz, cb, "%04RI32-%02u-%02uT%02u:%02u:%02u%sZ", + pTime->i32Year, pTime->u8Month, pTime->u8MonthDay, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second, szFraction); + if ( cch >= 19 + && psz[cch - 1] == 'Z') + return cch; + } + return VERR_BUFFER_OVERFLOW; +} +RT_EXPORT_SYMBOL(RTTimeToStringEx); + + +/** + * Converts a time spec to a ISO date string. + * + * @returns psz on success. + * @returns NULL on buffer underflow. + * @param pTime The time spec. + * @param psz Where to store the string. + * @param cb The size of the buffer. + */ +RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb) +{ + RTTIME Time; + return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb); +} +RT_EXPORT_SYMBOL(RTTimeSpecToString); + + + +/** + * Attempts to convert an ISO date string to a time structure. + * + * We're a little forgiving with zero padding, unspecified parts, and leading + * and trailing spaces. + * + * @retval pTime on success, + * @retval NULL on failure. + * @param pTime Where to store the time on success. + * @param pszString The ISO date string to convert. + */ +RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString) +{ + /* Ignore leading spaces. */ + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + /* + * Init non date & time parts. + */ + pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL; + pTime->offUTC = 0; + + /* + * The date part. + */ + + /* Year */ + int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + + bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + if (fLeapYear) + pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; + + if (*pszString++ != '-') + return NULL; + + /* Month of the year. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pTime->u8Month == 0 || pTime->u8Month > 12) + return NULL; + if (*pszString++ != '-') + return NULL; + + /* Day of month.*/ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay); + if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS) + return NULL; + unsigned const cDaysInMonth = fLeapYear + ? g_acDaysInMonthsLeap[pTime->u8Month - 1] + : g_acDaysInMonths[pTime->u8Month - 1]; + if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth) + return NULL; + + /* Calculate year day. */ + pTime->u16YearDay = pTime->u8MonthDay - 1 + + (fLeapYear + ? g_aiDayOfYearLeap[pTime->u8Month - 1] + : g_aiDayOfYear[pTime->u8Month - 1]); + + pTime->u8WeekDay = UINT8_MAX; /* later */ + + /* + * The time part. + */ + if (*pszString++ != 'T') + return NULL; + + /* Hour. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pTime->u8Hour > 23) + return NULL; + if (*pszString++ != ':') + return NULL; + + /* Minute. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pTime->u8Minute > 59) + return NULL; + if (*pszString++ != ':') + return NULL; + + /* Second. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) + return NULL; + if (pTime->u8Second > 59) + return NULL; + + /* We generally put a 9 digit fraction here, but it's entirely optional. */ + if (*pszString == '.') + { + const char * const pszStart = ++pszString; + rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) + return NULL; + if (pTime->u32Nanosecond >= 1000000000) + return NULL; + switch (pszString - pszStart) + { + case 1: pTime->u32Nanosecond *= 100000000; break; + case 2: pTime->u32Nanosecond *= 10000000; break; + case 3: pTime->u32Nanosecond *= 1000000; break; + case 4: pTime->u32Nanosecond *= 100000; break; + case 5: pTime->u32Nanosecond *= 10000; break; + case 6: pTime->u32Nanosecond *= 1000; break; + case 7: pTime->u32Nanosecond *= 100; break; + case 8: pTime->u32Nanosecond *= 10; break; + case 9: break; + default: + return NULL; + } + if (pTime->u32Nanosecond >= 1000000000) + return NULL; + } + else + pTime->u32Nanosecond = 0; + + /* + * Time zone. + */ + if (*pszString == 'Z') + { + pszString++; + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + pTime->offUTC = 0; + } + else if ( *pszString == '+' + || *pszString == '-') + { + int8_t cUtcHours = 0; + rc = RTStrToInt8Ex(pszString, (char **)&pszString, 10, &cUtcHours); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) + return NULL; + uint8_t cUtcMin = 0; + if (*pszString == ':') + { + rc = RTStrToUInt8Ex(pszString + 1, (char **)&pszString, 10, &cUtcMin); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES) + return NULL; + } + else if (*pszString && !RT_C_IS_BLANK(*pszString)) + return NULL; + if (cUtcHours >= 0) + pTime->offUTC = cUtcHours * 60 + cUtcMin; + else + pTime->offUTC = cUtcHours * 60 - cUtcMin; + if (RT_ABS(pTime->offUTC) > 840) + return NULL; + } + /* else: No time zone given, local with offUTC = 0. */ + + /* + * The rest of the string should be blanks. + */ + char ch; + while ((ch = *pszString++) != '\0') + if (!RT_C_IS_BLANK(ch)) + return NULL; + + /* Calc week day. */ + rtTimeNormalizeInternal(pTime); + return pTime; +} +RT_EXPORT_SYMBOL(RTTimeFromString); + + +/** + * Attempts to convert an ISO date string to a time structure. + * + * We're a little forgiving with zero padding, unspecified parts, and leading + * and trailing spaces. + * + * @retval pTime on success, + * @retval NULL on failure. + * @param pTime The time spec. + * @param pszString The ISO date string to convert. + */ +RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString) +{ + RTTIME Time; + if (RTTimeFromString(&Time, pszString)) + return RTTimeImplode(pTime, &Time); + return NULL; +} +RT_EXPORT_SYMBOL(RTTimeSpecFromString); + + +/** + * Formats the given time on a RTC-2822 compliant format. + * + * @returns Output string length on success (positive), VERR_BUFFER_OVERFLOW + * (negative) on failure. + * @param pTime The time. Caller should've normalized this. + * @param psz Where to store the string. + * @param cb The size of the buffer. + */ +RTDECL(ssize_t) RTTimeToRfc2822(PRTTIME pTime, char *psz, size_t cb, uint32_t fFlags) +{ + Assert(pTime->u8Month > 0 && pTime->u8Month <= 12); + Assert(pTime->u8WeekDay < 7); + Assert(!(fFlags & ~RTTIME_RFC2822_F_GMT)); + + /* (Default to UTC if not specified) */ + if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL + && pTime->offUTC) + { + Assert(!(fFlags & RTTIME_RFC2822_F_GMT) /* don't call with local time. duh! */ ); + + /* Calc the UTC offset part. */ + int32_t offUtc = pTime->offUTC; + Assert(offUtc <= 840 && offUtc >= -840); + char chSign; + if (offUtc >= 0) + chSign = '+'; + else + { + chSign = '-'; + offUtc = -offUtc; + } + uint32_t offUtcHour = (uint32_t)offUtc / 60; + uint32_t offUtcMinute = (uint32_t)offUtc % 60; + + /* Example: "Mon, 31 Aug 2018 00:00:00 +0200" */ + size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u %c%02u%02u", g_apszWeekDays[pTime->u8WeekDay], + pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second, chSign, offUtcHour, offUtcMinute); + if ( cch >= 27 + && psz[cch - 5] == chSign) + return cch; + } + else if (fFlags & RTTIME_RFC2822_F_GMT) + { + /* Example: "Mon, 1 Jan 1971 23:55:59 GMT" */ + size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u GMT", g_apszWeekDays[pTime->u8WeekDay], + pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second); + if ( cch >= 27 + && psz[cch - 1] == 'T') + return cch; + } + else + { + /* Example: "Mon, 1 Jan 1971 00:00:00 -0000" */ + size_t cch = RTStrPrintf(psz, cb, "%s, %u %s %04RI32 %02u:%02u:%02u -0000", g_apszWeekDays[pTime->u8WeekDay], + pTime->u8MonthDay, g_apszMonths[pTime->u8Month], pTime->i32Year, + pTime->u8Hour, pTime->u8Minute, pTime->u8Second); + if ( cch >= 27 + && psz[cch - 5] == '-') + return cch; + } + return VERR_BUFFER_OVERFLOW; +} +RT_EXPORT_SYMBOL(RTTimeToRfc2822); + + +/** + * Attempts to convert an RFC-2822 date string to a time structure. + * + * We're a little forgiving with zero padding, unspecified parts, and leading + * and trailing spaces. + * + * @retval pTime on success, + * @retval NULL on failure. + * @param pTime Where to store the time on success. + * @param pszString The ISO date string to convert. + */ +RTDECL(PRTTIME) RTTimeFromRfc2822(PRTTIME pTime, const char *pszString) +{ + /* + * Fri, 31 Aug 2018 00:00:00 +0200 + * Mon, 3 Sep 2018 00:00:00 GMT + * Mon, 3 Sep 2018 00:00:00 -0000 + * 3 Sep 2018 00:00:00 -0000 (?) + * 3 Sep 2018 00:00:00 GMT (?) + * + */ + + /* Ignore leading spaces. */ + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + /* + * Init non date & time parts. + */ + pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL; + pTime->offUTC = 0; + + /* + * The date part. + */ + + /* Optional day of week: */ + if (RT_C_IS_ALPHA(pszString[0]) && pszString[1] != '\0') + { + uint32_t uWeekDay = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), + RT_C_TO_LOWER(pszString[2]), 0); + if ( uWeekDay == RT_MAKE_U32_FROM_U8('m', 'o', 'n', 0)) pTime->u8WeekDay = 0; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'u', 'e', 0)) pTime->u8WeekDay = 1; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('w', 'e', 'd', 0)) pTime->u8WeekDay = 2; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('t', 'h', 'u', 0)) pTime->u8WeekDay = 3; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('f', 'r', 'i', 0)) pTime->u8WeekDay = 4; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'a', 't', 0)) pTime->u8WeekDay = 5; + else if (uWeekDay == RT_MAKE_U32_FROM_U8('s', 'u', 'n', 0)) pTime->u8WeekDay = 6; + else + return NULL; + pszString += 3; + while (RT_C_IS_ALPHA(*pszString)) + pszString++; + if (*pszString == ',') + pszString++; + while (RT_C_IS_SPACE(*pszString)) + pszString++; + if (!RT_C_IS_DIGIT(pszString[0])) + return NULL; + } + else if (RT_C_IS_DIGIT(pszString[0])) + pTime->u8WeekDay = UINT8_MAX; + else + return NULL; + + /* Day of month.*/ + int rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay); + if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS) + return NULL; + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + /* Month of the year. */ + if (pszString[0] == '\0' || pszString[1] == '\0' || pszString[2] == '\0') + return NULL; + uint32_t uMonth = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), + RT_C_TO_LOWER(pszString[2]), 0); + if ( uMonth == RT_MAKE_U32_FROM_U8('j', 'a', 'n', 0)) pTime->u8Month = 1; + else if (uMonth == RT_MAKE_U32_FROM_U8('f', 'e', 'b', 0)) pTime->u8Month = 2; + else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'r', 0)) pTime->u8Month = 3; + else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'p', 'r', 0)) pTime->u8Month = 4; + else if (uMonth == RT_MAKE_U32_FROM_U8('m', 'a', 'y', 0)) pTime->u8Month = 5; + else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'n', 0)) pTime->u8Month = 6; + else if (uMonth == RT_MAKE_U32_FROM_U8('j', 'u', 'l', 0)) pTime->u8Month = 7; + else if (uMonth == RT_MAKE_U32_FROM_U8('a', 'u', 'g', 0)) pTime->u8Month = 8; + else if (uMonth == RT_MAKE_U32_FROM_U8('s', 'e', 'p', 0)) pTime->u8Month = 9; + else if (uMonth == RT_MAKE_U32_FROM_U8('o', 'c', 't', 0)) pTime->u8Month = 10; + else if (uMonth == RT_MAKE_U32_FROM_U8('n', 'o', 'v', 0)) pTime->u8Month = 11; + else if (uMonth == RT_MAKE_U32_FROM_U8('d', 'e', 'c', 0)) pTime->u8Month = 12; + else + return NULL; + pszString += 3; + while (RT_C_IS_ALPHA(*pszString)) + pszString++; + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + /* Year */ + const char * const pszStartYear = pszString; + rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pszString - pszStartYear >= 4 ) + { /* likely */ } + else if (pszString - pszStartYear == 3) + pTime->i32Year += 1900; + else if (pszString - pszStartYear == 2) + pTime->i32Year += pTime->i32Year >= 50 ? 1900 : 2000; + else + return NULL; + + bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year); + if (fLeapYear) + pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR; + + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + + /* Calculate year day. */ + unsigned const cDaysInMonth = fLeapYear + ? g_acDaysInMonthsLeap[pTime->u8Month - 1] + : g_acDaysInMonths[pTime->u8Month - 1]; + if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth) + return NULL; + + pTime->u16YearDay = pTime->u8MonthDay - 1 + + (fLeapYear + ? g_aiDayOfYearLeap[pTime->u8Month - 1] + : g_aiDayOfYear[pTime->u8Month - 1]); + + /* + * The time part. + */ + /* Hour. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pTime->u8Hour > 23) + return NULL; + if (*pszString++ != ':') + return NULL; + + /* Minute. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute); + if (rc != VWRN_TRAILING_CHARS) + return NULL; + if (pTime->u8Minute > 59) + return NULL; + if (*pszString++ != ':') + return NULL; + + /* Second. */ + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Second); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) + return NULL; + if (pTime->u8Second > 59) + return NULL; + + /* Non-standard fraction. Handy for testing, though. */ + if (*pszString == '.') + { + const char * const pszStart = ++pszString; + rc = RTStrToUInt32Ex(pszString, (char **)&pszString, 10, &pTime->u32Nanosecond); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES) + return NULL; + if (pTime->u32Nanosecond >= 1000000000) + return NULL; + switch (pszString - pszStart) + { + case 1: pTime->u32Nanosecond *= 100000000; break; + case 2: pTime->u32Nanosecond *= 10000000; break; + case 3: pTime->u32Nanosecond *= 1000000; break; + case 4: pTime->u32Nanosecond *= 100000; break; + case 5: pTime->u32Nanosecond *= 10000; break; + case 6: pTime->u32Nanosecond *= 1000; break; + case 7: pTime->u32Nanosecond *= 100; break; + case 8: pTime->u32Nanosecond *= 10; break; + case 9: break; + default: + return NULL; + } + if (pTime->u32Nanosecond >= 1000000000) + return NULL; + } + else + pTime->u32Nanosecond = 0; + while (RT_C_IS_SPACE(*pszString)) + pszString++; + + /* + * Time zone. + */ + if ( *pszString == '+' + || *pszString == '-') + { + if ( !RT_C_IS_DIGIT(pszString[1]) + || !RT_C_IS_DIGIT(pszString[2])) + return NULL; + int8_t cUtcHours = (pszString[1] - '0') * 10 + (pszString[2] - '0'); + char chSign = *pszString; + if (chSign == '-') + cUtcHours = -cUtcHours; + pszString += 3; + + uint8_t cUtcMin = 0; + if (RT_C_IS_DIGIT(pszString[0])) + { + rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &cUtcMin); + if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_SPACES) + return