diff options
Diffstat (limited to 'src/VBox/VMM/VMMAll/CPUMAllRegs.cpp')
-rw-r--r-- | src/VBox/VMM/VMMAll/CPUMAllRegs.cpp | 3091 |
1 files changed, 3091 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp new file mode 100644 index 00000000..13d25719 --- /dev/null +++ b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp @@ -0,0 +1,3091 @@ +/* $Id: CPUMAllRegs.cpp $ */ +/** @file + * CPUM - CPU Monitor(/Manager) - Getters and Setters. + */ + +/* + * Copyright (C) 2006-2019 Oracle Corporation + * + * This file is part of VirtualBox Open Source Edition (OSE), as + * available from http://www.virtualbox.org. This file is free software; + * you can redistribute it and/or modify it under the terms of the GNU + * General Public License (GPL) as published by the Free Software + * Foundation, in version 2 as it comes in the "COPYING" file of the + * VirtualBox OSE distribution. VirtualBox OSE is distributed in the + * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. + */ + + +/********************************************************************************************************************************* +* Header Files * +*********************************************************************************************************************************/ +#define LOG_GROUP LOG_GROUP_CPUM +#include <VBox/vmm/cpum.h> +#include <VBox/vmm/patm.h> +#include <VBox/vmm/dbgf.h> +#include <VBox/vmm/apic.h> +#include <VBox/vmm/pgm.h> +#include <VBox/vmm/mm.h> +#include <VBox/vmm/em.h> +#ifndef IN_RC +# include <VBox/vmm/nem.h> +# include <VBox/vmm/hm.h> +#endif +#if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) +# include <VBox/vmm/selm.h> +#endif +#include "CPUMInternal.h" +#include <VBox/vmm/vm.h> +#include <VBox/err.h> +#include <VBox/dis.h> +#include <VBox/log.h> +#include <VBox/vmm/hm.h> +#include <VBox/vmm/tm.h> +#include <iprt/assert.h> +#include <iprt/asm.h> +#include <iprt/asm-amd64-x86.h> +#ifdef IN_RING3 +# include <iprt/thread.h> +#endif + +/** Disable stack frame pointer generation here. */ +#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86) +# pragma optimize("y", off) +#endif + +AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures); +AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures); + + +/********************************************************************************************************************************* +* Defined Constants And Macros * +*********************************************************************************************************************************/ +/** + * Converts a CPUMCPU::Guest pointer into a VMCPU pointer. + * + * @returns Pointer to the Virtual CPU. + * @param a_pGuestCtx Pointer to the guest context. + */ +#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest) + +/** + * Lazily loads the hidden parts of a selector register when using raw-mode. + */ +#if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) +# define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ + do \ + { \ + if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) \ + cpumGuestLazyLoadHiddenSelectorReg(a_pVCpu, a_pSReg); \ + } while (0) +#else +# define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ + Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)); +#endif + +/** @def CPUM_INT_ASSERT_NOT_EXTRN + * Macro for asserting that @a a_fNotExtrn are present. + * + * @param a_pVCpu The cross context virtual CPU structure of the calling EMT. + * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check. + */ +#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \ + AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \ + ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn))) + + + + +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + +/** + * Does the lazy hidden selector register loading. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pSReg The selector register to lazily load hidden parts of. + */ +static void cpumGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) +{ + Assert(!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)); + Assert(VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))); + Assert((uintptr_t)(pSReg - &pVCpu->cpum.s.Guest.es) < X86_SREG_COUNT); + + if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + /* V8086 mode - Tightly controlled environment, no question about the limit or flags. */ + pSReg->Attr.u = 0; + pSReg->Attr.n.u4Type = pSReg == &pVCpu->cpum.s.Guest.cs ? X86_SEL_TYPE_ER_ACC : X86_SEL_TYPE_RW_ACC; + pSReg->Attr.n.u1DescType = 1; /* code/data segment */ + pSReg->Attr.n.u2Dpl = 3; + pSReg->Attr.n.u1Present = 1; + pSReg->u32Limit = 0x0000ffff; + pSReg->u64Base = (uint32_t)pSReg->Sel << 4; + pSReg->ValidSel = pSReg->Sel; + pSReg->fFlags = CPUMSELREG_FLAGS_VALID; + /** @todo Check what the accessed bit should be (VT-x and AMD-V). */ + } + else if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + { + /* Real mode - leave the limit and flags alone here, at least for now. */ + pSReg->u64Base = (uint32_t)pSReg->Sel << 4; + pSReg->ValidSel = pSReg->Sel; + pSReg->fFlags = CPUMSELREG_FLAGS_VALID; + } + else + { + /* Protected mode - get it from the selector descriptor tables. */ + if (!(pSReg->Sel & X86_SEL_MASK_OFF_RPL)) + { + Assert(!CPUMIsGuestInLongMode(pVCpu)); + pSReg->Sel = 0; + pSReg->u64Base = 0; + pSReg->u32Limit = 0; + pSReg->Attr.u = 0; + pSReg->ValidSel = 0; + pSReg->fFlags = CPUMSELREG_FLAGS_VALID; + /** @todo see todo in iemHlpLoadNullDataSelectorProt. */ + } + else + SELMLoadHiddenSelectorReg(pVCpu, &pVCpu->cpum.s.Guest, pSReg); + } +} + + +/** + * Makes sure the hidden CS and SS selector registers are valid, loading them if + * necessary. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenCsAndSs(PVMCPU pVCpu) +{ + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); +} + + +/** + * Loads a the hidden parts of a selector register. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pSReg The selector register to lazily load hidden parts of. + */ +VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) +{ + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, pSReg); +} + +#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + + +/** + * Obsolete. + * + * We don't support nested hypervisor context interrupts or traps. Life is much + * simpler when we don't. It's also slightly faster at times. + * + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu) +{ + return CPUMCTX2CORE(&pVCpu->cpum.s.Hyper); +} + + +/** + * Gets the pointer to the hypervisor CPU context structure of a virtual CPU. + * + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(PCPUMCTX) CPUMGetHyperCtxPtr(PVMCPU pVCpu) +{ + return &pVCpu->cpum.s.Hyper; +} + + +VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) +{ + pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit; + pVCpu->cpum.s.Hyper.gdtr.pGdt = addr; +} + + +VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) +{ + pVCpu->cpum.s.Hyper.idtr.cbIdt = limit; + pVCpu->cpum.s.Hyper.idtr.pIdt = addr; +} + + +VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3) +{ + pVCpu->cpum.s.Hyper.cr3 = cr3; + +#ifdef IN_RC + /* Update the current CR3. */ + ASMSetCR3(cr3); +#endif +} + +VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.cr3; +} + + +VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS) +{ + pVCpu->cpum.s.Hyper.cs.Sel = SelCS; +} + + +VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS) +{ + pVCpu->cpum.s.Hyper.ds.Sel = SelDS; +} + + +VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES) +{ + pVCpu->cpum.s.Hyper.es.Sel = SelES; +} + + +VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS) +{ + pVCpu->cpum.s.Hyper.fs.Sel = SelFS; +} + + +VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS) +{ + pVCpu->cpum.s.Hyper.gs.Sel = SelGS; +} + + +VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS) +{ + pVCpu->cpum.s.Hyper.ss.Sel = SelSS; +} + + +VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP) +{ + pVCpu->cpum.s.Hyper.esp = u32ESP; +} + + +VMMDECL(void) CPUMSetHyperEDX(PVMCPU pVCpu, uint32_t u32ESP) +{ + pVCpu->cpum.s.Hyper.esp = u32ESP; +} + + +VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl) +{ + pVCpu->cpum.s.Hyper.eflags.u32 = Efl; + return VINF_SUCCESS; +} + + +VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP) +{ + pVCpu->cpum.s.Hyper.eip = u32EIP; +} + + +/** + * Used by VMMR3RawRunGC to reinitialize the general raw-mode context registers, + * EFLAGS and EIP prior to resuming guest execution. + * + * All general register not given as a parameter will be set to 0. The EFLAGS + * register will be set to sane values for C/C++ code execution with interrupts + * disabled and IOPL 0. