summaryrefslogtreecommitdiffstats
path: root/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/VBox/VMM/VMMAll/CPUMAllRegs.cpp')
-rw-r--r--src/VBox/VMM/VMMAll/CPUMAllRegs.cpp3091
1 files changed, 3091 insertions, 0 deletions
diff --git a/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
new file mode 100644
index 00000000..13d25719
--- /dev/null
+++ b/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp
@@ -0,0 +1,3091 @@
+/* $Id: CPUMAllRegs.cpp $ */
+/** @file
+ * CPUM - CPU Monitor(/Manager) - Getters and Setters.
+ */
+
+/*
+ * Copyright (C) 2006-2019 Oracle Corporation
+ *
+ * This file is part of VirtualBox Open Source Edition (OSE), as
+ * available from http://www.virtualbox.org. This file is free software;
+ * you can redistribute it and/or modify it under the terms of the GNU
+ * General Public License (GPL) as published by the Free Software
+ * Foundation, in version 2 as it comes in the "COPYING" file of the
+ * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
+ * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
+ */
+
+
+/*********************************************************************************************************************************
+* Header Files *
+*********************************************************************************************************************************/
+#define LOG_GROUP LOG_GROUP_CPUM
+#include <VBox/vmm/cpum.h>
+#include <VBox/vmm/patm.h>
+#include <VBox/vmm/dbgf.h>
+#include <VBox/vmm/apic.h>
+#include <VBox/vmm/pgm.h>
+#include <VBox/vmm/mm.h>
+#include <VBox/vmm/em.h>
+#ifndef IN_RC
+# include <VBox/vmm/nem.h>
+# include <VBox/vmm/hm.h>
+#endif
+#if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0)
+# include <VBox/vmm/selm.h>
+#endif
+#include "CPUMInternal.h"
+#include <VBox/vmm/vm.h>
+#include <VBox/err.h>
+#include <VBox/dis.h>
+#include <VBox/log.h>
+#include <VBox/vmm/hm.h>
+#include <VBox/vmm/tm.h>
+#include <iprt/assert.h>
+#include <iprt/asm.h>
+#include <iprt/asm-amd64-x86.h>
+#ifdef IN_RING3
+# include <iprt/thread.h>
+#endif
+
+/** Disable stack frame pointer generation here. */
+#if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
+# pragma optimize("y", off)
+#endif
+
+AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures);
+AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
+
+
+/*********************************************************************************************************************************
+* Defined Constants And Macros *
+*********************************************************************************************************************************/
+/**
+ * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
+ *
+ * @returns Pointer to the Virtual CPU.
+ * @param a_pGuestCtx Pointer to the guest context.
+ */
+#define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
+
+/**
+ * Lazily loads the hidden parts of a selector register when using raw-mode.
+ */
+#if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0)
+# define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
+ do \
+ { \
+ if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) \
+ cpumGuestLazyLoadHiddenSelectorReg(a_pVCpu, a_pSReg); \
+ } while (0)
+#else
+# define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
+ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg));
+#endif
+
+/** @def CPUM_INT_ASSERT_NOT_EXTRN
+ * Macro for asserting that @a a_fNotExtrn are present.
+ *
+ * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
+ */
+#define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
+ AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
+ ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
+
+
+
+
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+
+/**
+ * Does the lazy hidden selector register loading.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pSReg The selector register to lazily load hidden parts of.
+ */
+static void cpumGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg)
+{
+ Assert(!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
+ Assert(VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)));
+ Assert((uintptr_t)(pSReg - &pVCpu->cpum.s.Guest.es) < X86_SREG_COUNT);
+
+ if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ /* V8086 mode - Tightly controlled environment, no question about the limit or flags. */
+ pSReg->Attr.u = 0;
+ pSReg->Attr.n.u4Type = pSReg == &pVCpu->cpum.s.Guest.cs ? X86_SEL_TYPE_ER_ACC : X86_SEL_TYPE_RW_ACC;
+ pSReg->Attr.n.u1DescType = 1; /* code/data segment */
+ pSReg->Attr.n.u2Dpl = 3;
+ pSReg->Attr.n.u1Present = 1;
+ pSReg->u32Limit = 0x0000ffff;
+ pSReg->u64Base = (uint32_t)pSReg->Sel << 4;
+ pSReg->ValidSel = pSReg->Sel;
+ pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ /** @todo Check what the accessed bit should be (VT-x and AMD-V). */
+ }
+ else if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ {
+ /* Real mode - leave the limit and flags alone here, at least for now. */
+ pSReg->u64Base = (uint32_t)pSReg->Sel << 4;
+ pSReg->ValidSel = pSReg->Sel;
+ pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ }
+ else
+ {
+ /* Protected mode - get it from the selector descriptor tables. */
+ if (!(pSReg->Sel & X86_SEL_MASK_OFF_RPL))
+ {
+ Assert(!CPUMIsGuestInLongMode(pVCpu));
+ pSReg->Sel = 0;
+ pSReg->u64Base = 0;
+ pSReg->u32Limit = 0;
+ pSReg->Attr.u = 0;
+ pSReg->ValidSel = 0;
+ pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
+ /** @todo see todo in iemHlpLoadNullDataSelectorProt. */
+ }
+ else
+ SELMLoadHiddenSelectorReg(pVCpu, &pVCpu->cpum.s.Guest, pSReg);
+ }
+}
+
+
+/**
+ * Makes sure the hidden CS and SS selector registers are valid, loading them if
+ * necessary.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenCsAndSs(PVMCPU pVCpu)
+{
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
+}
+
+
+/**
+ * Loads a the hidden parts of a selector register.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pSReg The selector register to lazily load hidden parts of.
+ */
+VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg)
+{
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, pSReg);
+}
+
+#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+
+
+/**
+ * Obsolete.
