diff options
Diffstat (limited to 'src/VBox/Runtime/testcase/tstRTLockValidator.cpp')
-rw-r--r-- | src/VBox/Runtime/testcase/tstRTLockValidator.cpp | 1382 |
1 files changed, 1382 insertions, 0 deletions
diff --git a/src/VBox/Runtime/testcase/tstRTLockValidator.cpp b/src/VBox/Runtime/testcase/tstRTLockValidator.cpp new file mode 100644 index 00000000..4e1bf2a5 --- /dev/null +++ b/src/VBox/Runtime/testcase/tstRTLockValidator.cpp @@ -0,0 +1,1382 @@ +/* $Id: tstRTLockValidator.cpp $ */ +/** @file + * IPRT Testcase - RTLockValidator. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + * + * The contents of this file may alternatively be used under the terms + * of the Common Development and Distribution License Version 1.0 + * (CDDL) only, as it comes in the "COPYING.CDDL" file of the + * VirtualBox OSE distribution, in which case the provisions of the + * CDDL are applicable instead of those of the GPL. + * + * You may elect to license modified versions of this file under the + * terms and conditions of either the GPL or the CDDL or both. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#include <iprt/lockvalidator.h> + +#include <iprt/asm.h> /* for return addresses */ +#include <iprt/critsect.h> +#include <iprt/err.h> +#include <iprt/semaphore.h> +#include <iprt/test.h> +#include <iprt/thread.h> +#include <iprt/time.h> + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +#define SECS_SIMPLE_TEST 1 +#define SECS_RACE_TEST 3 +#define TEST_SMALL_TIMEOUT ( 10*1000) +#define TEST_LARGE_TIMEOUT ( 60*1000) +#define TEST_DEBUG_TIMEOUT (3600*1000) + + +/********************************************************************************************************************************* +* Global Variables * +*********************************************************************************************************************************/ +/** The testcase handle. */ +static RTTEST g_hTest; +/** Flip this in the debugger to get some peace to single step wild code. */ +bool volatile g_fDoNotSpin = false; + +/** Set when the main thread wishes to terminate the test. */ +bool volatile g_fShutdown = false; +/** The number of threads. */ +static uint32_t g_cThreads; +static uint32_t g_iDeadlockThread; +static RTTHREAD g_ahThreads[32]; +static RTLOCKVALCLASS g_ahClasses[32]; +static RTCRITSECT g_aCritSects[32]; +static RTSEMRW g_ahSemRWs[32]; +static RTSEMMUTEX g_ahSemMtxes[32]; +static RTSEMEVENT g_hSemEvt; +static RTSEMEVENTMULTI g_hSemEvtMulti; + +/** Multiple release event semaphore that is signalled by the main thread after + * it has started all the threads. */ +static RTSEMEVENTMULTI g_hThreadsStartedEvt; + +/** The number of threads that have called testThreadBlocking */ +static uint32_t volatile g_cThreadsBlocking; +/** Multiple release event semaphore that is signalled by the last thread to + * call testThreadBlocking. testWaitForAllOtherThreadsToSleep waits on this. */ +static RTSEMEVENTMULTI g_hThreadsBlockingEvt; + +/** When to stop testing. */ +static uint64_t g_NanoTSStop; +/** The number of deadlocks. */ +static uint32_t volatile g_cDeadlocks; +/** The number of loops. */ +static uint32_t volatile g_cLoops; + + +/** + * Spin until the callback stops returning VERR_TRY_AGAIN. + * + * @returns Callback result. VERR_TIMEOUT if too much time elapses. + * @param pfnCallback Callback for checking the state. + * @param pvWhat Callback parameter. + */ +static int testWaitForSomethingToBeOwned(int (*pfnCallback)(void *), void *pvWhat) +{ + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsStartedEvt, TEST_SMALL_TIMEOUT)); + + uint64_t u64StartMS = RTTimeMilliTS(); + for (unsigned iLoop = 0; ; iLoop++) + { + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + + int rc = pfnCallback(pvWhat); + if (rc != VERR_TRY_AGAIN/* && !g_fDoNotSpin*/) + { + RTTEST_CHECK_RC_OK(g_hTest, rc); + return rc; + } + + uint64_t cMsElapsed = RTTimeMilliTS() - u64StartMS; + if (!g_fDoNotSpin) + RTTEST_CHECK_RET(g_hTest, cMsElapsed <= TEST_SMALL_TIMEOUT, VERR_TIMEOUT); + + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + RTThreadSleep(/*g_fDoNotSpin ? TEST_DEBUG_TIMEOUT :*/ iLoop > 256 ? 1 : 0); + } +} + + +static int testCheckIfCritSectIsOwned(void *pvWhat) +{ + PRTCRITSECT pCritSect = (PRTCRITSECT)pvWhat; + if (!RTCritSectIsInitialized(pCritSect)) + return VERR_SEM_DESTROYED; + if (RTCritSectIsOwned(pCritSect)) + return VINF_SUCCESS; + return VERR_TRY_AGAIN; +} + + +static int testWaitForCritSectToBeOwned(PRTCRITSECT pCritSect) +{ + return testWaitForSomethingToBeOwned(testCheckIfCritSectIsOwned, pCritSect); +} + + +static int testCheckIfSemRWIsOwned(void *pvWhat) +{ + RTSEMRW hSemRW = (RTSEMRW)pvWhat; + if (RTSemRWGetWriteRecursion(hSemRW) > 0) + return VINF_SUCCESS; + if (RTSemRWGetReadCount(hSemRW) > 0) + return VINF_SUCCESS; + return VERR_TRY_AGAIN; +} + +static int testWaitForSemRWToBeOwned(RTSEMRW hSemRW) +{ + return testWaitForSomethingToBeOwned(testCheckIfSemRWIsOwned, hSemRW); +} + + +static int testCheckIfSemMutexIsOwned(void *pvWhat) +{ + RTSEMMUTEX hSemRW = (RTSEMMUTEX)pvWhat; + if (RTSemMutexIsOwned(hSemRW)) + return