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param u32EIP The EIP value. + * @param u32ESP The ESP value. + * @param u32EAX The EAX value. + * @param u32EDX The EDX value. + */ +VMM_INT_DECL(void) CPUMSetHyperState(PVMCPU pVCpu, uint32_t u32EIP, uint32_t u32ESP, uint32_t u32EAX, uint32_t u32EDX) +{ + pVCpu->cpum.s.Hyper.eip = u32EIP; + pVCpu->cpum.s.Hyper.esp = u32ESP; + pVCpu->cpum.s.Hyper.eax = u32EAX; + pVCpu->cpum.s.Hyper.edx = u32EDX; + pVCpu->cpum.s.Hyper.ecx = 0; + pVCpu->cpum.s.Hyper.ebx = 0; + pVCpu->cpum.s.Hyper.ebp = 0; + pVCpu->cpum.s.Hyper.esi = 0; + pVCpu->cpum.s.Hyper.edi = 0; + pVCpu->cpum.s.Hyper.eflags.u = X86_EFL_1; +} + + +VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR) +{ + pVCpu->cpum.s.Hyper.tr.Sel = SelTR; +} + + +VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR) +{ + pVCpu->cpum.s.Hyper.ldtr.Sel = SelLDTR; +} + + +/** @def MAYBE_LOAD_DRx + * Macro for updating DRx values in raw-mode and ring-0 contexts. + */ +#ifdef IN_RING0 +# if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ + do { \ + if (!CPUMIsGuestInLongModeEx(&(a_pVCpu)->cpum.s.Guest)) \ + a_fnLoad(a_uValue); \ + else \ + (a_pVCpu)->cpum.s.fUseFlags |= CPUM_SYNC_DEBUG_REGS_HYPER; \ + } while (0) +# else +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ + do { \ + a_fnLoad(a_uValue); \ + } while (0) +# endif + +#elif defined(IN_RC) +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ + do { \ + if ((a_pVCpu)->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) \ + { a_fnLoad(a_uValue); } \ + } while (0) + +#else +# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0) +#endif + +VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0) +{ + pVCpu->cpum.s.Hyper.dr[0] = uDr0; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0); +} + + +VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1) +{ + pVCpu->cpum.s.Hyper.dr[1] = uDr1; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1); +} + + +VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2) +{ + pVCpu->cpum.s.Hyper.dr[2] = uDr2; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2); +} + + +VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3) +{ + pVCpu->cpum.s.Hyper.dr[3] = uDr3; + MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3); +} + + +VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6) +{ + pVCpu->cpum.s.Hyper.dr[6] = uDr6; +} + + +VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7) +{ + pVCpu->cpum.s.Hyper.dr[7] = uDr7; +#ifdef IN_RC + MAYBE_LOAD_DRx(pVCpu, ASMSetDR7, uDr7); +#endif +} + + +VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.cs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ds.Sel; +} + + +VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.es.Sel; +} + + +VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.fs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.gs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ss.Sel; +} + + +VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.eax; +} + + +VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ebx; +} + + +VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ecx; +} + + +VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.edx; +} + + +VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.esi; +} + + +VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.edi; +} + + +VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ebp; +} + + +VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.esp; +} + + +VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.eflags.u32; +} + + +VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.eip; +} + + +VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.rip; +} + + +VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) +{ + if (pcbLimit) + *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt; + return pVCpu->cpum.s.Hyper.idtr.pIdt; +} + + +VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit) +{ + if (pcbLimit) + *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt; + return pVCpu->cpum.s.Hyper.gdtr.pGdt; +} + + +VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.ldtr.Sel; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[0]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[1]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[2]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[3]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[6]; +} + + +VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.Hyper.dr[7]; +} + + +/** + * Gets the pointer to the internal CPUMCTXCORE structure. + * This is only for reading in order to save a few calls. + * + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu) +{ + return CPUMCTX2CORE(&pVCpu->cpum.s.Guest); +} + + +/** + * Queries the pointer to the internal CPUMCTX structure. + * + * @returns The CPUMCTX pointer. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu) +{ + return &pVCpu->cpum.s.Guest; +} + + +/** + * Queries the pointer to the internal CPUMCTXMSRS structure. + * + * This is for NEM only. + * + * @returns The CPUMCTX pointer. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu) +{ + return &pVCpu->cpum.s.GuestMsrs; +} + + +VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) + VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT); +#endif + pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit; + pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) + VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); +#endif + pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit; + pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) + VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS); +#endif + pVCpu->cpum.s.Guest.tr.Sel = tr; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if ( ( ldtr != 0 + || pVCpu->cpum.s.Guest.ldtr.Sel != 0) + && VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) + VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT); +#endif + pVCpu->cpum.s.Guest.ldtr.Sel = ldtr; + /* The caller will set more hidden bits if it has them. */ + pVCpu->cpum.s.Guest.ldtr.ValidSel = 0; + pVCpu->cpum.s.Guest.ldtr.fFlags = 0; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR; + return VINF_SUCCESS; /* formality, consider it void. */ +} + + +/** + * Set the guest CR0. + * + * When called in GC, the hyper CR0 may be updated if that is + * required. The caller only has to take special action if AM, + * WP, PG or PE changes. + * + * @returns VINF_SUCCESS (consider it void). + * @param pVCpu The cross context virtual CPU structure. + * @param cr0 The new CR0 value. + */ +VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0) +{ +#ifdef IN_RC + /* + * Check if we need to change hypervisor CR0 because + * of math stuff. + */ + if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) + != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))) + { + if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)) + { + /* + * We haven't loaded the guest FPU state yet, so TS and MT are both set + * and EM should be reflecting the guest EM (it always does this). + */ + if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM)) + { + uint32_t HyperCR0 = ASMGetCR0(); + AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); + AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); + HyperCR0 &= ~X86_CR0_EM; + HyperCR0 |= cr0 & X86_CR0_EM; + Log(("CPUM: New HyperCR0=%#x\n", HyperCR0)); + ASMSetCR0(HyperCR0); + } +# ifdef VBOX_STRICT + else + { + uint32_t HyperCR0 = ASMGetCR0(); + AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); + AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); + } +# endif + } + else + { + /* + * Already loaded the guest FPU state, so we're just mirroring + * the guest flags. + */ + uint32_t HyperCR0 = ASMGetCR0(); + AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) + == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)), + ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0)); + HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); + HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); + Log(("CPUM: New HyperCR0=%#x\n", HyperCR0)); + ASMSetCR0(HyperCR0); + } + } +#endif /* IN_RC */ + + /* + * Check for changes causing TLB flushes (for REM). + * The caller is responsible for calling PGM when appropriate. + */ + if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) + != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0; + + /* + * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack) + */ + if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP)) + PGMCr0WpEnabled(pVCpu); + + /* The ET flag is settable on a 386 and hardwired on 486+. */ + if ( !(cr0 & X86_CR0_ET) + && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386) + cr0 |= X86_CR0_ET; + + pVCpu->cpum.s.Guest.cr0 = cr0; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2) +{ + pVCpu->cpum.s.Guest.cr2 = cr2; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3) +{ + pVCpu->cpum.s.Guest.cr3 = cr3; + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4) +{ + /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */ + + if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) + != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; + + pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4; + pVCpu->cpum.s.Guest.cr4 = cr4; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags) +{ + pVCpu->cpum.s.Guest.eflags.u32 = eflags; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip) +{ + pVCpu->cpum.s.Guest.eip = eip; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax) +{ + pVCpu->cpum.s.Guest.eax = eax; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx) +{ + pVCpu->cpum.s.Guest.ebx = ebx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx) +{ + pVCpu->cpum.s.Guest.ecx = ecx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx) +{ + pVCpu->cpum.s.Guest.edx = edx; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp) +{ + pVCpu->cpum.s.Guest.esp = esp; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp) +{ + pVCpu->cpum.s.Guest.ebp = ebp; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi) +{ + pVCpu->cpum.s.Guest.esi = esi; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi) +{ + pVCpu->cpum.s.Guest.edi = edi; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss) +{ + pVCpu->cpum.s.Guest.ss.Sel = ss; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs) +{ + pVCpu->cpum.s.Guest.cs.Sel = cs; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds) +{ + pVCpu->cpum.s.Guest.ds.Sel = ds; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es) +{ + pVCpu->cpum.s.Guest.es.Sel = es; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs) +{ + pVCpu->cpum.s.Guest.fs.Sel = fs; + return VINF_SUCCESS; +} + + +VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs) +{ + pVCpu->cpum.s.Guest.gs.Sel = gs; + return VINF_SUCCESS; +} + + +VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val) +{ + pVCpu->cpum.s.Guest.msrEFER = val; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER; +} + + +VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR); + if (pcbLimit) + *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt; + return pVCpu->cpum.s.Guest.idtr.pIdt; +} + + +VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR); + if (pHidden) + *pHidden = pVCpu->cpum.s.Guest.tr; + return pVCpu->cpum.s.Guest.tr.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS); + return pVCpu->cpum.s.Guest.cs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS); + return pVCpu->cpum.s.Guest.ds.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES); + return pVCpu->cpum.s.Guest.es.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS); + return pVCpu->cpum.s.Guest.fs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS); + return pVCpu->cpum.s.Guest.gs.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS); + return pVCpu->cpum.s.Guest.ss.Sel; +} + + +VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( !CPUMIsGuestInLongMode(pVCpu) + || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) + return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base; + return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base; +} + + +VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); + if ( !CPUMIsGuestInLongMode(pVCpu) + || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) + return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base; + return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base; +} + + +VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); + return pVCpu->cpum.s.Guest.ldtr.Sel; +} + + +VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); + *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base; + *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit; + return pVCpu->cpum.s.Guest.ldtr.Sel; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return pVCpu->cpum.s.Guest.cr0; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); + return pVCpu->cpum.s.Guest.cr2; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); + return pVCpu->cpum.s.Guest.cr3; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + return pVCpu->cpum.s.Guest.cr4; +} + + +VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu) +{ + uint64_t u64; + int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64); + if (RT_FAILURE(rc)) + u64 = 0; + return u64; +} + + +VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR); + *pGDTR = pVCpu->cpum.s.Guest.gdtr; +} + + +VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); + return pVCpu->cpum.s.Guest.eip; +} + + +VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); + return pVCpu->cpum.s.Guest.rip; +} + + +VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX); + return pVCpu->cpum.s.Guest.eax; +} + + +VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX); + return pVCpu->cpum.s.Guest.ebx; +} + + +VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX); + return pVCpu->cpum.s.Guest.ecx; +} + + +VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX); + return pVCpu->cpum.s.Guest.edx; +} + + +VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI); + return pVCpu->cpum.s.Guest.esi; +} + + +VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI); + return pVCpu->cpum.s.Guest.edi; +} + + +VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP); + return pVCpu->cpum.s.Guest.esp; +} + + +VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP); + return pVCpu->cpum.s.Guest.ebp; +} + + +VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS); + return pVCpu->cpum.s.Guest.eflags.u32; +} + + +VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue) +{ + switch (iReg) + { + case DISCREG_CR0: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + *pValue = pVCpu->cpum.s.Guest.cr0; + break; + + case DISCREG_CR2: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); + *pValue = pVCpu->cpum.s.Guest.cr2; + break; + + case DISCREG_CR3: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); + *pValue = pVCpu->cpum.s.Guest.cr3; + break; + + case DISCREG_CR4: + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + *pValue = pVCpu->cpum.s.Guest.cr4; + break; + + case DISCREG_CR8: + { + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR); + uint8_t u8Tpr; + int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */); + if (RT_FAILURE(rc)) + { + AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc)); + *pValue = 0; + return rc; + } + *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */ + break; + } + + default: + return VERR_INVALID_PARAMETER; + } + return VINF_SUCCESS; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[0]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[1]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[2]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); + return pVCpu->cpum.s.Guest.dr[3]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6); + return pVCpu->cpum.s.Guest.dr[6]; +} + + +VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7); + return pVCpu->cpum.s.Guest.dr[7]; +} + + +VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK); + AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); + /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ + if (iReg == 4 || iReg == 5) + iReg += 2; + *pValue = pVCpu->cpum.s.Guest.dr[iReg]; + return VINF_SUCCESS; +} + + +VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return pVCpu->cpum.s.Guest.msrEFER; +} + + +/** + * Looks up a CPUID leaf in the CPUID leaf array, no subleaf. + * + * @returns Pointer to the leaf if found, NULL if not. + * + * @param pVM The cross context VM structure. + * @param uLeaf The leaf to get. + */ +PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf) +{ + unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves; + if (iEnd) + { + unsigned iStart = 0; + PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves); + for (;;) + { + unsigned i = iStart + (iEnd - iStart) / 2U; + if (uLeaf < paLeaves[i].uLeaf) + { + if (i <= iStart) + return NULL; + iEnd = i; + } + else if (uLeaf > paLeaves[i].uLeaf) + { + i += 1; + if (i >= iEnd) + return NULL; + iStart = i; + } + else + { + if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0)) + return &paLeaves[i]; + + /* This shouldn't normally happen. But in case the it does due + to user configuration overrids or something, just return the + first sub-leaf. */ + AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n", + uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf)); + while ( paLeaves[i].uSubLeaf != 0 + && i > 0 + && uLeaf == paLeaves[i - 1].uLeaf) + i--; + return &paLeaves[i]; + } + } + } + + return NULL; +} + + +/** + * Looks up a CPUID leaf in the CPUID leaf array. + * + * @returns Pointer to the leaf if found, NULL if not. + * + * @param pVM The cross context VM structure. + * @param uLeaf The leaf to get. + * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it + * isn't. + * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not. + */ +PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit) +{ + unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves; + if (iEnd) + { + unsigned iStart = 0; + PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves); + for (;;) + { + unsigned i = iStart + (iEnd - iStart) / 2U; + if (uLeaf < paLeaves[i].uLeaf) + { + if (i <= iStart) + return NULL; + iEnd = i; + } + else if (uLeaf > paLeaves[i].uLeaf) + { + i += 1; + if (i >= iEnd) + return NULL; + iStart = i; + } + else + { + uSubLeaf &= paLeaves[i].fSubLeafMask; + if (uSubLeaf == paLeaves[i].uSubLeaf) + *pfExactSubLeafHit = true; + else + { + /* Find the right subleaf. We return the last one before + uSubLeaf if we don't find an exact match. */ + if (uSubLeaf < paLeaves[i].uSubLeaf) + while ( i > 0 + && uLeaf == paLeaves[i - 1].uLeaf + && uSubLeaf <= paLeaves[i - 1].uSubLeaf) + i--; + else + while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves + && uLeaf == paLeaves[i + 1].uLeaf + && uSubLeaf >= paLeaves[i + 1].uSubLeaf) + i++; + *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf; + } + return &paLeaves[i]; + } + } + } + + *pfExactSubLeafHit = false; + return NULL; +} + + +/** + * Gets a CPUID leaf. + * + * @param pVCpu The cross context virtual CPU structure. + * @param uLeaf The CPUID leaf to get. + * @param uSubLeaf The CPUID sub-leaf to get, if applicable. + * @param pEax Where to store the EAX value. + * @param pEbx Where to store the EBX value. + * @param pEcx Where to store the ECX value. + * @param pEdx Where to store the EDX value. + */ +VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, + uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) +{ + bool fExactSubLeafHit; + PVM pVM = pVCpu->CTX_SUFF(pVM); + PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit); + if (pLeaf) + { + AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf)); + if (fExactSubLeafHit) + { + *pEax = pLeaf->uEax; + *pEbx = pLeaf->uEbx; + *pEcx = pLeaf->uEcx; + *pEdx = pLeaf->uEdx; + + /* + * Deal with CPU specific information. + */ + if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID + | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE + | CPUMCPUIDLEAF_F_CONTAINS_APIC )) + { + if (uLeaf == 1) + { + /* EBX: Bits 31-24: Initial APIC ID. */ + Assert(pVCpu->idCpu <= 255); + AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */ + *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24); + + /* EDX: Bit 9: AND with APICBASE.EN. */ + if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) + *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC; + + /* ECX: Bit 27: CR4.OSXSAVE mirror. */ + *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE) + | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0); + } + else if (uLeaf == 0xb) + { + /* EDX: Initial extended APIC ID. */ + AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */ + *pEdx = pVCpu->idCpu; + Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES))); + } + else if (uLeaf == UINT32_C(0x8000001e)) + { + /* EAX: Initial extended APIC ID. */ + AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */ + *pEax = pVCpu->idCpu; + Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)); + } + else if (uLeaf == UINT32_C(0x80000001)) + { + /* EDX: Bit 9: AND with APICBASE.EN. */ + if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible) + *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; + Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC)); + } + else + AssertMsgFailed(("uLeaf=%#x\n", uLeaf)); + } + } + /* + * Out of range sub-leaves aren't quite as easy and pretty as we emulate + * them here, but we do the best we can here... + */ + else + { + *pEax = *pEbx = *pEcx = *pEdx = 0; + if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES) + { + *pEcx = uSubLeaf & 0xff; + *pEdx = pVCpu->idCpu; + } + } + } + else + { + /* + * Different CPUs have different ways of dealing with unknown CPUID leaves. + */ + switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod) + { + default: + AssertFailed(); + RT_FALL_THRU(); + case CPUMUNKNOWNCPUID_DEFAULTS: + case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */ + case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */ + *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax; + *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx; + *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx; + *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx; + break; + case CPUMUNKNOWNCPUID_PASSTHRU: + *pEax = uLeaf; + *pEbx = 0; + *pEcx = uSubLeaf; + *pEdx = 0; + break; + } + } + Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx)); +} + + +/** + * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and + * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits. + * + * @returns Previous value. + * @param pVCpu The cross context virtual CPU structure to make the + * change on. Usually the calling EMT. + * @param fVisible Whether to make it visible (true) or hide it (false). + * + * @remarks This is "VMMDECL" so that it still links with + * the old APIC code which is in VBoxDD2 and not in + * the VMM module. + */ +VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible) +{ + bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible; + pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible; + +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + /* + * Patch manager saved state legacy pain. + */ + PVM pVM = pVCpu->CTX_SUFF(pVM); + PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001)); + if (pLeaf) + { + if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) + pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx; + else + pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx & ~X86_CPUID_FEATURE_EDX_APIC; + } + + pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001)); + if (pLeaf) + { + if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) + pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx; + else + pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx & ~X86_CPUID_AMD_FEATURE_EDX_APIC; + } +#endif + + return fOld; +} + + +/** + * Gets the host CPU vendor. + * + * @returns CPU vendor. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM) +{ + return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor; +} + + +/** + * Gets the CPU vendor. + * + * @returns CPU vendor. + * @param pVM The cross context VM structure. + */ +VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM) +{ + return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor; +} + + +VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0) +{ + pVCpu->cpum.s.Guest.dr[0] = uDr0; + return CPUMRecalcHyperDRx(pVCpu, 0, false); +} + + +VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1) +{ + pVCpu->cpum.s.Guest.dr[1] = uDr1; + return CPUMRecalcHyperDRx(pVCpu, 1, false); +} + + +VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2) +{ + pVCpu->cpum.s.Guest.dr[2] = uDr2; + return CPUMRecalcHyperDRx(pVCpu, 2, false); +} + + +VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3) +{ + pVCpu->cpum.s.Guest.dr[3] = uDr3; + return CPUMRecalcHyperDRx(pVCpu, 3, false); +} + + +VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6) +{ + pVCpu->cpum.s.Guest.dr[6] = uDr6; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6; + return VINF_SUCCESS; /* No need to recalc. */ +} + + +VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7) +{ + pVCpu->cpum.s.Guest.dr[7] = uDr7; + pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7; + return CPUMRecalcHyperDRx(pVCpu, 7, false); +} + + +VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value) +{ + AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); + /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ + if (iReg == 4 || iReg == 5) + iReg += 2; + pVCpu->cpum.s.Guest.dr[iReg] = Value; + return CPUMRecalcHyperDRx(pVCpu, iReg, false); +} + + +/** + * Recalculates the hypervisor DRx register values based on current guest + * registers and DBGF breakpoints, updating changed registers depending on the + * context. + * + * This is called whenever a guest DRx register is modified (any context) and + * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous). + * + * In raw-mode context this function will reload any (hyper) DRx registers which + * comes out with a different value. It may also have to save the host debug + * registers if that haven't been done already. In this context though, we'll + * be intercepting and emulating all DRx accesses, so the hypervisor DRx values + * are only important when breakpoints are actually enabled. + * + * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be + * reloaded by the HM code if it changes. Further more, we will only use the + * combined register set when the VBox debugger is actually using hardware BPs, + * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't + * concern us here). + * + * In ring-3 we won't be loading anything, so well calculate hypervisor values + * all the time. + * + * @returns VINF_SUCCESS. + * @param pVCpu The cross context virtual CPU structure. + * @param iGstReg The guest debug register number that was modified. + * UINT8_MAX if not guest register. + * @param fForceHyper Used in HM to force hyper registers because of single + * stepping. + */ +VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu, uint8_t iGstReg, bool fForceHyper) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); +#ifndef IN_RING0 + RT_NOREF_PV(iGstReg); +#endif + + /* + * Compare the DR7s first. + * + * We only care about the enabled flags. GD is virtualized when we + * dispatch the #DB, we never enable it. The DBGF DR7 value is will + * always have the LE and GE bits set, so no need to check and disable + * stuff if they're cleared like we have to for the guest DR7. + */ + RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu); + /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */ + if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE))) + uGstDr7 = 0; + else if (!(uGstDr7 & X86_DR7_LE)) + uGstDr7 &= ~X86_DR7_LE_ALL; + else if (!