+ *
+ * We don't support nested hypervisor context interrupts or traps. Life is much
+ * simpler when we don't. It's also slightly faster at times.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu)
+{
+ return CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
+}
+
+
+/**
+ * Gets the pointer to the hypervisor CPU context structure of a virtual CPU.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(PCPUMCTX) CPUMGetHyperCtxPtr(PVMCPU pVCpu)
+{
+ return &pVCpu->cpum.s.Hyper;
+}
+
+
+VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
+{
+ pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit;
+ pVCpu->cpum.s.Hyper.gdtr.pGdt = addr;
+}
+
+
+VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
+{
+ pVCpu->cpum.s.Hyper.idtr.cbIdt = limit;
+ pVCpu->cpum.s.Hyper.idtr.pIdt = addr;
+}
+
+
+VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
+{
+ pVCpu->cpum.s.Hyper.cr3 = cr3;
+
+#ifdef IN_RC
+ /* Update the current CR3. */
+ ASMSetCR3(cr3);
+#endif
+}
+
+VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.cr3;
+}
+
+
+VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS)
+{
+ pVCpu->cpum.s.Hyper.cs.Sel = SelCS;
+}
+
+
+VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS)
+{
+ pVCpu->cpum.s.Hyper.ds.Sel = SelDS;
+}
+
+
+VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES)
+{
+ pVCpu->cpum.s.Hyper.es.Sel = SelES;
+}
+
+
+VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS)
+{
+ pVCpu->cpum.s.Hyper.fs.Sel = SelFS;
+}
+
+
+VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS)
+{
+ pVCpu->cpum.s.Hyper.gs.Sel = SelGS;
+}
+
+
+VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS)
+{
+ pVCpu->cpum.s.Hyper.ss.Sel = SelSS;
+}
+
+
+VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP)
+{
+ pVCpu->cpum.s.Hyper.esp = u32ESP;
+}
+
+
+VMMDECL(void) CPUMSetHyperEDX(PVMCPU pVCpu, uint32_t u32ESP)
+{
+ pVCpu->cpum.s.Hyper.esp = u32ESP;
+}
+
+
+VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl)
+{
+ pVCpu->cpum.s.Hyper.eflags.u32 = Efl;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP)
+{
+ pVCpu->cpum.s.Hyper.eip = u32EIP;
+}
+
+
+/**
+ * Used by VMMR3RawRunGC to reinitialize the general raw-mode context registers,
+ * EFLAGS and EIP prior to resuming guest execution.
+ *
+ * All general register not given as a parameter will be set to 0. The EFLAGS
+ * register will be set to sane values for C/C++ code execution with interrupts
+ * disabled and IOPL 0.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param u32EIP The EIP value.
+ * @param u32ESP The ESP value.
+ * @param u32EAX The EAX value.
+ * @param u32EDX The EDX value.
+ */
+VMM_INT_DECL(void) CPUMSetHyperState(PVMCPU pVCpu, uint32_t u32EIP, uint32_t u32ESP, uint32_t u32EAX, uint32_t u32EDX)
+{
+ pVCpu->cpum.s.Hyper.eip = u32EIP;
+ pVCpu->cpum.s.Hyper.esp = u32ESP;
+ pVCpu->cpum.s.Hyper.eax = u32EAX;
+ pVCpu->cpum.s.Hyper.edx = u32EDX;
+ pVCpu->cpum.s.Hyper.ecx = 0;
+ pVCpu->cpum.s.Hyper.ebx = 0;
+ pVCpu->cpum.s.Hyper.ebp = 0;
+ pVCpu->cpum.s.Hyper.esi = 0;
+ pVCpu->cpum.s.Hyper.edi = 0;
+ pVCpu->cpum.s.Hyper.eflags.u = X86_EFL_1;
+}
+
+
+VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR)
+{
+ pVCpu->cpum.s.Hyper.tr.Sel = SelTR;
+}
+
+
+VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR)
+{
+ pVCpu->cpum.s.Hyper.ldtr.Sel = SelLDTR;
+}
+
+
+/** @def MAYBE_LOAD_DRx
+ * Macro for updating DRx values in raw-mode and ring-0 contexts.
+ */
+#ifdef IN_RING0
+# if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
+ do { \
+ if (!CPUMIsGuestInLongModeEx(&(a_pVCpu)->cpum.s.Guest)) \
+ a_fnLoad(a_uValue); \
+ else \
+ (a_pVCpu)->cpum.s.fUseFlags |= CPUM_SYNC_DEBUG_REGS_HYPER; \
+ } while (0)
+# else
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
+ do { \
+ a_fnLoad(a_uValue); \
+ } while (0)
+# endif
+
+#elif defined(IN_RC)
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
+ do { \
+ if ((a_pVCpu)->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) \
+ { a_fnLoad(a_uValue); } \
+ } while (0)
+
+#else
+# define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
+#endif
+
+VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
+{
+ pVCpu->cpum.s.Hyper.dr[0] = uDr0;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
+{
+ pVCpu->cpum.s.Hyper.dr[1] = uDr1;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
+{
+ pVCpu->cpum.s.Hyper.dr[2] = uDr2;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
+{
+ pVCpu->cpum.s.Hyper.dr[3] = uDr3;
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
+}
+
+
+VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
+{
+ pVCpu->cpum.s.Hyper.dr[6] = uDr6;
+}
+
+
+VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
+{
+ pVCpu->cpum.s.Hyper.dr[7] = uDr7;
+#ifdef IN_RC
+ MAYBE_LOAD_DRx(pVCpu, ASMSetDR7, uDr7);
+#endif
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.cs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ds.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.es.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.fs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.gs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ss.Sel;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.eax;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ebx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ecx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.edx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.esi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.edi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ebp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.esp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.eflags.u32;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.eip;
+}
+
+
+VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.rip;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
+{
+ if (pcbLimit)
+ *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt;
+ return pVCpu->cpum.s.Hyper.idtr.pIdt;
+}
+
+
+VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
+{
+ if (pcbLimit)
+ *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt;
+ return pVCpu->cpum.s.Hyper.gdtr.pGdt;
+}
+
+
+VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.ldtr.Sel;
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[0];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[1];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[2];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[3];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[6];
+}
+
+
+VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.Hyper.dr[7];
+}
+
+
+/**
+ * Gets the pointer to the internal CPUMCTXCORE structure.