VINF_SUCCESS; + return VERR_TRY_AGAIN; +} + +static int testWaitForSemMutexToBeOwned(RTSEMMUTEX hSemMutex) +{ + return testWaitForSomethingToBeOwned(testCheckIfSemMutexIsOwned, hSemMutex); +} + + +/** + * For reducing spin in testWaitForAllOtherThreadsToSleep. + */ +static void testThreadBlocking(void) +{ + if (ASMAtomicIncU32(&g_cThreadsBlocking) == g_cThreads) + RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt)); +} + + +/** + * Waits for all the other threads to enter sleeping states. + * + * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure. + * @param enmDesiredState The desired thread sleep state. + * @param cWaitOn The distance to the lock they'll be waiting on, + * the lock type is derived from the desired state. + * UINT32_MAX means no special lock. + */ +static int testWaitForAllOtherThreadsToSleep(RTTHREADSTATE enmDesiredState, uint32_t cWaitOn) +{ + testThreadBlocking(); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC_OK(g_hTest, RTSemEventMultiWait(g_hThreadsBlockingEvt, TEST_SMALL_TIMEOUT)); + + RTTHREAD hThreadSelf = RTThreadSelf(); + for (uint32_t iOuterLoop = 0; ; iOuterLoop++) + { + uint32_t cMissing = 0; + uint32_t cWaitedOn = 0; + for (uint32_t i = 0; i < g_cThreads; i++) + { + RTTHREAD hThread = g_ahThreads[i]; + if (hThread == NIL_RTTHREAD) + cMissing++; + else if (hThread != hThreadSelf) + { + /* + * Figure out which lock to wait for. + */ + void *pvLock = NULL; + if (cWaitOn != UINT32_MAX) + { + uint32_t j = (i + cWaitOn) % g_cThreads; + switch (enmDesiredState) + { + case RTTHREADSTATE_CRITSECT: pvLock = &g_aCritSects[j]; break; + case RTTHREADSTATE_RW_WRITE: + case RTTHREADSTATE_RW_READ: pvLock = g_ahSemRWs[j]; break; + case RTTHREADSTATE_MUTEX: pvLock = g_ahSemMtxes[j]; break; + default: break; + } + } + + /* + * Wait for this thread. + */ + for (unsigned iLoop = 0; ; iLoop++) + { + RTTHREADSTATE enmState = RTThreadGetReallySleeping(hThread); + if (RTTHREAD_IS_SLEEPING(enmState)) + { + if ( enmState == enmDesiredState + && ( !pvLock + || ( pvLock == RTLockValidatorQueryBlocking(hThread) + && !RTLockValidatorIsBlockedThreadInValidator(hThread) ) + ) + && RTThreadGetNativeState(hThread) != RTTHREADNATIVESTATE_RUNNING + ) + break; + } + else if ( enmState != RTTHREADSTATE_RUNNING + && enmState != RTTHREADSTATE_INITIALIZING) + return VERR_INTERNAL_ERROR; + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop + iLoop > 256 ? 1 : 0); + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + cWaitedOn++; + } + } + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + } + + if (!cMissing && !cWaitedOn) + break; + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + RTThreadSleep(g_fDoNotSpin ? TEST_DEBUG_TIMEOUT : iOuterLoop > 256 ? 1 : 0); + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + } + + RTThreadSleep(0); /* fudge factor */ + RTTEST_CHECK_RET(g_hTest, !g_fShutdown, VERR_INTERNAL_ERROR); + return VINF_SUCCESS; +} + + +/** + * Worker that starts the threads. + * + * @returns Same as RTThreadCreate. + * @param cThreads The number of threads to start. + * @param pfnThread Thread function. + */ +static int testStartThreads(uint32_t cThreads, PFNRTTHREAD pfnThread) +{ + RTSemEventMultiReset(g_hThreadsStartedEvt); + + for (uint32_t i = 0; i < RT_ELEMENTS(g_ahThreads); i++) + g_ahThreads[i] = NIL_RTTHREAD; + + int rc = VINF_SUCCESS; + for (uint32_t i = 0; i < cThreads; i++) + { + rc = RTThreadCreateF(&g_ahThreads[i], pfnThread, (void *)(uintptr_t)i, 0, + RTTHREADTYPE_DEFAULT, RTTHREADFLAGS_WAITABLE, "thread-%02u", i); + RTTEST_CHECK_RC_OK(g_hTest, rc); + if (RT_FAILURE(rc)) + break; + } + + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), rcCheck); + return rc; +} + + +/** + * Worker that waits for the threads to complete. + * + * @param cMillies How long to wait for each. + * @param fStopOnError Whether to stop on error and heed the thread + * return status. + */ +static void testWaitForThreads(uint32_t cMillies, bool fStopOnError) +{ + uint32_t i = RT_ELEMENTS(g_ahThreads); + while (i-- > 0) + if (g_ahThreads[i] != NIL_RTTHREAD) + { + int rcThread; + int rc2; + RTTEST_CHECK_RC_OK(g_hTest, rc2 = RTThreadWait(g_ahThreads[i], cMillies, &rcThread)); + if (RT_SUCCESS(rc2)) + g_ahThreads[i] = NIL_RTTHREAD; + if (fStopOnError && (RT_FAILURE(rc2) || RT_FAILURE(rcThread))) + return; + } +} + + +static void testIt(uint32_t cThreads, uint32_t cSecs, bool fLoops, PFNRTTHREAD pfnThread, const char *pszName) +{ + /* + * Init test. + */ + if (cSecs > 0) + RTTestSubF(g_hTest, "%s, %u threads, %u secs", pszName, cThreads, cSecs); + else + RTTestSubF(g_hTest, "%s, %u threads, single pass", pszName, cThreads); + + RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_ahThreads) >= cThreads); + RTTEST_CHECK_RETV(g_hTest, RT_ELEMENTS(g_aCritSects) >= cThreads); + + g_cThreads = cThreads; + g_fShutdown = false; + + for (uint32_t i = 0; i < cThreads; i++) + { + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, + RTLOCKVAL_SUB_CLASS_ANY, "RTCritSect"), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, + RTLOCKVAL_SUB_CLASS_ANY, "RTSemRW"), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0 /*fFlags*/, NIL_RTLOCKVALCLASS, + RTLOCKVAL_SUB_CLASS_ANY, "RTSemMutex"), VINF_SUCCESS); + } + RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventCreate(&g_hSemEvt), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hSemEvtMulti), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsStartedEvt), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemEventMultiCreate(&g_hThreadsBlockingEvt), VINF_SUCCESS); + + /* + * The test loop. + */ + uint32_t cPasses = 0; + uint32_t cLoops = 0; + uint32_t cDeadlocks = 0; + uint32_t cErrors = RTTestErrorCount(g_hTest); + uint64_t uStartNS = RTTimeNanoTS(); + g_NanoTSStop = uStartNS + cSecs * UINT64_C(1000000000); + do + { + g_iDeadlockThread = (cThreads - 1 + cPasses) % cThreads; + g_cLoops = 0; + g_cDeadlocks = 0; + g_cThreadsBlocking = 0; + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hThreadsBlockingEvt), VINF_SUCCESS); + + int rc = testStartThreads(cThreads, pfnThread); + if (RT_SUCCESS(rc)) + { + testWaitForThreads(TEST_LARGE_TIMEOUT + cSecs*1000, true); + if (g_fDoNotSpin && RTTestErrorCount(g_hTest) != cErrors) + testWaitForThreads(TEST_DEBUG_TIMEOUT, true); + } + + RTTEST_CHECK(g_hTest, !fLoops || g_cLoops > 0); + cLoops += g_cLoops; + RTTEST_CHECK(g_hTest, !fLoops || g_cDeadlocks > 0); + cDeadlocks += g_cDeadlocks; + cPasses++; + } while ( RTTestErrorCount(g_hTest) == cErrors + && !fLoops + && RTTimeNanoTS() < g_NanoTSStop); + + /* + * Cleanup. + */ + ASMAtomicWriteBool(&g_fShutdown, true); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsBlockingEvt), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hThreadsStartedEvt), VINF_SUCCESS); + RTThreadSleep(RTTestErrorCount(g_hTest) == cErrors ? 0 : 50); + + for (uint32_t i = 0; i < cThreads; i++) + { + RTTEST_CHECK_RC(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS); + } + RTTEST_CHECK_RC(g_hTest, RTSemEventDestroy(g_hSemEvt), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hSemEvtMulti), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsStartedEvt), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiDestroy(g_hThreadsBlockingEvt), VINF_SUCCESS); + + testWaitForThreads(TEST_SMALL_TIMEOUT, false); + + /* + * Print results if applicable. + */ + if (cSecs) + { + if (fLoops) + RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cLoops=%u cDeadlocks=%u (%u%%)\n", + cLoops, cDeadlocks, cLoops ? cDeadlocks * 100 / cLoops : 0); + else + RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "cPasses=%u\n", cPasses); + } +} + + +static DECLCALLBACK(int) testDd1Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + PRTCRITSECT pMine = &g_aCritSects[i]; + PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; + RT_NOREF_PV(ThreadSelf); + + RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); + if (!(i & 1)) + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); + if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) + { + int rc; + if (i != g_iDeadlockThread) + { + testThreadBlocking(); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); + } + else + { + RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VERR_SEM_LV_DEADLOCK); + } + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); + } + if (!(i & 1)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + return VINF_SUCCESS; +} + + +static void testDd1(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, false, testDd1Thread, "deadlock, critsect"); +} + + +static DECLCALLBACK(int) testDd2Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + RTSEMRW hMine = g_ahSemRWs[i]; + RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; + int rc; + RT_NOREF_PV(ThreadSelf); + + if (i & 1) + { + RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); + if ((i & 3) == 3) + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS); + } + else + RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); + if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext))) + { + if (i != g_iDeadlockThread) + { + testThreadBlocking(); + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS); + } + else + { + RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_RW_WRITE, 1)); + if (RT_SUCCESS(rc)) + { + if (g_cThreads > 1) + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK); + else + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_ILLEGAL_UPGRADE); + } + } + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hNext), VINF_SUCCESS); + } + if (i & 1) + { + if ((i & 3) == 3) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); + } + else + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + return VINF_SUCCESS; +} + + +static void testDd2(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, false, testDd2Thread, "deadlock, read-write"); +} + + +static DECLCALLBACK(int) testDd3Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + RTSEMRW hMine = g_ahSemRWs[i]; + RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; + int rc; + RT_NOREF_PV(ThreadSelf); + + if (i & 1) + RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestWrite(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); + else + RTTEST_CHECK_RC_RET(g_hTest, RTSemRWRequestRead(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); + if (RT_SUCCESS(testWaitForSemRWToBeOwned(hNext))) + { + do + { + rc = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT); + if (rc != VINF_SUCCESS && rc != VERR_SEM_LV_DEADLOCK && rc != VERR_SEM_LV_ILLEGAL_UPGRADE) + { + RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc); + break; + } + if (RT_SUCCESS(rc)) + { + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWReleaseWrite(hNext), VINF_SUCCESS); + if (RT_FAILURE(rc)) + break; + } + else + ASMAtomicIncU32(&g_cDeadlocks); + ASMAtomicIncU32(&g_cLoops); + } while (RTTimeNanoTS() < g_NanoTSStop); + } + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(hMine), VINF_SUCCESS); + else + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(hMine), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + return VINF_SUCCESS; +} + + +static void testDd3(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, true, testDd3Thread, "deadlock, read-write race"); +} + + +static DECLCALLBACK(int) testDd4Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + RTSEMRW hMine = g_ahSemRWs[i]; + RTSEMRW hNext = g_ahSemRWs[(i + 1) % g_cThreads]; + RT_NOREF_PV(ThreadSelf); + + do + { + int rc1 = (i & 1 ? RTSemRWRequestWrite : RTSemRWRequestRead)(hMine, TEST_SMALL_TIMEOUT); /* ugly ;-) */ + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (rc1 != VINF_SUCCESS && rc1 != VERR_SEM_LV_DEADLOCK && rc1 != VERR_SEM_LV_ILLEGAL_UPGRADE) + { + RTTestFailed(g_hTest, "#%u: RTSemRWRequest%s(hMine,) -> %Rrc\n", i, i & 1 ? "Write" : "read", rc1); + break; + } + if (RT_SUCCESS(rc1)) + { + for (unsigned iInner = 0; iInner < 4; iInner++) + { + int rc2 = RTSemRWRequestWrite(hNext, TEST_SMALL_TIMEOUT); + if (rc2 != VINF_SUCCESS && rc2 != VERR_SEM_LV_DEADLOCK && rc2 != VERR_SEM_LV_ILLEGAL_UPGRADE) + { + RTTestFailed(g_hTest, "#%u: RTSemRWRequestWrite -> %Rrc\n", i, rc2); + break; + } + if (RT_SUCCESS(rc2)) + { + RTTEST_CHECK_RC(g_hTest, rc2 = RTSemRWReleaseWrite(hNext), VINF_SUCCESS); + if (RT_FAILURE(rc2)) + break; + } + else + ASMAtomicIncU32(&g_cDeadlocks); + ASMAtomicIncU32(&g_cLoops); + } + + RTTEST_CHECK_RC(g_hTest, rc1 = (i & 1 ? RTSemRWReleaseWrite : RTSemRWReleaseRead)(hMine), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_FAILURE(rc1)) + break; + } + else + ASMAtomicIncU32(&g_cDeadlocks); + ASMAtomicIncU32(&g_cLoops); + } while (RTTimeNanoTS() < g_NanoTSStop); + + return VINF_SUCCESS; +} + + +static void testDd4(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, true, testDd4Thread, "deadlock, read-write race v2"); +} + + +static DECLCALLBACK(int) testDd5Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + RTSEMMUTEX hMine = g_ahSemMtxes[i]; + RTSEMMUTEX hNext = g_ahSemMtxes[(i + 1) % g_cThreads]; + RT_NOREF_PV(ThreadSelf); + + RTTEST_CHECK_RC_RET(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS, rcCheck); + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(hMine, RT_INDEFINITE_WAIT), VINF_SUCCESS); + if (RT_SUCCESS(testWaitForSemMutexToBeOwned(hNext))) + { + int rc; + if (i != g_iDeadlockThread) + { + testThreadBlocking(); + RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VINF_SUCCESS); + } + else + { + RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_MUTEX, 1)); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(hNext, RT_INDEFINITE_WAIT), VERR_SEM_LV_DEADLOCK); + } + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRelease(hNext), VINF_SUCCESS); + } + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(hMine), VINF_SUCCESS); + return VINF_SUCCESS; +} + + +static void testDd5(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, false, testDd5Thread, "deadlock, mutex"); +} + + +static DECLCALLBACK(int) testDd6Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + PRTCRITSECT pMine = &g_aCritSects[i]; + PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; + RT_NOREF_PV(ThreadSelf); + + RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); + if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) + { + int rc; + if (i != g_iDeadlockThread) + { + testThreadBlocking(); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); + } + else + { + RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); + if (RT_SUCCESS(rc)) + { + RTSemEventSetSignaller(g_hSemEvt, g_ahThreads[0]); + for (uint32_t iThread = 1; iThread < g_cThreads; iThread++) + RTSemEventAddSignaller(g_hSemEvt, g_ahThreads[iThread]); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventSignal(g_hSemEvt), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventWait(g_hSemEvt, TEST_SMALL_TIMEOUT), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTSemEventSetSignaller(g_hSemEvt, NIL_RTTHREAD); + } + } + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + } + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + return VINF_SUCCESS; +} + + +static void testDd6(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, false, testDd6Thread, "deadlock, event"); +} + + +static DECLCALLBACK(int) testDd7Thread(RTTHREAD ThreadSelf, void *pvUser) +{ + uintptr_t i = (uintptr_t)pvUser; + PRTCRITSECT pMine = &g_aCritSects[i]; + PRTCRITSECT