(uGstDr7 & X86_DR7_GE)) + uGstDr7 &= ~X86_DR7_GE_ALL; + + const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); + +#ifdef IN_RING0 + if (!fForceHyper && (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)) + fForceHyper = true; +#endif + if ( (!VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)) && !fForceHyper ? uDbgfDr7 : (uGstDr7 | uDbgfDr7)) + & X86_DR7_ENABLED_MASK) + { + Assert(!CPUMIsGuestDebugStateActive(pVCpu)); +#ifdef IN_RC + bool const fRawModeEnabled = true; +#elif defined(IN_RING3) + bool const fRawModeEnabled = VM_IS_RAW_MODE_ENABLED(pVM); +#endif + + /* + * Ok, something is enabled. Recalc each of the breakpoints, taking + * the VM debugger ones of the guest ones. In raw-mode context we will + * not allow breakpoints with values inside the hypervisor area. + */ + RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK; + + /* bp 0 */ + RTGCUINTREG uNewDr0; + if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); + uNewDr0 = DBGFBpGetDR0(pVM); + } + else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) + { + uNewDr0 = CPUMGetGuestDR0(pVCpu); +#ifndef IN_RING0 + if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr0)) + uNewDr0 = 0; + else +#endif + uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); + } + else + uNewDr0 = 0; + + /* bp 1 */ + RTGCUINTREG uNewDr1; + if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); + uNewDr1 = DBGFBpGetDR1(pVM); + } + else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) + { + uNewDr1 = CPUMGetGuestDR1(pVCpu); +#ifndef IN_RING0 + if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr1)) + uNewDr1 = 0; + else +#endif + uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); + } + else + uNewDr1 = 0; + + /* bp 2 */ + RTGCUINTREG uNewDr2; + if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); + uNewDr2 = DBGFBpGetDR2(pVM); + } + else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) + { + uNewDr2 = CPUMGetGuestDR2(pVCpu); +#ifndef IN_RING0 + if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr2)) + uNewDr2 = 0; + else +#endif + uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); + } + else + uNewDr2 = 0; + + /* bp 3 */ + RTGCUINTREG uNewDr3; + if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) + { + uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); + uNewDr3 = DBGFBpGetDR3(pVM); + } + else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) + { + uNewDr3 = CPUMGetGuestDR3(pVCpu); +#ifndef IN_RING0 + if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr3)) + uNewDr3 = 0; + else +#endif + uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); + } + else + uNewDr3 = 0; + + /* + * Apply the updates. + */ +#ifdef IN_RC + /* Make sure to save host registers first. */ + if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST)) + { + if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HOST)) + { + pVCpu->cpum.s.Host.dr6 = ASMGetDR6(); + pVCpu->cpum.s.Host.dr7 = ASMGetDR7(); + } + pVCpu->cpum.s.Host.dr0 = ASMGetDR0(); + pVCpu->cpum.s.Host.dr1 = ASMGetDR1(); + pVCpu->cpum.s.Host.dr2 = ASMGetDR2(); + pVCpu->cpum.s.Host.dr3 = ASMGetDR3(); + pVCpu->cpum.s.fUseFlags |= CPUM_USED_DEBUG_REGS_HOST | CPUM_USE_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HYPER; + + /* We haven't loaded any hyper DRxes yet, so we'll have to load them all now. */ + pVCpu->cpum.s.Hyper.dr[0] = uNewDr0; + ASMSetDR0(uNewDr0); + pVCpu->cpum.s.Hyper.dr[1] = uNewDr1; + ASMSetDR1(uNewDr1); + pVCpu->cpum.s.Hyper.dr[2] = uNewDr2; + ASMSetDR2(uNewDr2); + pVCpu->cpum.s.Hyper.dr[3] = uNewDr3; + ASMSetDR3(uNewDr3); + ASMSetDR6(X86_DR6_INIT_VAL); + pVCpu->cpum.s.Hyper.dr[7] = uNewDr7; + ASMSetDR7(uNewDr7); + } + else +#endif + { + pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER; + if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3]) + CPUMSetHyperDR3(pVCpu, uNewDr3); + if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2]) + CPUMSetHyperDR2(pVCpu, uNewDr2); + if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1]) + CPUMSetHyperDR1(pVCpu, uNewDr1); + if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0]) + CPUMSetHyperDR0(pVCpu, uNewDr0); + if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7]) + CPUMSetHyperDR7(pVCpu, uNewDr7); + } + } +#ifdef IN_RING0 + else if (CPUMIsGuestDebugStateActive(pVCpu)) + { + /* + * Reload the register that was modified. Normally this won't happen + * as we won't intercept DRx writes when not having the hyper debug + * state loaded, but in case we do for some reason we'll simply deal + * with it. + */ + switch (iGstReg) + { + case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break; + case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break; + case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break; + case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break; + default: + AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3); + } + } +#endif + else + { + /* + * No active debug state any more. In raw-mode this means we have to + * make sure DR7 has everything disabled now, if we armed it already. + * In ring-0 we might end up here when just single stepping. + */ +#if defined(IN_RC) || defined(IN_RING0) + if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) + { +# ifdef IN_RC + ASMSetDR7(X86_DR7_INIT_VAL); +# endif + if (pVCpu->cpum.s.Hyper.dr[0]) + ASMSetDR0(0); + if (pVCpu->cpum.s.Hyper.dr[1]) + ASMSetDR1(0); + if (pVCpu->cpum.s.Hyper.dr[2]) + ASMSetDR2(0); + if (pVCpu->cpum.s.Hyper.dr[3]) + ASMSetDR3(0); + pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER; + } +#endif + pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER; + + /* Clear all the registers. */ + pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK; + pVCpu->cpum.s.Hyper.dr[3] = 0; + pVCpu->cpum.s.Hyper.dr[2] = 0; + pVCpu->cpum.s.Hyper.dr[1] = 0; + pVCpu->cpum.s.Hyper.dr[0] = 0; + + } + Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", + pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], + pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6], + pVCpu->cpum.s.Hyper.dr[7])); + + return VINF_SUCCESS; +} + + +/** + * Set the guest XCR0 register. + * + * Will load additional state if the FPU state is already loaded (in ring-0 & + * raw-mode context). + * + * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input + * value. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uNewValue The new value. + * @thread EMT(pVCpu) + */ +VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPU pVCpu, uint64_t uNewValue) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx); + if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0 + /* The X87 bit cannot be cleared. */ + && (uNewValue & XSAVE_C_X87) + /* AVX requires SSE. */ + && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM + /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */ + && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 + || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) + == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) ) + ) + { + pVCpu->cpum.s.Guest.aXcr[0] = uNewValue; + + /* If more state components are enabled, we need to take care to load + them if the FPU/SSE state is already loaded. May otherwise leak + host state to the guest. */ + uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue; + if (fNewComponents) + { +#if defined(IN_RING0) || defined(IN_RC) + if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST) + { + if (pVCpu->cpum.s.Guest.fXStateMask != 0) + /* Adding more components. */ + ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents); + else + { + /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */ + pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE; + if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)) + ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)); + } + } +#endif + pVCpu->cpum.s.Guest.fXStateMask |= uNewValue; + } + return VINF_SUCCESS; + } + return VERR_CPUM_RAISE_GP_0; +} + + +/** + * Tests if the guest has No-Execute Page Protection Enabled (NXE). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE); +} + + +/** + * Tests if the guest has the Page Size Extension enabled (PSE). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); + /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */ + return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE)); +} + + +/** + * Tests if the guest has the paging enabled (PG). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG); +} + + +/** + * Tests if the guest has the paging enabled (PG). + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP); +} + + +/** + * Tests if the guest is running in real mode or not. + * + * @returns true if in real mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); +} + + +/** + * Tests if the guest is running in real or virtual 8086 mode. + * + * @returns @c true if it is, @c false if not. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS); + return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) + || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */ +} + + +/** + * Tests if the guest is running in protected or not. + * + * @returns true if in protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); +} + + +/** + * Tests if the guest is running in paged protected or not. + * + * @returns true if in paged protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); + return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG); +} + + +/** + * Tests if the guest is running in long mode or not. + * + * @returns true if in long mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); + return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA; +} + + +/** + * Tests if the guest is running in PAE mode or not. + * + * @returns true if in PAE mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); + /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather + than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */ + return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE) + && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG) + && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA); +} + + +/** + * Tests if the guest is running in 64 bits mode or not. + * + * @returns true if in 64 bits protected mode, otherwise false. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); + if (!CPUMIsGuestInLongMode(pVCpu)) + return false; + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long; +} + + +/** + * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS + * registers. + * + * @returns true if in 64 bits protected mode, otherwise false. + * @param pCtx Pointer to the current guest CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx) +{ + return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx)); +} + +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + +/** + * + * @returns @c true if we've entered raw-mode and selectors with RPL=1 are + * really RPL=0, @c false if we've not (RPL=1 really is RPL=1). + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMM_INT_DECL(bool) CPUMIsGuestInRawMode(PVMCPU pVCpu) +{ + return pVCpu->cpum.s.fRawEntered; +} + +/** + * Transforms the guest CPU state to raw-ring mode. + * + * This function will change the any of the cs and ss register with DPL=0 to DPL=1. + * + * @returns VBox status code. (recompiler failure) + * @param pVCpu The cross context virtual CPU structure. + * @see @ref pg_raw + */ +VMM_INT_DECL(int) CPUMRawEnter(PVMCPU pVCpu) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + + Assert(!pVCpu->cpum.s.fRawEntered); + Assert(!pVCpu->cpum.s.fRemEntered); + PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + + /* + * Are we in Ring-0? + */ + if ( pCtx->ss.Sel + && (pCtx->ss.Sel & X86_SEL_RPL) == 0 + && !pCtx->eflags.Bits.u1VM) + { + /* + * Enter execution mode. + */ + PATMRawEnter(pVM, pCtx); + + /* + * Set CPL to Ring-1. + */ + pCtx->ss.Sel |= 1; + if ( pCtx->cs.Sel + && (pCtx->cs.Sel & X86_SEL_RPL) == 0) + pCtx->cs.Sel |= 1; + } + else + { +# ifdef VBOX_WITH_RAW_RING1 + if ( EMIsRawRing1Enabled(pVM) + && !pCtx->eflags.Bits.u1VM + && (pCtx->ss.Sel & X86_SEL_RPL) == 1) + { + /* Set CPL to Ring-2. */ + pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 2; + if (pCtx->cs.Sel && (pCtx->cs.Sel & X86_SEL_RPL) == 1) + pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 2; + } +# else + AssertMsg((pCtx->ss.Sel & X86_SEL_RPL) >= 2 || pCtx->eflags.Bits.u1VM, + ("ring-1 code not supported\n")); +# endif + /* + * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well. + */ + PATMRawEnter(pVM, pCtx); + } + + /* + * Assert sanity. + */ + AssertMsg((pCtx->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n")); + AssertReleaseMsg(pCtx->eflags.Bits.u2IOPL == 0, + ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL)); + Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE)); + + pCtx->eflags.u32 |= X86_EFL_IF; /* paranoia */ + + pVCpu->cpum.s.fRawEntered = true; + return VINF_SUCCESS; +} + + +/** + * Transforms the guest CPU state from raw-ring mode to correct values. + * + * This function will change any selector registers with DPL=1 to DPL=0. + * + * @returns Adjusted rc. + * @param pVCpu The cross context virtual CPU structure. + * @param rc Raw mode return code + * @see @ref pg_raw + */ +VMM_INT_DECL(int) CPUMRawLeave(PVMCPU pVCpu, int rc) +{ + PVM pVM = pVCpu->CTX_SUFF(pVM); + + /* + * Don't leave if we've already left (in RC). + */ + Assert(!pVCpu->cpum.s.fRemEntered); + if (!pVCpu->cpum.s.fRawEntered) + return rc; + pVCpu->cpum.s.fRawEntered = false; + + PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss.Sel & X86_SEL_RPL)); + AssertMsg(pCtx->eflags.Bits.u1VM || pCtx->eflags.Bits.u2IOPL < (unsigned)(pCtx->ss.Sel & X86_SEL_RPL), + ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL)); + + /* + * Are we executing in raw ring-1? + */ + if ( (pCtx->ss.Sel & X86_SEL_RPL) == 1 + && !pCtx->eflags.Bits.u1VM) + { + /* + * Leave execution mode. + */ + PATMRawLeave(pVM, pCtx, rc); + /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ + /** @todo See what happens if we remove this. */ + if ((pCtx->ds.Sel & X86_SEL_RPL) == 1) + pCtx->ds.Sel &= ~X86_SEL_RPL; + if ((pCtx->es.Sel & X86_SEL_RPL) == 1) + pCtx->es.Sel &= ~X86_SEL_RPL; + if ((pCtx->fs.Sel & X86_SEL_RPL) == 1) + pCtx->fs.Sel &= ~X86_SEL_RPL; + if ((pCtx->gs.Sel & X86_SEL_RPL) == 1) + pCtx->gs.Sel &= ~X86_SEL_RPL; + + /* + * Ring-1 selector => Ring-0. + */ + pCtx->ss.Sel &= ~X86_SEL_RPL; + if ((pCtx->cs.Sel & X86_SEL_RPL) == 1) + pCtx->cs.Sel &= ~X86_SEL_RPL; + } + else + { + /* + * PATM is taking care of the IOPL and IF flags for us. + */ + PATMRawLeave(pVM, pCtx, rc); + if (!pCtx->eflags.Bits.u1VM) + { +# ifdef VBOX_WITH_RAW_RING1 + if ( EMIsRawRing1Enabled(pVM) + && (pCtx->ss.Sel & X86_SEL_RPL) == 2) + { + /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ + /** @todo See what happens if we remove this. */ + if ((pCtx->ds.Sel & X86_SEL_RPL) == 2) + pCtx->ds.Sel = (pCtx->ds.Sel & ~X86_SEL_RPL) | 1; + if ((pCtx->es.Sel & X86_SEL_RPL) == 2) + pCtx->es.Sel = (pCtx->es.Sel & ~X86_SEL_RPL) | 1; + if ((pCtx->fs.Sel & X86_SEL_RPL) == 2) + pCtx->fs.Sel = (pCtx->fs.Sel & ~X86_SEL_RPL) | 1; + if ((pCtx->gs.Sel & X86_SEL_RPL) == 2) + pCtx->gs.Sel = (pCtx->gs.Sel & ~X86_SEL_RPL) | 1; + + /* + * Ring-2 selector => Ring-1. + */ + pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 1; + if ((pCtx->cs.Sel & X86_SEL_RPL) == 2) + pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 1; + } + else + { +# endif + /** @todo See what happens if we remove this. */ + if ((pCtx->ds.Sel & X86_SEL_RPL) == 1) + pCtx->ds.Sel &= ~X86_SEL_RPL; + if ((pCtx->es.Sel & X86_SEL_RPL) == 1) + pCtx->es.Sel &= ~X86_SEL_RPL; + if ((pCtx->fs.Sel & X86_SEL_RPL) == 1) + pCtx->fs.Sel &= ~X86_SEL_RPL; + if ((pCtx->gs.Sel & X86_SEL_RPL) == 1) + pCtx->gs.Sel &= ~X86_SEL_RPL; +# ifdef VBOX_WITH_RAW_RING1 + } +# endif + } + } + + return rc; +} + +#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ + +/** + * Updates the EFLAGS while we're in raw-mode. + * + * @param pVCpu The cross context virtual CPU structure. + * @param fEfl The new EFLAGS value. + */ +VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, uint32_t fEfl) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (pVCpu->cpum.s.fRawEntered) + PATMRawSetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest, fEfl); + else +#endif + pVCpu->cpum.s.Guest.eflags.u32 = fEfl; +} + + +/** + * Gets the EFLAGS while we're in raw-mode. + * + * @returns The eflags. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu) +{ +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + if (pVCpu->cpum.s.fRawEntered) + return PATMRawGetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest); +#endif + return pVCpu->cpum.s.Guest.eflags.u32; +} + + +/** + * Sets the specified changed flags (CPUM_CHANGED_*). + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param fChangedAdd The changed flags to add. + */ +VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd) +{ + pVCpu->cpum.s.fChanged |= fChangedAdd; +} + + +/** + * Checks if the CPU supports the XSAVE and XRSTOR instruction. + * + * @returns true if supported. + * @returns false if not supported. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMSupportsXSave(PVM pVM) +{ + return pVM->cpum.s.HostFeatures.fXSaveRstor != 0; +} + + +/** + * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. + * @returns true if used. + * @returns false if not used. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) +{ + return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER); +} + + +/** + * Checks if the host OS uses the SYSCALL / SYSRET instructions. + * @returns true if used. + * @returns false if not used. + * @param pVM The cross context VM structure. + */ +VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) +{ + return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL); +} + +#ifdef IN_RC + +/** + * Lazily sync in the FPU/XMM state. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu) +{ + return cpumHandleLazyFPUAsm(&pVCpu->cpum.s); +} + +#endif /* !IN_RC */ + +/** + * Checks if we activated the FPU/XMM state of the guest OS. + * + * This differs from CPUMIsGuestFPUStateLoaded() in that it refers to the next + * time we'll be executing guest code, so it may return true for 64-on-32 when + * we still haven't actually loaded the FPU status, just scheduled it to be + * loaded the next time we go thru the world switcher (CPUM_SYNC_FPU_STATE). + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_SYNC_FPU_STATE)); +} + + +/** + * Checks if we've really loaded the FPU/XMM state of the guest OS. + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); +} + + +/** + * Checks if we saved the FPU/XMM state of the host OS. + * + * @returns true / false. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST); +} + + +/** + * Checks if the guest debug state is active. + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST); +} + + +/** + * Checks if the guest debug state is to be made active during the world-switch + * (currently only used for the 32->64 switcher case). + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsGuestDebugStateActivePending(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_GUEST); +} + + +/** + * Checks if the hyper debug state is active. + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER); +} + + +/** + * Checks if the hyper debug state is to be made active during the world-switch + * (currently only used for the 32->64 switcher case). + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(bool) CPUMIsHyperDebugStateActivePending(PVMCPU pVCpu) +{ + return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_HYPER); +} + + +/** + * Mark the guest's debug state as inactive. + * + * @returns boolean + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @todo This API doesn't make sense any more. + */ +VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu) +{ + Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST))); + NOREF(pVCpu); +} + + +/** + * Get the current privilege level of the guest. + * + * @returns CPL + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu) +{ + /* + * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not. + * + * Note! We used to check CS.DPL here, assuming it was always equal to + * CPL even if a conforming segment was loaded. But this turned out to + * only apply to older AMD-V. With VT-x we had an ACP2 regression + * during install after a far call to ring 2 with VT-x. Then on newer + * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl + * as well as ss.Attr.n.u2Dpl to make this (and other) code work right. + * + * So, forget CS.DPL, always use SS.DPL. + * + * Note! The SS RPL is always equal to the CPL, while the CS RPL + * isn't necessarily equal if the segment is conforming. + * See section 4.11.1 in the AMD manual. + * + * Update: Where the heck does it say CS.RPL can differ from CPL other than + * right after real->prot mode switch and when in V8086 mode? That + * section says the RPL specified in a direct transfere (call, jmp, + * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL + * it would be impossible for an exception handle or the iret + * instruction to figure out whether SS:ESP are part of the frame + * or not. VBox or qemu bug must've lead to this misconception. + * + * Update2: On an AMD bulldozer system here, I've no trouble loading a null + * selector into SS with an RPL other than the CPL when CPL != 3 and + * we're in 64-bit mode. The intel dev box doesn't allow this, on + * RPL = CPL. Weird. + */ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS); + uint32_t uCpl; + if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) + { + if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss)) + uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl; + else + { + uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL); +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 +# ifdef VBOX_WITH_RAW_RING1 + if (pVCpu->cpum.s.fRawEntered) + { + if ( uCpl == 2 + && EMIsRawRing1Enabled(pVCpu->CTX_SUFF(pVM))) + uCpl = 1; + else if (uCpl == 1) + uCpl = 0; + } + Assert(uCpl != 2); /* ring 2 support not allowed anymore. */ +# else + if (uCpl == 1) + uCpl = 0; +# endif +#endif + } + } + else + uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */ + } + else + uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */ + return uCpl; +} + + +/** + * Gets the current guest CPU mode. + * + * If paging mode is what you need, check out PGMGetGuestMode(). + * + * @returns The CPU mode. + * @param pVCpu The cross context virtual CPU structure. + */ +VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); + CPUMMODE enmMode; + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + enmMode = CPUMMODE_REAL; + else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + enmMode = CPUMMODE_PROTECTED; + else + enmMode = CPUMMODE_LONG; + + return enmMode; +} + + +/** + * Figure whether the CPU is currently executing 16, 32 or 64 bit code. + * + * @returns 16, 32 or 64. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + */ +VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); + + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + return 16; + + if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); + return 16; + } + + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long + && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + return 64; + + if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) + return 32; + + return 16; +} + + +VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu) +{ + CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); + + if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) + return DISCPUMODE_16BIT; + + if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) + { + Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); + return DISCPUMODE_16BIT; + } + + CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); + if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long + && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) + return DISCPUMODE_64BIT; + + if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) + return DISCPUMODE_32BIT; + + return DISCPUMODE_16BIT; +} + + +/** + * Gets the guest MXCSR_MASK value. + * + * This does not access the x87 state, but the value we determined at VM + * initialization. + * + * @returns MXCSR mask. + * @param pVM The cross context VM structure. + */ +VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM) +{ + return pVM->cpum.s.GuestInfo.fMxCsrMask; +} + + +/** + * Returns whether the guest has physical interrupts enabled. + * + * @returns @c true if interrupts are enabled, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Warning! This function does -not- take into account the global-interrupt + * flag (GIF). + */ +VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu) +{ + if (!CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)) + { +#ifdef VBOX_WITH_RAW_MODE_NOT_R0 + uint32_t const fEFlags = !pVCpu->cpum.s.fRawEntered ? pVCpu->cpum.s.Guest.eflags.u : CPUMRawGetEFlags(pVCpu); +#else + uint32_t const fEFlags = pVCpu->cpum.s.Guest.eflags.u; +#endif + return RT_BOOL(fEFlags & X86_EFL_IF); + } + + if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest)) + return CPUMIsGuestVmxPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); + + Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest)); + return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); +} + + +/** + * Returns whether the nested-guest has virtual interrupts enabled. + * + * @returns @c true if interrupts are enabled, @c false otherwise. + * @param pVCpu The cross context virtual CPU structure. + * + * @remarks Warning! This function does -not- take into account the global-interrupt + * flag (GIF). + */ +VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu) +{ + Assert(CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)); + + if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest)) + return CPUMIsGuestVmxVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); + + Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest)); + return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); +} + + +/** + * Calculates the interruptiblity of the guest. + * + * @returns Interruptibility level. + * @param pVCpu The cross context virtual CPU structure. + */ +VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu) +{ +#if 1 + /* Global-interrupt flag blocks pretty much everything we care about here. */ + if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest)) + { + /* + * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access + * it directly here. If and how EFLAGS are used depends on the context (nested-guest + * or raw-mode). Hence we use the function below which handles the details. + */ + if ( CPUMIsGuestPhysIntrEnabled(pVCpu) + && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS)) + { + if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest) + || CPUMIsGuestVirtIntrEnabled(pVCpu)) + return CPUMINTERRUPTIBILITY_UNRESTRAINED; + + /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */ + return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED; + } + + /* + * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation + * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow. + * However, there is some uncertainity regarding the converse, i.e. whether + * NMI-blocking until IRET blocks delivery of physical interrupts. + * + * See Intel spec. 25.4.1 "Event Blocking". + */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) + return CPUMINTERRUPTIBILITY_INT_INHIBITED; + + return CPUMINTERRUPTIBILITY_INT_DISABLED; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; +#else + if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF) + { + if (pVCpu->cpum.s.Guest.hwvirt.fGif) + { + if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS)) + return CPUMINTERRUPTIBILITY_UNRESTRAINED; + + /** @todo does blocking NMIs mean interrupts are also inhibited? */ + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) + { + if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + return CPUMINTERRUPTIBILITY_INT_INHIBITED; + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + } + AssertFailed(); + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; + } + else + { + if (pVCpu->cpum.s.Guest.hwvirt.fGif) + { + if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) + return CPUMINTERRUPTIBILITY_NMI_INHIBIT; + return CPUMINTERRUPTIBILITY_INT_DISABLED; + } + return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; + } +#endif +} + + +/** + * Checks whether the VMX nested-guest is in a state to receive physical (APIC) + * interrupts. + * + * @returns VBox status code. + * @retval true if it's ready, false otherwise. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxPhysIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx) +{ +#ifdef IN_RC + RT_NOREF2(pVCpu, pCtx); + AssertReleaseFailedReturn(false); +#else + RT_NOREF(pVCpu); + Assert(CPUMIsGuestInVmxNonRootMode(pCtx)); + + return RT_BOOL(pCtx->eflags.u & X86_EFL_IF); +#endif +} + + +/** + * Checks whether the VMX nested-guest is in a state to receive virtual interrupts + * (those injected with the "virtual-interrupt delivery" feature). + * + * @returns VBox status code. + * @retval true if it's ready, false otherwise. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestVmxVirtIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx) +{ +#ifdef IN_RC + RT_NOREF2(pVCpu, pCtx); + AssertReleaseFailedReturn(false); +#else + RT_NOREF2(pVCpu, pCtx); + Assert(CPUMIsGuestInVmxNonRootMode(pCtx)); + + if ( (pCtx->eflags.u & X86_EFL_IF) + && !CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT)) + return true; + return false; +#endif +} + + +/** + * Checks whether the SVM nested-guest has physical interrupts enabled. + * + * @returns true if interrupts are enabled, false otherwise. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + * + * @remarks This does -not- take into account the global-interrupt flag. + */ +VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx) +{ + /** @todo Optimization: Avoid this function call and use a pointer to the + * relevant eflags instead (setup during VMRUN instruction emulation). */ +#ifdef IN_RC + RT_NOREF2(pVCpu, pCtx); + AssertReleaseFailedReturn(false); +#else + Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); + + X86EFLAGS fEFlags; + if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) + fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; + else + fEFlags.u = pCtx->eflags.u; + + return fEFlags.Bits.u1IF; +#endif +} + + +/** + * Checks whether the SVM nested-guest is in a state to receive virtual (setup + * for injection by VMRUN instruction) interrupts. + * + * @returns VBox status code. + * @retval true if it's ready, false otherwise. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx) +{ +#ifdef IN_RC + RT_NOREF2(pVCpu, pCtx); + AssertReleaseFailedReturn(false); +#else + Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); + + PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; + PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl; + Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */ + if ( !pVmcbIntCtrl->n.u1IgnoreTPR + && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR) + return false; + + X86EFLAGS fEFlags; + if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) + fEFlags.u = pCtx->eflags.u; + else + fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; + + return fEFlags.Bits.u1IF; +#endif +} + + +/** + * Gets the pending SVM nested-guest interruptvector. + * + * @returns The nested-guest interrupt to inject. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx) +{ +#ifdef IN_RC + RT_NOREF(pCtx); + AssertReleaseFailedReturn(0); +#else + PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; + return pVmcbCtrl->IntCtrl.n.u8VIntrVector; +#endif +} + + +/** + * Restores the host-state from the host-state save area as part of a \#VMEXIT. + * + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param pCtx The guest-CPU context. + */ +VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPU pVCpu, PCPUMCTX pCtx) +{ + /* + * Reload the guest's "host state". + */ + PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; + pCtx->es = pHostState->es; + pCtx->cs = pHostState->cs; + pCtx->ss = pHostState->ss; + pCtx->ds = pHostState->ds; + pCtx->gdtr = pHostState->gdtr; + pCtx->idtr = pHostState->idtr; + CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr); + CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE); + pCtx->cr3 = pHostState->uCr3; + CPUMSetGuestCR4(pVCpu, pHostState->uCr4); + pCtx->rflags = pHostState->rflags; + pCtx->rflags.Bits.u1VM = 0; + pCtx->rip = pHostState->uRip; + pCtx->rsp = pHostState->uRsp; + pCtx->rax = pHostState->uRax; + pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); + pCtx->dr[7] |= X86_DR7_RA1_MASK; + Assert(pCtx->ss.Attr.n.u2Dpl == 0); + + /** @todo if RIP is not canonical or outside the CS segment limit, we need to + * raise \#GP(0) in the guest. */ + + /** @todo check the loaded host-state for consistency. Figure out what + * exactly this involves? */ +} + + +/** + * Saves the host-state to the host-state save area as part of a VMRUN. + * + * @param pCtx The guest-CPU context. + * @param cbInstr The length of the VMRUN instruction in bytes. + */ +VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr) +{ + PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; + pHostState->es = pCtx->es; + pHostState->cs = pCtx->cs; + pHostState->ss = pCtx->ss; + pHostState->ds = pCtx->ds; + pHostState->gdtr = pCtx->gdtr; + pHostState->idtr = pCtx->idtr; + pHostState->uEferMsr = pCtx->msrEFER; + pHostState->uCr0 = pCtx->cr0; + pHostState->uCr3 = pCtx->cr3; + pHostState->uCr4 = pCtx->cr4; + pHostState->rflags = pCtx->rflags; + pHostState->uRip = pCtx->rip + cbInstr; + pHostState->uRsp = pCtx->rsp; + pHostState->uRax = pCtx->rax; +} + + +/** + * Applies the TSC offset of a nested-guest if any and returns the new TSC + * value for the guest (or nested-guest). + * + * @returns The TSC offset after applying any nested-guest TSC offset. + * @param pVCpu The cross context virtual CPU structure of the calling EMT. + * @param uTicks The guest TSC. + * + * @sa HMApplySvmNstGstTscOffset. + */ +VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PVMCPU pVCpu, uint64_t uTicks) +{ +#ifndef IN_RC + PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; + if (CPUMIsGuestInVmxNonRootMode(pCtx)) + { + PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs); + if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING) + return uTicks + pVmcs->u64TscOffset.u; + return uTicks; + } + + if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) + { + if (!HMHasGuestSvmVmcbCached(pVCpu)) + { + PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb); + return uTicks + pVmcb->ctrl.u64TSCOffset; + } + return HMApplySvmNstGstTscOffset(pVCpu, uTicks); + } +#else + RT_NOREF(pVCpu); +#endif + return uTicks; +} + + +/** + * Used to dynamically imports state residing in NEM or HM. + * + * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones. + * + * @returns VBox status code. + * @param pVCpu The cross context virtual CPU structure of the calling thread. + * @param fExtrnImport The fields to import. + * @thread EMT(pVCpu) + */ +VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPU pVCpu, uint64_t fExtrnImport) +{ + VMCPU_ASSERT_EMT(pVCpu); + if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport) + { +#ifndef IN_RC + switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK) + { + case CPUMCTX_EXTRN_KEEPER_NEM: + { + int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport); + Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); + return rc; + } + + case CPUMCTX_EXTRN_KEEPER_HM: + { +#ifdef IN_RING0 + int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport); + Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); + return rc; +#else + AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport)); + return VINF_SUCCESS; +#endif + } + default: + AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); + } +#else + AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); +#endif + } + return VINF_SUCCESS; +} + + +/** + * Gets valid CR4 bits for the guest. + * + * @returns Valid CR4 bits. + * @param pVM The cross context VM structure. + */ +VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM) +{ + PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures; + uint64_t fMask = X86_CR4_VME | X86_CR4_PVI + | X86_CR4_TSD | X86_CR4_DE + | X86_CR4_PSE | X86_CR4_PAE + | X86_CR4_MCE | X86_CR4_PGE + | X86_CR4_PCE + | X86_CR4_OSXMMEEXCPT; /** @todo r=ramshankar: Introduced in Pentium III along with SSE. Check fSse here? */ + if (pGuestFeatures->fFxSaveRstor) + fMask |= X86_CR4_OSFXSR; + if (pGuestFeatures->fVmx) + fMask |= X86_CR4_VMXE; + if (pGuestFeatures->fXSaveRstor) + fMask |= X86_CR4_OSXSAVE; + if (pGuestFeatures->fPcid) + fMask |= X86_CR4_PCIDE; + if (pGuestFeatures->fFsGsBase) + fMask |= X86_CR4_FSGSBASE; + return fMask; +} + |