+ * This is only for reading in order to save a few calls.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu)
+{
+ return CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
+}
+
+
+/**
+ * Queries the pointer to the internal CPUMCTX structure.
+ *
+ * @returns The CPUMCTX pointer.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
+{
+ return &pVCpu->cpum.s.Guest;
+}
+
+
+/**
+ * Queries the pointer to the internal CPUMCTXMSRS structure.
+ *
+ * This is for NEM only.
+ *
+ * @returns The CPUMCTX pointer.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
+{
+ return &pVCpu->cpum.s.GuestMsrs;
+}
+
+
+VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
+#endif
+ pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
+ pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
+#endif
+ pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
+ pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
+#endif
+ pVCpu->cpum.s.Guest.tr.Sel = tr;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if ( ( ldtr != 0
+ || pVCpu->cpum.s.Guest.ldtr.Sel != 0)
+ && VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
+ VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
+#endif
+ pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
+ /* The caller will set more hidden bits if it has them. */
+ pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
+ pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
+ return VINF_SUCCESS; /* formality, consider it void. */
+}
+
+
+/**
+ * Set the guest CR0.
+ *
+ * When called in GC, the hyper CR0 may be updated if that is
+ * required. The caller only has to take special action if AM,
+ * WP, PG or PE changes.
+ *
+ * @returns VINF_SUCCESS (consider it void).
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param cr0 The new CR0 value.
+ */
+VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0)
+{
+#ifdef IN_RC
+ /*
+ * Check if we need to change hypervisor CR0 because
+ * of math stuff.
+ */
+ if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
+ != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)))
+ {
+ if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST))
+ {
+ /*
+ * We haven't loaded the guest FPU state yet, so TS and MT are both set
+ * and EM should be reflecting the guest EM (it always does this).
+ */
+ if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM))
+ {
+ uint32_t HyperCR0 = ASMGetCR0();
+ AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
+ AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
+ HyperCR0 &= ~X86_CR0_EM;
+ HyperCR0 |= cr0 & X86_CR0_EM;
+ Log(("CPUM: New HyperCR0=%#x\n", HyperCR0));
+ ASMSetCR0(HyperCR0);
+ }
+# ifdef VBOX_STRICT
+ else
+ {
+ uint32_t HyperCR0 = ASMGetCR0();
+ AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
+ AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
+ }
+# endif
+ }
+ else
+ {
+ /*
+ * Already loaded the guest FPU state, so we're just mirroring
+ * the guest flags.
+ */
+ uint32_t HyperCR0 = ASMGetCR0();
+ AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
+ == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)),
+ ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0));
+ HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
+ HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
+ Log(("CPUM: New HyperCR0=%#x\n", HyperCR0));
+ ASMSetCR0(HyperCR0);
+ }
+ }
+#endif /* IN_RC */
+
+ /*
+ * Check for changes causing TLB flushes (for REM).
+ * The caller is responsible for calling PGM when appropriate.
+ */
+ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
+ != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
+
+ /*
+ * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
+ */
+ if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
+ PGMCr0WpEnabled(pVCpu);
+
+ /* The ET flag is settable on a 386 and hardwired on 486+. */
+ if ( !(cr0 & X86_CR0_ET)
+ && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
+ cr0 |= X86_CR0_ET;
+
+ pVCpu->cpum.s.Guest.cr0 = cr0;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
+{
+ pVCpu->cpum.s.Guest.cr2 = cr2;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
+{
+ pVCpu->cpum.s.Guest.cr3 = cr3;
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
+{
+ /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
+
+ if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
+ != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
+
+ pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
+ pVCpu->cpum.s.Guest.cr4 = cr4;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
+{
+ pVCpu->cpum.s.Guest.eflags.u32 = eflags;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
+{
+ pVCpu->cpum.s.Guest.eip = eip;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
+{
+ pVCpu->cpum.s.Guest.eax = eax;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
+{
+ pVCpu->cpum.s.Guest.ebx = ebx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
+{
+ pVCpu->cpum.s.Guest.ecx = ecx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
+{
+ pVCpu->cpum.s.Guest.edx = edx;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
+{
+ pVCpu->cpum.s.Guest.esp = esp;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
+{
+ pVCpu->cpum.s.Guest.ebp = ebp;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
+{
+ pVCpu->cpum.s.Guest.esi = esi;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
+{
+ pVCpu->cpum.s.Guest.edi = edi;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
+{
+ pVCpu->cpum.s.Guest.ss.Sel = ss;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
+{
+ pVCpu->cpum.s.Guest.cs.Sel = cs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
+{
+ pVCpu->cpum.s.Guest.ds.Sel = ds;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
+{
+ pVCpu->cpum.s.Guest.es.Sel = es;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
+{
+ pVCpu->cpum.s.Guest.fs.Sel = fs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
+{
+ pVCpu->cpum.s.Guest.gs.Sel = gs;
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
+{
+ pVCpu->cpum.s.Guest.msrEFER = val;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
+}
+
+
+VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
+ if (pcbLimit)
+ *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
+ return pVCpu->cpum.s.Guest.idtr.pIdt;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
+ if (pHidden)
+ *pHidden = pVCpu->cpum.s.Guest.tr;
+ return pVCpu->cpum.s.Guest.tr.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
+ return pVCpu->cpum.s.Guest.cs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
+ return pVCpu->cpum.s.Guest.ds.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
+ return pVCpu->cpum.s.Guest.es.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
+ return pVCpu->cpum.s.Guest.fs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
+ return pVCpu->cpum.s.Guest.gs.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
+ return pVCpu->cpum.s.Guest.ss.Sel;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( !CPUMIsGuestInLongMode(pVCpu)
+ || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
+ return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
+ return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
+ if ( !CPUMIsGuestInLongMode(pVCpu)
+ || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
+ return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
+ return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
+ return pVCpu->cpum.s.Guest.ldtr.Sel;
+}
+
+
+VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
+ *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
+ *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
+ return pVCpu->cpum.s.Guest.ldtr.Sel;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return pVCpu->cpum.s.Guest.cr0;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
+ return pVCpu->cpum.s.Guest.cr2;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
+ return pVCpu->cpum.s.Guest.cr3;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ return pVCpu->cpum.s.Guest.cr4;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu)
+{
+ uint64_t u64;
+ int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
+ if (RT_FAILURE(rc))
+ u64 = 0;
+ return u64;
+}
+
+
+VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
+ *pGDTR = pVCpu->cpum.s.Guest.gdtr;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
+ return pVCpu->cpum.s.Guest.eip;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
+ return pVCpu->cpum.s.Guest.rip;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
+ return pVCpu->cpum.s.Guest.eax;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
+ return pVCpu->cpum.s.Guest.ebx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
+ return pVCpu->cpum.s.Guest.ecx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
+ return pVCpu->cpum.s.Guest.edx;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
+ return pVCpu->cpum.s.Guest.esi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
+ return pVCpu->cpum.s.Guest.edi;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
+ return pVCpu->cpum.s.Guest.esp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
+ return pVCpu->cpum.s.Guest.ebp;
+}
+
+
+VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
+ return pVCpu->cpum.s.Guest.eflags.u32;
+}
+
+
+VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue)
+{
+ switch (iReg)
+ {
+ case DISCREG_CR0:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ *pValue = pVCpu->cpum.s.Guest.cr0;
+ break;
+
+ case DISCREG_CR2:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
+ *pValue = pVCpu->cpum.s.Guest.cr2;
+ break;
+
+ case DISCREG_CR3:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
+ *pValue = pVCpu->cpum.s.Guest.cr3;
+ break;
+
+ case DISCREG_CR4:
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ *pValue = pVCpu->cpum.s.Guest.cr4;
+ break;
+
+ case DISCREG_CR8:
+ {
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
+ uint8_t u8Tpr;
+ int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
+ if (RT_FAILURE(rc))
+ {
+ AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
+ *pValue = 0;
+ return rc;
+ }
+ *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
+ break;
+ }
+
+ default:
+ return VERR_INVALID_PARAMETER;
+ }
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[0];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[1];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[2];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
+ return pVCpu->cpum.s.Guest.dr[3];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
+ return pVCpu->cpum.s.Guest.dr[6];
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
+ return pVCpu->cpum.s.Guest.dr[7];
+}
+
+
+VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
+ AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
+ /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
+ if (iReg == 4 || iReg == 5)
+ iReg += 2;
+ *pValue = pVCpu->cpum.s.Guest.dr[iReg];
+ return VINF_SUCCESS;
+}
+
+
+VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return pVCpu->cpum.s.Guest.msrEFER;
+}
+
+
+/**
+ * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
+ *
+ * @returns Pointer to the leaf if found, NULL if not.
+ *
+ * @param pVM The cross context VM structure.
+ * @param uLeaf The leaf to get.
+ */
+PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
+{
+ unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
+ if (iEnd)
+ {
+ unsigned iStart = 0;
+ PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
+ for (;;)
+ {
+ unsigned i = iStart + (iEnd - iStart) / 2U;
+ if (uLeaf < paLeaves[i].uLeaf)
+ {
+ if (i <= iStart)
+ return NULL;
+ iEnd = i;
+ }
+ else if (uLeaf > paLeaves[i].uLeaf)
+ {
+ i += 1;
+ if (i >= iEnd)
+ return NULL;
+ iStart = i;
+ }
+ else
+ {
+ if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
+ return &paLeaves[i];
+
+ /* This shouldn't normally happen. But in case the it does due
+ to user configuration overrids or something, just return the
+ first sub-leaf. */
+ AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
+ uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
+ while ( paLeaves[i].uSubLeaf != 0
+ && i > 0
+ && uLeaf == paLeaves[i - 1].uLeaf)
+ i--;
+ return &paLeaves[i];
+ }
+ }
+ }
+
+ return NULL;
+}
+
+
+/**
+ * Looks up a CPUID leaf in the CPUID leaf array.
+ *
+ * @returns Pointer to the leaf if found, NULL if not.
+ *
+ * @param pVM The cross context VM structure.
+ * @param uLeaf The leaf to get.
+ * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
+ * isn't.
+ * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
+ */
+PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
+{
+ unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
+ if (iEnd)
+ {
+ unsigned iStart = 0;
+ PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
+ for (;;)
+ {
+ unsigned i = iStart + (iEnd - iStart) / 2U;
+ if (uLeaf < paLeaves[i].uLeaf)
+ {
+ if (i <= iStart)
+ return NULL;
+ iEnd = i;
+ }
+ else if (uLeaf > paLeaves[i].uLeaf)
+ {
+ i += 1;
+ if (i >= iEnd)
+ return NULL;
+ iStart = i;
+ }
+ else
+ {
+ uSubLeaf &= paLeaves[i].fSubLeafMask;
+ if (uSubLeaf == paLeaves[i].uSubLeaf)
+ *pfExactSubLeafHit = true;
+ else
+ {
+ /* Find the right subleaf. We return the last one before
+ uSubLeaf if we don't find an exact match. */
+ if (uSubLeaf < paLeaves[i].uSubLeaf)
+ while ( i > 0
+ && uLeaf == paLeaves[i - 1].uLeaf
+ && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
+ i--;
+ else
+ while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
+ && uLeaf == paLeaves[i + 1].uLeaf
+ && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
+ i++;
+ *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
+ }
+ return &paLeaves[i];
+ }
+ }
+ }
+
+ *pfExactSubLeafHit = false;
+ return NULL;
+}
+
+
+/**
+ * Gets a CPUID leaf.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param uLeaf The CPUID leaf to get.
+ * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
+ * @param pEax Where to store the EAX value.