pNext = &g_aCritSects[(i + 1) % g_cThreads]; + RT_NOREF_PV(ThreadSelf); + + RTTEST_CHECK_RC_RET(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS, rcCheck); + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(pMine), VINF_SUCCESS); + if (RT_SUCCESS(testWaitForCritSectToBeOwned(pNext))) + { + int rc; + if (i != g_iDeadlockThread) + { + testThreadBlocking(); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(pNext), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(pNext), VINF_SUCCESS); + } + else + { + RTTEST_CHECK_RC_OK(g_hTest, rc = testWaitForAllOtherThreadsToSleep(RTTHREADSTATE_CRITSECT, 1)); + if (RT_SUCCESS(rc)) + { + RTSemEventMultiSetSignaller(g_hSemEvtMulti, g_ahThreads[0]); + for (uint32_t iThread = 1; iThread < g_cThreads; iThread++) + RTSemEventMultiAddSignaller(g_hSemEvtMulti, g_ahThreads[iThread]); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiReset(g_hSemEvtMulti), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VERR_SEM_LV_DEADLOCK); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiSignal(g_hSemEvtMulti), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTTEST_CHECK_RC(g_hTest, RTSemEventMultiWait(g_hSemEvtMulti, TEST_SMALL_TIMEOUT), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + RTSemEventMultiSetSignaller(g_hSemEvtMulti, NIL_RTTHREAD); + } + } + RTTEST_CHECK(g_hTest, RTThreadGetState(RTThreadSelf()) == RTTHREADSTATE_RUNNING); + } + if (i & 1) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(pMine), VINF_SUCCESS); + return VINF_SUCCESS; +} + + +static void testDd7(uint32_t cThreads, uint32_t cSecs) +{ + testIt(cThreads, cSecs, false, testDd7Thread, "deadlock, event multi"); +} + + +static void testLo1(void) +{ + RTTestSub(g_hTest, "locking order basics"); + + /* Initialize the critsections, the first 4 has their own classes, the rest + use the same class and relies on the sub-class mechanism for ordering. */ + for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++) + { + if (i <= 3) + { + RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo1-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-Auto"), VINF_SUCCESS); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); + } + else + { + g_ahClasses[i] = RTLockValidatorClassForSrcPos(RT_SRC_POS, "testLo1-%u", i); + RTTEST_CHECK_RETV(g_hTest, g_ahClasses[i] != NIL_RTLOCKVALCLASS); + RTTEST_CHECK_RETV(g_hTest, i == 4 || g_ahClasses[i] == g_ahClasses[i - 1]); + if (i == 4) + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO-None"), VINF_SUCCESS); + else if (i == 5) + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_ANY, "RTCritSectLO-Any"), VINF_SUCCESS); + else + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_USER + i, "RTCritSectLO-User"), VINF_SUCCESS); + + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 1 + (i - 4 + 1) * 2); /* released in cleanup. */ + } + } + + /* Enter the first 4 critsects in ascending order and thereby defining + this as a valid lock order. */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + + /* Now, leave and re-enter the critsects in a way that should break the + order and check that we get the appropriate response. */ + int rc; + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc= RTCritSectEnter(&g_aCritSects[2]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + + /* Check that recursion isn't subject to order checks. */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + { + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + } + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + + /* Enable strict release order for class 2 and check that violations + are caught. */ + RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + if (RT_FAILURE(rc)) + { + /* applies to recursions as well */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + } + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + if (RT_FAILURE(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + + /* Test that sub-class order works (4 = NONE, 5 = ANY, 6+ = USER). */ + uint32_t cErrorsBefore = RTTestErrorCount(g_hTest); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[8]), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[8]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[7]), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[7]), VINF_SUCCESS); + + /* Check that NONE trumps both ANY and USER. */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[5]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[6]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[6]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[4]), VINF_SUCCESS); + + /* Take all the locks using sub-classes. */ + if (cErrorsBefore == RTTestErrorCount(g_hTest)) + { + bool fSavedQuiet = RTLockValidatorSetQuiet(true); + for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++) + { + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[i]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[4]), VERR_SEM_LV_WRONG_ORDER); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); + } + for (uint32_t i = 6; i < RT_ELEMENTS(g_aCritSects); i++) + { + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[i]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); + } + RTLockValidatorSetQuiet(fSavedQuiet); + } + + /* Work up some hash statistics and trigger a violation to show them. */ + for (uint32_t i = 0; i < 10240; i++) + { + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + } + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[5]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VERR_SEM_LV_WRONG_ORDER); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[5]), VINF_SUCCESS); + + /* clean up */ + //for (int i = RT_ELEMENTS(g_ahClasses) - 1; i >= 0; i--) + for (unsigned i = 0; i < RT_ELEMENTS(g_ahClasses); i++) + { + uint32_t c; + if (i <= 3) + RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 5 - i, + (g_hTest, "c=%u i=%u\n", c, i)); + else + { + uint32_t cExpect = 1 + (RT_ELEMENTS(g_ahClasses) - i) * 2 - 1; + RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == cExpect, + (g_hTest, "c=%u e=%u i=%u\n", c, cExpect, i)); + } + g_ahClasses[i] = NIL_RTLOCKVALCLASS; + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); + } +} + + +static void testLo2(void) +{ + RTTestSub(g_hTest, "locking order, critsect"); + + /* Initialize the critsection with all different classes */ + for (unsigned i = 0; i < 4; i++) + { + RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo2-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectInitEx(&g_aCritSects[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTCritSectLO"), VINF_SUCCESS); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); + } + + /* Check the sub-class API.*/ + RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); + RTTEST_CHECK(g_hTest, RTCritSectSetSubClass(&g_aCritSects[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); + + /* Enter the first 4 critsects in ascending order and thereby defining + this as a valid lock order. */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + + /* Now, leave and re-enter the critsects in a way that should break the + order and check that we get the appropriate response. */ + int rc; + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[0]), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[0]), VINF_SUCCESS); + + /* Check that recursion isn't subject to order checks. */ + RTTEST_CHECK_RC(g_hTest, rc = RTCritSectEnter(&g_aCritSects[1]), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + + /* Enable strict release order for class 2 and check that violations + are caught - including recursion. */ + RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[2]), VINF_SUCCESS); /* start recursion */ + RTTEST_CHECK_RC(g_hTest, RTCritSectEnter(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); /* end recursion */ + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTCritSectLeave(&g_aCritSects[2]), VINF_SUCCESS); + + /* clean up */ + for (int i = 4 - 1; i >= 0; i--) + { + RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1); + g_ahClasses[i] = NIL_RTLOCKVALCLASS; + RTTEST_CHECK_RC_RETV(g_hTest, RTCritSectDelete(&g_aCritSects[i]), VINF_SUCCESS); + } +} + + +static void testLo3(void) +{ + RTTestSub(g_hTest, "locking order, read-write"); + + /* Initialize the critsection with all different classes */ + for (unsigned i = 0; i < 6; i++) + { + RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo3-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWCreateEx(&g_ahSemRWs[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "hSemRW-Lo3-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 4); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 3); + } + + /* Check the sub-class API.*/ + RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); + RTTEST_CHECK(g_hTest, RTSemRWSetSubClass(g_ahSemRWs[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); + + /* Enter the first 4 critsects in ascending order and thereby defining + this as a valid lock order. */ + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[5], RT_INDEFINITE_WAIT), VINF_SUCCESS); + + /* Now, leave and re-enter the critsects in a way that should break the + order and check that we get the appropriate response. */ + int rc; + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[0]), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[1], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[1]), VINF_SUCCESS); + + /* Check that recursion isn't subject to order checks. */ + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestRead(g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead(g_ahSemRWs[2]), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); + + RTTEST_CHECK_RC(g_hTest, rc = RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); + RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); + + /* Enable strict release order for class 2 and 3, then check that violations + are caught - including recursion. */ + RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[3], true), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */ + RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestWrite(g_ahSemRWs[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2); + RTTEST_CHECK_RC(g_hTest, RTSemRWRequestRead( g_ahSemRWs[4], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* (mixed) */ + + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 2); + RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 2); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[4]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); + RTTEST_CHECK( g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS); /* end recursion */ + RTTEST_CHECK( g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); + + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK(g_hTest, RTSemRWGetReadCount(g_ahSemRWs[2]) == 1); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK(g_hTest, RTSemRWGetWriteRecursion(g_ahSemRWs[3]) == 1); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[5]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[4]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseWrite(g_ahSemRWs[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemRWReleaseRead( g_ahSemRWs[2]), VINF_SUCCESS); + + /* clean up */ + for (int i = 6 - 1; i >= 0; i--) + { + uint32_t c; + RTTEST_CHECK_MSG(g_hTest, (c = RTLockValidatorClassRelease(g_ahClasses[i])) == 2, (g_hTest, "c=%u i=%u\n", c, i)); + g_ahClasses[i] = NIL_RTLOCKVALCLASS; + RTTEST_CHECK_RC_RETV(g_hTest, RTSemRWDestroy(g_ahSemRWs[i]), VINF_SUCCESS); + g_ahSemRWs[i] = NIL_RTSEMRW; + } +} + + +static void testLo4(void) +{ + RTTestSub(g_hTest, "locking order, mutex"); + + /* Initialize the critsection with all different classes */ + for (unsigned i = 0; i < 4; i++) + { + RTTEST_CHECK_RC_RETV(g_hTest, RTLockValidatorClassCreate(&g_ahClasses[i], true /*fAutodidact*/, RT_SRC_POS, "testLo4-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexCreateEx(&g_ahSemMtxes[i], 0, g_ahClasses[i], RTLOCKVAL_SUB_CLASS_NONE, "RTSemMutexLo4-%u", i), VINF_SUCCESS); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRetain(g_ahClasses[i]) == 3); + RTTEST_CHECK_RETV(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 2); + } + + /* Check the sub-class API.*/ + RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_ANY) == RTLOCKVAL_SUB_CLASS_NONE); + RTTEST_CHECK(g_hTest, RTSemMutexSetSubClass(g_ahSemMtxes[0], RTLOCKVAL_SUB_CLASS_NONE) == RTLOCKVAL_SUB_CLASS_ANY); + + /* Enter the first 4 critsects in ascending order and thereby defining + this as a valid lock order. */ + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); + + /* Now, leave and re-enter the critsects in a way that should break the + order and check that we get the appropriate response. */ + int rc; + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[0], RT_INDEFINITE_WAIT), VERR_SEM_LV_WRONG_ORDER); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[0]), VINF_SUCCESS); + + /* Check that recursion isn't subject to order checks. */ + RTTEST_CHECK_RC(g_hTest, rc = RTSemMutexRequest(g_ahSemMtxes[1], RT_INDEFINITE_WAIT), VINF_SUCCESS); + if (RT_SUCCESS(rc)) + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS); + + /* Enable strict release order for class 2 and check that violations + are caught - including recursion. */ + RTTEST_CHECK_RC(g_hTest, RTLockValidatorClassEnforceStrictReleaseOrder(g_ahClasses[2], true), VINF_SUCCESS); + + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[2], RT_INDEFINITE_WAIT), VINF_SUCCESS); /* start recursion */ + RTTEST_CHECK_RC(g_hTest, RTSemMutexRequest(g_ahSemMtxes[3], RT_INDEFINITE_WAIT), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS); /* end recursion */ + + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VERR_SEM_LV_WRONG_RELEASE_ORDER); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[1]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[3]), VINF_SUCCESS); + RTTEST_CHECK_RC(g_hTest, RTSemMutexRelease(g_ahSemMtxes[2]), VINF_SUCCESS); + + /* clean up */ + for (int i = 4 - 1; i >= 0; i--) + { + RTTEST_CHECK(g_hTest, RTLockValidatorClassRelease(g_ahClasses[i]) == 1); + g_ahClasses[i] = NIL_RTLOCKVALCLASS; + RTTEST_CHECK_RC_RETV(g_hTest, RTSemMutexDestroy(g_ahSemMtxes[i]), VINF_SUCCESS); + } +} + + + + +static const char *testCheckIfLockValidationIsCompiledIn(void) +{ + RTCRITSECT CritSect; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectInit(&CritSect), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectEnter(&CritSect), ""); + bool fRet = CritSect.pValidatorRec + && CritSect.pValidatorRec->hThread == RTThreadSelf(); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectLeave(&CritSect), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTCritSectDelete(&CritSect), ""); + if (!fRet) + return "Lock validation is not enabled for critical sections"; + + /* deadlock detection for RTSemRW */ + RTSEMRW hSemRW; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, + RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-1"), NULL); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), ""); + int rc = RTSemRWRequestWrite(hSemRW, 1); + RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), ""); + if (rc != VERR_SEM_LV_ILLEGAL_UPGRADE) + return "Deadlock detection is not enabled for the read/write semaphores"; + + /* lock order for RTSemRW */ + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWCreateEx(&hSemRW, 0 /*fFlags*/, + RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), + RTLOCKVAL_SUB_CLASS_NONE, "RTSemRW-2"), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWRequestRead(hSemRW, 50), ""); + rc = RTSemRWRequestWrite(hSemRW, 1); + RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWReleaseRead(hSemRW), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemRWDestroy(hSemRW), ""); + if (rc != VERR_SEM_LV_WRONG_ORDER) + { + RTTestPrintf(g_hTest, RTTESTLVL_ALWAYS, "%Rrc\n", rc); + return "Lock order validation is not enabled for the read/write semaphores"; + } + + /* lock order for RTSemMutex */ + RTSEMMUTEX hSemMtx1; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx1, 0 /*fFlags*/, + RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), + RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-1"), ""); + RTSEMMUTEX hSemMtx2; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexCreateEx(&hSemMtx2, 0 /*fFlags*/, + RTLockValidatorClassCreateUnique(RT_SRC_POS, NULL), + RTLOCKVAL_SUB_CLASS_NONE, "RTSemMtx-2"), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx1, 50), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx1), ""); + + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRequest(hSemMtx2, 50), ""); + rc = RTSemMutexRequest(hSemMtx1, 50); + RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexRelease(hSemMtx2), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx2), ""); hSemMtx2 = NIL_RTSEMMUTEX; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemMutexDestroy(hSemMtx1), ""); hSemMtx1 = NIL_RTSEMMUTEX; + if (rc != VERR_SEM_LV_WRONG_ORDER) + return "Lock order validation is not enabled for the mutex semaphores"; + + /* signaller checks on event sems. */ + RTSEMEVENT hSemEvt; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventCreate(&hSemEvt), ""); + RTSemEventSetSignaller(hSemEvt, RTThreadSelf()); + RTSemEventSetSignaller(hSemEvt, NIL_RTTHREAD); + rc = RTSemEventSignal(hSemEvt); + RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventDestroy(hSemEvt), ""); + if (rc != VERR_SEM_LV_NOT_SIGNALLER) + return "Signalling checks are not enabled for the event semaphores"; + + /* signaller checks on multiple release event sems. */ + RTSEMEVENTMULTI hSemEvtMulti; + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiCreate(&hSemEvtMulti), ""); + RTSemEventMultiSetSignaller(hSemEvtMulti, RTThreadSelf()); + RTSemEventMultiSetSignaller(hSemEvtMulti, NIL_RTTHREAD); + rc = RTSemEventMultiSignal(hSemEvtMulti); + RTTEST_CHECK_RET(g_hTest, RT_FAILURE_NP(rc), ""); + RTTEST_CHECK_RC_OK_RET(g_hTest, RTSemEventMultiDestroy(hSemEvtMulti), ""); + if (rc != VERR_SEM_LV_NOT_SIGNALLER) + return "Signalling checks are not enabled for the multiple release event semaphores"; + + /* we're good */ + return NULL; +} + + +int main() +{ + /* + * Init. + */ + int rc = RTTestInitAndCreate("tstRTLockValidator", &g_hTest); + if (rc) + return rc; + RTTestBanner(g_hTest); + + RTLockValidatorSetEnabled(true); + RTLockValidatorSetMayPanic(false); + RTLockValidatorSetQuiet(true); + const char *pszWhyDisabled = testCheckIfLockValidationIsCompiledIn(); + if (pszWhyDisabled) + return RTTestErrorCount(g_hTest) > 0 + ? RTTestSummaryAndDestroy(g_hTest) + : RTTestSkipAndDestroy(g_hTest, pszWhyDisabled); + RTLockValidatorSetQuiet(false); + + bool fTestDd = true; + bool fTestLo = true; + + /* + * Some initial tests with verbose output (all single pass). + */ + if (fTestDd) + { + testDd1(3, 0); + testDd2(1, 0); + testDd2(3, 0); + testDd5(3, 0); + testDd6(3, 0); + testDd7(3, 0); + } + if (fTestLo) + { + testLo1(); + testLo2(); + testLo3(); + testLo4(); + } + + + /* + * If successful, perform more thorough testing without noisy output. + */ + if (RTTestErrorCount(g_hTest) == 0) + { + RTLockValidatorSetQuiet(true); + + if (fTestDd) + { + testDd1( 2, SECS_SIMPLE_TEST); + testDd1( 3, SECS_SIMPLE_TEST); + testDd1( 7, SECS_SIMPLE_TEST); + testDd1(10, SECS_SIMPLE_TEST); + testDd1(15, SECS_SIMPLE_TEST); + testDd1(30, SECS_SIMPLE_TEST); + + testDd2( 1, SECS_SIMPLE_TEST); + testDd2( 2, SECS_SIMPLE_TEST); + testDd2( 3, SECS_SIMPLE_TEST); + testDd2( 7, SECS_SIMPLE_TEST); + testDd2(10, SECS_SIMPLE_TEST); + testDd2(15, SECS_SIMPLE_TEST); + testDd2(30, SECS_SIMPLE_TEST); + + testDd3( 2, SECS_SIMPLE_TEST); + testDd3(10, SECS_SIMPLE_TEST); + + testDd4( 2, SECS_RACE_TEST); + testDd4( 6, SECS_RACE_TEST); + testDd4(10, SECS_RACE_TEST); + testDd4(30, SECS_RACE_TEST); + + testDd5( 2, SECS_RACE_TEST); + testDd5( 3, SECS_RACE_TEST); + testDd5( 7, SECS_RACE_TEST); + testDd5(10, SECS_RACE_TEST); + testDd5(15, SECS_RACE_TEST); + testDd5(30, SECS_RACE_TEST); + + testDd6( 2, SECS_SIMPLE_TEST); + testDd6( 3, SECS_SIMPLE_TEST); + testDd6( 7, SECS_SIMPLE_TEST); + testDd6(10, SECS_SIMPLE_TEST); + testDd6(15, SECS_SIMPLE_TEST); + testDd6(30, SECS_SIMPLE_TEST); + + testDd7( 2, SECS_SIMPLE_TEST); + testDd7( 3, SECS_SIMPLE_TEST); + testDd7( 7, SECS_SIMPLE_TEST); + testDd7(10, SECS_SIMPLE_TEST); + testDd7(15, SECS_SIMPLE_TEST); + testDd7(30, SECS_SIMPLE_TEST); + } + } + + return RTTestSummaryAndDestroy(g_hTest); +} + |