NULL; + } + else if (*pszString && !RT_C_IS_BLANK(*pszString)) + return NULL; + if (cUtcHours >= 0) + pTime->offUTC = cUtcHours * 60 + cUtcMin; + else + pTime->offUTC = cUtcHours * 60 - cUtcMin; + if (RT_ABS(pTime->offUTC) > 840) + return NULL; + + /* -0000: GMT isn't necessarily the local time zone, so change flags from local to UTC. */ + if (pTime->offUTC == 0 && chSign == '-') + { + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + } + } + else if (RT_C_IS_ALPHA(*pszString)) + { + uint32_t uTimeZone = RT_MAKE_U32_FROM_U8(RT_C_TO_LOWER(pszString[0]), RT_C_TO_LOWER(pszString[1]), + RT_C_TO_LOWER(pszString[2]), 0); + if (uTimeZone == RT_MAKE_U32_FROM_U8('g', 'm', 't', 0)) + { + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + pTime->offUTC = 0; + pszString += 3; + } + else if ((uint16_t)uTimeZone == RT_MAKE_U16('u', 't')) + { + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + pTime->offUTC = 0; + pszString += 2; + } + else + { + static const struct { uint32_t uTimeZone; int32_t offUtc; } s_aLegacyTimeZones[] = + { + { RT_MAKE_U32_FROM_U8('e', 'd', 't', 0), -4*60 }, + { RT_MAKE_U32_FROM_U8('e', 's', 't', 0), -5*60 }, + { RT_MAKE_U32_FROM_U8('c', 'd', 't', 0), -5*60 }, + { RT_MAKE_U32_FROM_U8('c', 's', 't', 0), -6*60 }, + { RT_MAKE_U32_FROM_U8('m', 'd', 't', 0), -6*60 }, + { RT_MAKE_U32_FROM_U8('m', 's', 't', 0), -7*60 }, + { RT_MAKE_U32_FROM_U8('p', 'd', 't', 0), -7*60 }, + { RT_MAKE_U32_FROM_U8('p', 's', 't', 0), -8*60 }, + }; + size_t i = RT_ELEMENTS(s_aLegacyTimeZones); + while (i-- > 0) + if (s_aLegacyTimeZones[i].uTimeZone == uTimeZone) + { + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_LOCAL; + pTime->offUTC = s_aLegacyTimeZones[i].offUtc; + pszString += 3; + break; + } + } + + } + /* else: No time zone given, local with offUTC = 0. */ + + /* + * The rest of the string should be blanks. + */ + char ch; + while ((ch = *pszString++) != '\0') + if (!RT_C_IS_BLANK(ch)) + return NULL; + + rtTimeNormalizeInternal(pTime); + return pTime; +} +RT_EXPORT_SYMBOL(RTTimeFromRfc2822); + + +/** + * Adds one day to @a pTime. + * + * ASSUMES it is zulu time so DST can be ignored. + */ +static PRTTIME rtTimeAdd1Day(PRTTIME pTime) +{ + Assert(!pTime->offUTC); + rtTimeNormalizeInternal(pTime); + pTime->u8MonthDay += 1; + pTime->u16YearDay = 0; + return rtTimeNormalizeInternal(pTime); +} + + +/** + * Subtracts one day from @a pTime. + * + * ASSUMES it is zulu time so DST can be ignored. + */ +static PRTTIME rtTimeSub1Day(PRTTIME pTime) +{ + Assert(!pTime->offUTC); + rtTimeNormalizeInternal(pTime); + if (pTime->u16YearDay > 1) + { + pTime->u16YearDay -= 1; + pTime->u8Month = 0; + pTime->u8MonthDay = 0; + } + else + { + pTime->i32Year -= 1; + pTime->u16YearDay = rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365; + pTime->u8MonthDay = 31; + pTime->u8Month = 12; + pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR); + } + return rtTimeNormalizeInternal(pTime); +} + + +/** + * Adds a signed number of minutes to @a pTime. + * + * ASSUMES it is zulu time so DST can be ignored. + * + * @param pTime The time structure to work on. + * @param cAddend Number of minutes to add. + * ASSUMES the value isn't all that high! + */ +static PRTTIME rtTimeAddMinutes(PRTTIME pTime, int32_t cAddend) +{ + Assert(RT_ABS(cAddend) < 31 * 24 * 60); + + /* + * Work on minutes of the day. + */ + int32_t const cMinutesInDay = 24 * 60; + int32_t iDayMinute = (unsigned)pTime->u8Hour * 60 + pTime->u8Minute; + iDayMinute += cAddend; + + while (iDayMinute >= cMinutesInDay) + { + rtTimeAdd1Day(pTime); + iDayMinute -= cMinutesInDay; + } + + while (iDayMinute < 0) + { + rtTimeSub1Day(pTime); + iDayMinute += cMinutesInDay; + } + + pTime->u8Hour = iDayMinute / 60; + pTime->u8Minute = iDayMinute % 60; + + return pTime; +} + + +/** + * Converts @a pTime to zulu time (UTC) if needed. + * + * @returns pTime. + * @param pTime What to convert (in/out). + */ +static PRTTIME rtTimeConvertToZulu(PRTTIME pTime) +{ + RTTIME_ASSERT_NORMALIZED(pTime); + if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC) + { + int32_t offUTC = pTime->offUTC; + pTime->offUTC = 0; + pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK; + pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC; + if (offUTC != 0) + rtTimeAddMinutes(pTime, -offUTC); + } + return pTime; +} + + +/** + * Converts a time structure to UTC, relying on UTC offset information if it contains local time. + * + * @returns pTime on success. + * @returns NULL if the data is invalid. + * @param pTime The time structure to convert. + */ +RTDECL(PRTTIME) RTTimeConvertToZulu(PRTTIME pTime) +{ + /* + * Validate that we've got the minimum of stuff handy. + */ + AssertReturn(VALID_PTR(pTime), NULL); + AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL); + + return rtTimeConvertToZulu(rtTimeNormalizeInternal(pTime)); +} +RT_EXPORT_SYMBOL(RTTimeConvertToZulu); + + +/** + * Compares two normalized time structures. + * + * @retval 0 if equal. + * @retval -1 if @a pLeft is earlier than @a pRight. + * @retval 1 if @a pRight is earlier than @a pLeft. + * + * @param pLeft The left side time. NULL is accepted. + * @param pRight The right side time. NULL is accepted. + * + * @note A NULL time is considered smaller than anything else. If both are + * NULL, they are considered equal. + */ +RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight) +{ +#ifdef RT_STRICT + if (pLeft) + RTTIME_ASSERT_NORMALIZED(pLeft); + if (pRight) + RTTIME_ASSERT_NORMALIZED(pRight); +#endif + + int iRet; + if (pLeft) + { + if (pRight) + { + /* + * Only work with normalized zulu time. + */ + RTTIME TmpLeft; + if ( pLeft->offUTC != 0 + || pLeft->u16YearDay == 0 + || pLeft->u16YearDay > 366 + || pLeft->u8Hour >= 60 + || pLeft->u8Minute >= 60 + || pLeft->u8Second >= 60) + { + TmpLeft = *pLeft; + pLeft = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpLeft)); + } + + RTTIME TmpRight; + if ( pRight->offUTC != 0 + || pRight->u16YearDay == 0 + || pRight->u16YearDay > 366 + || pRight->u8Hour >= 60 + || pRight->u8Minute >= 60 + || pRight->u8Second >= 60) + { + TmpRight = *pRight; + pRight = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpRight)); + } + + /* + * Do the comparison. + */ + if ( pLeft->i32Year != pRight->i32Year) + iRet = pLeft->i32Year < pRight->i32Year ? -1 : 1; + else if ( pLeft->u16YearDay != pRight->u16YearDay) + iRet = pLeft->u16YearDay < pRight->u16YearDay ? -1 : 1; + else if ( pLeft->u8Hour != pRight->u8Hour) + iRet = pLeft->u8Hour < pRight->u8Hour ? -1 : 1; + else if ( pLeft->u8Minute != pRight->u8Minute) + iRet = pLeft->u8Minute < pRight->u8Minute ? -1 : 1; + else if ( pLeft->u8Second != pRight->u8Second) + iRet = pLeft->u8Second < pRight->u8Second ? -1 : 1; + else if ( pLeft->u32Nanosecond != pRight->u32Nanosecond) + iRet = pLeft->u32Nanosecond < pRight->u32Nanosecond ? -1 : 1; + else + iRet = 0; + } + else + iRet = 1; + } + else + iRet = pRight ? -1 : 0; + return iRet; +} +RT_EXPORT_SYMBOL(RTTimeCompare); + |