+ * @param pEbx Where to store the EBX value.
+ * @param pEcx Where to store the ECX value.
+ * @param pEdx Where to store the EDX value.
+ */
+VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t uLeaf, uint32_t uSubLeaf,
+ uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
+{
+ bool fExactSubLeafHit;
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
+ if (pLeaf)
+ {
+ AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
+ if (fExactSubLeafHit)
+ {
+ *pEax = pLeaf->uEax;
+ *pEbx = pLeaf->uEbx;
+ *pEcx = pLeaf->uEcx;
+ *pEdx = pLeaf->uEdx;
+
+ /*
+ * Deal with CPU specific information.
+ */
+ if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
+ | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
+ | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
+ {
+ if (uLeaf == 1)
+ {
+ /* EBX: Bits 31-24: Initial APIC ID. */
+ Assert(pVCpu->idCpu <= 255);
+ AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
+ *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
+
+ /* EDX: Bit 9: AND with APICBASE.EN. */
+ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
+ *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
+
+ /* ECX: Bit 27: CR4.OSXSAVE mirror. */
+ *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
+ | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
+ }
+ else if (uLeaf == 0xb)
+ {
+ /* EDX: Initial extended APIC ID. */
+ AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
+ *pEdx = pVCpu->idCpu;
+ Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
+ }
+ else if (uLeaf == UINT32_C(0x8000001e))
+ {
+ /* EAX: Initial extended APIC ID. */
+ AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
+ *pEax = pVCpu->idCpu;
+ Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
+ }
+ else if (uLeaf == UINT32_C(0x80000001))
+ {
+ /* EDX: Bit 9: AND with APICBASE.EN. */
+ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
+ *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
+ Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
+ }
+ else
+ AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
+ }
+ }
+ /*
+ * Out of range sub-leaves aren't quite as easy and pretty as we emulate
+ * them here, but we do the best we can here...
+ */
+ else
+ {
+ *pEax = *pEbx = *pEcx = *pEdx = 0;
+ if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
+ {
+ *pEcx = uSubLeaf & 0xff;
+ *pEdx = pVCpu->idCpu;
+ }
+ }
+ }
+ else
+ {
+ /*
+ * Different CPUs have different ways of dealing with unknown CPUID leaves.
+ */
+ switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
+ {
+ default:
+ AssertFailed();
+ RT_FALL_THRU();
+ case CPUMUNKNOWNCPUID_DEFAULTS:
+ case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
+ case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
+ *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
+ *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
+ *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
+ *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
+ break;
+ case CPUMUNKNOWNCPUID_PASSTHRU:
+ *pEax = uLeaf;
+ *pEbx = 0;
+ *pEcx = uSubLeaf;
+ *pEdx = 0;
+ break;
+ }
+ }
+ Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
+}
+
+
+/**
+ * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
+ * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
+ *
+ * @returns Previous value.
+ * @param pVCpu The cross context virtual CPU structure to make the
+ * change on. Usually the calling EMT.
+ * @param fVisible Whether to make it visible (true) or hide it (false).
+ *
+ * @remarks This is "VMMDECL" so that it still links with
+ * the old APIC code which is in VBoxDD2 and not in
+ * the VMM module.
+ */
+VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
+{
+ bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
+ pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
+
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ /*
+ * Patch manager saved state legacy pain.
+ */
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+ PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
+ if (pLeaf)
+ {
+ if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
+ pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx;
+ else
+ pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx & ~X86_CPUID_FEATURE_EDX_APIC;
+ }
+
+ pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
+ if (pLeaf)
+ {
+ if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
+ pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx;
+ else
+ pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx & ~X86_CPUID_AMD_FEATURE_EDX_APIC;
+ }
+#endif
+
+ return fOld;
+}
+
+
+/**
+ * Gets the host CPU vendor.
+ *
+ * @returns CPU vendor.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
+{
+ return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
+}
+
+
+/**
+ * Gets the CPU vendor.
+ *
+ * @returns CPU vendor.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
+{
+ return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
+}
+
+
+VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0)
+{
+ pVCpu->cpum.s.Guest.dr[0] = uDr0;
+ return CPUMRecalcHyperDRx(pVCpu, 0, false);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1)
+{
+ pVCpu->cpum.s.Guest.dr[1] = uDr1;
+ return CPUMRecalcHyperDRx(pVCpu, 1, false);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2)
+{
+ pVCpu->cpum.s.Guest.dr[2] = uDr2;
+ return CPUMRecalcHyperDRx(pVCpu, 2, false);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3)
+{
+ pVCpu->cpum.s.Guest.dr[3] = uDr3;
+ return CPUMRecalcHyperDRx(pVCpu, 3, false);
+}
+
+
+VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
+{
+ pVCpu->cpum.s.Guest.dr[6] = uDr6;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
+ return VINF_SUCCESS; /* No need to recalc. */
+}
+
+
+VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7)
+{
+ pVCpu->cpum.s.Guest.dr[7] = uDr7;
+ pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
+ return CPUMRecalcHyperDRx(pVCpu, 7, false);
+}
+
+
+VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value)
+{
+ AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
+ /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
+ if (iReg == 4 || iReg == 5)
+ iReg += 2;
+ pVCpu->cpum.s.Guest.dr[iReg] = Value;
+ return CPUMRecalcHyperDRx(pVCpu, iReg, false);
+}
+
+
+/**
+ * Recalculates the hypervisor DRx register values based on current guest
+ * registers and DBGF breakpoints, updating changed registers depending on the
+ * context.
+ *
+ * This is called whenever a guest DRx register is modified (any context) and
+ * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
+ *
+ * In raw-mode context this function will reload any (hyper) DRx registers which
+ * comes out with a different value. It may also have to save the host debug
+ * registers if that haven't been done already. In this context though, we'll
+ * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
+ * are only important when breakpoints are actually enabled.
+ *
+ * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
+ * reloaded by the HM code if it changes. Further more, we will only use the
+ * combined register set when the VBox debugger is actually using hardware BPs,
+ * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
+ * concern us here).
+ *
+ * In ring-3 we won't be loading anything, so well calculate hypervisor values
+ * all the time.
+ *
+ * @returns VINF_SUCCESS.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param iGstReg The guest debug register number that was modified.
+ * UINT8_MAX if not guest register.
+ * @param fForceHyper Used in HM to force hyper registers because of single
+ * stepping.
+ */
+VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu, uint8_t iGstReg, bool fForceHyper)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+#ifndef IN_RING0
+ RT_NOREF_PV(iGstReg);
+#endif
+
+ /*
+ * Compare the DR7s first.
+ *
+ * We only care about the enabled flags. GD is virtualized when we
+ * dispatch the #DB, we never enable it. The DBGF DR7 value is will
+ * always have the LE and GE bits set, so no need to check and disable
+ * stuff if they're cleared like we have to for the guest DR7.
+ */
+ RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
+ /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
+ if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
+ uGstDr7 = 0;
+ else if (!(uGstDr7 & X86_DR7_LE))
+ uGstDr7 &= ~X86_DR7_LE_ALL;
+ else if (!(uGstDr7 & X86_DR7_GE))
+ uGstDr7 &= ~X86_DR7_GE_ALL;
+
+ const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
+
+#ifdef IN_RING0
+ if (!fForceHyper && (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER))
+ fForceHyper = true;
+#endif
+ if ( (!VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)) && !fForceHyper ? uDbgfDr7 : (uGstDr7 | uDbgfDr7))
+ & X86_DR7_ENABLED_MASK)
+ {
+ Assert(!CPUMIsGuestDebugStateActive(pVCpu));
+#ifdef IN_RC
+ bool const fRawModeEnabled = true;
+#elif defined(IN_RING3)
+ bool const fRawModeEnabled = VM_IS_RAW_MODE_ENABLED(pVM);
+#endif
+
+ /*
+ * Ok, something is enabled. Recalc each of the breakpoints, taking
+ * the VM debugger ones of the guest ones. In raw-mode context we will
+ * not allow breakpoints with values inside the hypervisor area.
+ */
+ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
+
+ /* bp 0 */
+ RTGCUINTREG uNewDr0;
+ if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
+ uNewDr0 = DBGFBpGetDR0(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
+ {
+ uNewDr0 = CPUMGetGuestDR0(pVCpu);
+#ifndef IN_RING0
+ if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr0))
+ uNewDr0 = 0;
+ else
+#endif
+ uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
+ }
+ else
+ uNewDr0 = 0;
+
+ /* bp 1 */
+ RTGCUINTREG uNewDr1;
+ if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
+ uNewDr1 = DBGFBpGetDR1(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
+ {
+ uNewDr1 = CPUMGetGuestDR1(pVCpu);
+#ifndef IN_RING0
+ if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr1))
+ uNewDr1 = 0;
+ else
+#endif
+ uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
+ }
+ else
+ uNewDr1 = 0;
+
+ /* bp 2 */
+ RTGCUINTREG uNewDr2;
+ if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
+ uNewDr2 = DBGFBpGetDR2(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
+ {
+ uNewDr2 = CPUMGetGuestDR2(pVCpu);
+#ifndef IN_RING0
+ if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr2))
+ uNewDr2 = 0;
+ else
+#endif
+ uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
+ }
+ else
+ uNewDr2 = 0;
+
+ /* bp 3 */
+ RTGCUINTREG uNewDr3;
+ if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
+ {
+ uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
+ uNewDr3 = DBGFBpGetDR3(pVM);
+ }
+ else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
+ {
+ uNewDr3 = CPUMGetGuestDR3(pVCpu);
+#ifndef IN_RING0
+ if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr3))
+ uNewDr3 = 0;
+ else
+#endif
+ uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
+ }
+ else
+ uNewDr3 = 0;
+
+ /*
+ * Apply the updates.
+ */
+#ifdef IN_RC
+ /* Make sure to save host registers first. */
+ if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST))
+ {
+ if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HOST))
+ {
+ pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
+ pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
+ }
+ pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
+ pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
+ pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
+ pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
+ pVCpu->cpum.s.fUseFlags |= CPUM_USED_DEBUG_REGS_HOST | CPUM_USE_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HYPER;
+
+ /* We haven't loaded any hyper DRxes yet, so we'll have to load them all now. */
+ pVCpu->cpum.s.Hyper.dr[0] = uNewDr0;
+ ASMSetDR0(uNewDr0);
+ pVCpu->cpum.s.Hyper.dr[1] = uNewDr1;
+ ASMSetDR1(uNewDr1);
+ pVCpu->cpum.s.Hyper.dr[2] = uNewDr2;
+ ASMSetDR2(uNewDr2);
+ pVCpu->cpum.s.Hyper.dr[3] = uNewDr3;
+ ASMSetDR3(uNewDr3);
+ ASMSetDR6(X86_DR6_INIT_VAL);
+ pVCpu->cpum.s.Hyper.dr[7] = uNewDr7;
+ ASMSetDR7(uNewDr7);
+ }
+ else
+#endif
+ {
+ pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
+ if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
+ CPUMSetHyperDR3(pVCpu, uNewDr3);
+ if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
+ CPUMSetHyperDR2(pVCpu, uNewDr2);
+ if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
+ CPUMSetHyperDR1(pVCpu, uNewDr1);
+ if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
+ CPUMSetHyperDR0(pVCpu, uNewDr0);
+ if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
+ CPUMSetHyperDR7(pVCpu, uNewDr7);
+ }
+ }
+#ifdef IN_RING0
+ else if (CPUMIsGuestDebugStateActive(pVCpu))
+ {
+ /*
+ * Reload the register that was modified. Normally this won't happen
+ * as we won't intercept DRx writes when not having the hyper debug
+ * state loaded, but in case we do for some reason we'll simply deal
+ * with it.
+ */
+ switch (iGstReg)
+ {
+ case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
+ case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
+ case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
+ case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
+ default:
+ AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
+ }
+ }
+#endif
+ else
+ {
+ /*
+ * No active debug state any more. In raw-mode this means we have to
+ * make sure DR7 has everything disabled now, if we armed it already.
+ * In ring-0 we might end up here when just single stepping.
+ */
+#if defined(IN_RC) || defined(IN_RING0)
+ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
+ {
+# ifdef IN_RC
+ ASMSetDR7(X86_DR7_INIT_VAL);
+# endif
+ if (pVCpu->cpum.s.Hyper.dr[0])
+ ASMSetDR0(0);
+ if (pVCpu->cpum.s.Hyper.dr[1])
+ ASMSetDR1(0);
+ if (pVCpu->cpum.s.Hyper.dr[2])
+ ASMSetDR2(0);
+ if (pVCpu->cpum.s.Hyper.dr[3])
+ ASMSetDR3(0);
+ pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
+ }
+#endif
+ pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
+
+ /* Clear all the registers. */
+ pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
+ pVCpu->cpum.s.Hyper.dr[3] = 0;
+ pVCpu->cpum.s.Hyper.dr[2] = 0;
+ pVCpu->cpum.s.Hyper.dr[1] = 0;
+ pVCpu->cpum.s.Hyper.dr[0] = 0;
+
+ }
+ Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
+ pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
+ pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
+ pVCpu->cpum.s.Hyper.dr[7]));
+
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Set the guest XCR0 register.
+ *
+ * Will load additional state if the FPU state is already loaded (in ring-0 &
+ * raw-mode context).
+ *
+ * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
+ * value.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uNewValue The new value.
+ * @thread EMT(pVCpu)
+ */
+VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPU pVCpu, uint64_t uNewValue)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
+ if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
+ /* The X87 bit cannot be cleared. */
+ && (uNewValue & XSAVE_C_X87)
+ /* AVX requires SSE. */
+ && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
+ /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
+ && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
+ || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
+ == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
+ )
+ {
+ pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
+
+ /* If more state components are enabled, we need to take care to load
+ them if the FPU/SSE state is already loaded. May otherwise leak
+ host state to the guest. */
+ uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
+ if (fNewComponents)
+ {
+#if defined(IN_RING0) || defined(IN_RC)
+ if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
+ {
+ if (pVCpu->cpum.s.Guest.fXStateMask != 0)
+ /* Adding more components. */
+ ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents);
+ else
+ {
+ /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
+ pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
+ if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
+ ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
+ }
+ }
+#endif
+ pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
+ }
+ return VINF_SUCCESS;
+ }
+ return VERR_CPUM_RAISE_GP_0;
+}
+
+
+/**
+ * Tests if the guest has No-Execute Page Protection Enabled (NXE).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
+}
+
+
+/**
+ * Tests if the guest has the Page Size Extension enabled (PSE).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
+ /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
+ return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
+}
+
+
+/**
+ * Tests if the guest has the paging enabled (PG).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
+}
+
+
+/**
+ * Tests if the guest has the paging enabled (PG).
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
+}
+
+
+/**
+ * Tests if the guest is running in real mode or not.
+ *
+ * @returns true if in real mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
+}
+
+
+/**
+ * Tests if the guest is running in real or virtual 8086 mode.
+ *
+ * @returns @c true if it is, @c false if not.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
+ return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
+ || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
+}
+
+
+/**
+ * Tests if the guest is running in protected or not.
+ *
+ * @returns true if in protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
+}
+
+
+/**
+ * Tests if the guest is running in paged protected or not.
+ *
+ * @returns true if in paged protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
+ return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
+}
+
+
+/**
+ * Tests if the guest is running in long mode or not.
+ *
+ * @returns true if in long mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
+ return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
+}
+
+
+/**
+ * Tests if the guest is running in PAE mode or not.
+ *
+ * @returns true if in PAE mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
+ /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
+ than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
+ return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
+ && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
+ && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
+}
+
+
+/**
+ * Tests if the guest is running in 64 bits mode or not.
+ *
+ * @returns true if in 64 bits protected mode, otherwise false.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
+ if (!CPUMIsGuestInLongMode(pVCpu))
+ return false;
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
+}
+
+
+/**
+ * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
+ * registers.
+ *
+ * @returns true if in 64 bits protected mode, otherwise false.
+ * @param pCtx Pointer to the current guest CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
+{
+ return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
+}
+
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+
+/**
+ *
+ * @returns @c true if we've entered raw-mode and selectors with RPL=1 are
+ * really RPL=0, @c false if we've not (RPL=1 really is RPL=1).
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestInRawMode(PVMCPU pVCpu)
+{
+ return pVCpu->cpum.s.fRawEntered;
+}
+
+/**
+ * Transforms the guest CPU state to raw-ring mode.
+ *
+ * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
+ *
+ * @returns VBox status code. (recompiler failure)
+ * @param pVCpu The cross context virtual CPU structure.
+ * @see @ref pg_raw
+ */
+VMM_INT_DECL(int) CPUMRawEnter(PVMCPU pVCpu)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ Assert(!pVCpu->cpum.s.fRawEntered);
+ Assert(!pVCpu->cpum.s.fRemEntered);
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+
+ /*
+ * Are we in Ring-0?
+ */
+ if ( pCtx->ss.Sel
+ && (pCtx->ss.Sel & X86_SEL_RPL) == 0
+ && !pCtx->eflags.Bits.u1VM)
+ {
+ /*
+ * Enter execution mode.
+ */
+ PATMRawEnter(pVM, pCtx);
+
+ /*
+ * Set CPL to Ring-1.
+ */
+ pCtx->ss.Sel |= 1;
+ if ( pCtx->cs.Sel
+ && (pCtx->cs.Sel & X86_SEL_RPL) == 0)
+ pCtx->cs.Sel |= 1;
+ }
+ else
+ {
+# ifdef VBOX_WITH_RAW_RING1
+ if ( EMIsRawRing1Enabled(pVM)
+ && !pCtx->eflags.Bits.u1VM
+ && (pCtx->ss.Sel & X86_SEL_RPL) == 1)
+ {
+ /* Set CPL to Ring-2. */
+ pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 2;
+ if (pCtx->cs.Sel && (pCtx->cs.Sel & X86_SEL_RPL) == 1)
+ pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 2;
+ }
+# else
+ AssertMsg((pCtx->ss.Sel & X86_SEL_RPL) >= 2 || pCtx->eflags.Bits.u1VM,
+ ("ring-1 code not supported\n"));
+# endif
+ /*
+ * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
+ */
+ PATMRawEnter(pVM, pCtx);
+ }
+
+ /*
+ * Assert sanity.
+ */
+ AssertMsg((pCtx->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
+ AssertReleaseMsg(pCtx->eflags.Bits.u2IOPL == 0,
+ ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL));
+ Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE));
+
+ pCtx->eflags.u32 |= X86_EFL_IF; /* paranoia */
+
+ pVCpu->cpum.s.fRawEntered = true;
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Transforms the guest CPU state from raw-ring mode to correct values.
+ *
+ * This function will change any selector registers with DPL=1 to DPL=0.
+ *
+ * @returns Adjusted rc.
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param rc Raw mode return code
+ * @see @ref pg_raw
+ */
+VMM_INT_DECL(int) CPUMRawLeave(PVMCPU pVCpu, int rc)
+{
+ PVM pVM = pVCpu->CTX_SUFF(pVM);
+
+ /*
+ * Don't leave if we've already left (in RC).
+ */
+ Assert(!pVCpu->cpum.s.fRemEntered);
+ if (!pVCpu->cpum.s.fRawEntered)
+ return rc;
+ pVCpu->cpum.s.fRawEntered = false;
+
+ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss.Sel & X86_SEL_RPL));
+ AssertMsg(pCtx->eflags.Bits.u1VM || pCtx->eflags.Bits.u2IOPL < (unsigned)(pCtx->ss.Sel & X86_SEL_RPL),
+ ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL));
+
+ /*
+ * Are we executing in raw ring-1?
+ */
+ if ( (pCtx->ss.Sel & X86_SEL_RPL) == 1
+ && !pCtx->eflags.Bits.u1VM)
+ {
+ /*
+ * Leave execution mode.
+ */
+ PATMRawLeave(pVM, pCtx, rc);
+ /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
+ /** @todo See what happens if we remove this. */
+ if ((pCtx->ds.Sel & X86_SEL_RPL) == 1)
+ pCtx->ds.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->es.Sel & X86_SEL_RPL) == 1)
+ pCtx->es.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->fs.Sel & X86_SEL_RPL) == 1)
+ pCtx->fs.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->gs.Sel & X86_SEL_RPL) == 1)
+ pCtx->gs.Sel &= ~X86_SEL_RPL;
+
+ /*
+ * Ring-1 selector => Ring-0.
+ */
+ pCtx->ss.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->cs.Sel & X86_SEL_RPL) == 1)
+ pCtx->cs.Sel &= ~X86_SEL_RPL;
+ }
+ else
+ {
+ /*
+ * PATM is taking care of the IOPL and IF flags for us.
+ */
+ PATMRawLeave(pVM, pCtx, rc);
+ if (!pCtx->eflags.Bits.u1VM)
+ {
+# ifdef VBOX_WITH_RAW_RING1
+ if ( EMIsRawRing1Enabled(pVM)
+ && (pCtx->ss.Sel & X86_SEL_RPL) == 2)
+ {
+ /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
+ /** @todo See what happens if we remove this. */
+ if ((pCtx->ds.Sel & X86_SEL_RPL) == 2)
+ pCtx->ds.Sel = (pCtx->ds.Sel & ~X86_SEL_RPL) | 1;
+ if ((pCtx->es.Sel & X86_SEL_RPL) == 2)
+ pCtx->es.Sel = (pCtx->es.Sel & ~X86_SEL_RPL) | 1;
+ if ((pCtx->fs.Sel & X86_SEL_RPL) == 2)
+ pCtx->fs.Sel = (pCtx->fs.Sel & ~X86_SEL_RPL) | 1;
+ if ((pCtx->gs.Sel & X86_SEL_RPL) == 2)
+ pCtx->gs.Sel = (pCtx->gs.Sel & ~X86_SEL_RPL) | 1;
+
+ /*
+ * Ring-2 selector => Ring-1.
+ */
+ pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 1;
+ if ((pCtx->cs.Sel & X86_SEL_RPL) == 2)
+ pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 1;
+ }
+ else
+ {
+# endif
+ /** @todo See what happens if we remove this. */
+ if ((pCtx->ds.Sel & X86_SEL_RPL) == 1)
+ pCtx->ds.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->es.Sel & X86_SEL_RPL) == 1)
+ pCtx->es.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->fs.Sel & X86_SEL_RPL) == 1)
+ pCtx->fs.Sel &= ~X86_SEL_RPL;
+ if ((pCtx->gs.Sel & X86_SEL_RPL) == 1)
+ pCtx->gs.Sel &= ~X86_SEL_RPL;
+# ifdef VBOX_WITH_RAW_RING1
+ }
+# endif
+ }
+ }
+
+ return rc;
+}
+
+#endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
+
+/**
+ * Updates the EFLAGS while we're in raw-mode.
+ *
+ * @param pVCpu The cross context virtual CPU structure.
+ * @param fEfl The new EFLAGS value.
+ */
+VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, uint32_t fEfl)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (pVCpu->cpum.s.fRawEntered)
+ PATMRawSetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest, fEfl);
+ else
+#endif
+ pVCpu->cpum.s.Guest.eflags.u32 = fEfl;
+}
+
+
+/**
+ * Gets the EFLAGS while we're in raw-mode.
+ *
+ * @returns The eflags.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu)
+{
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ if (pVCpu->cpum.s.fRawEntered)
+ return PATMRawGetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest);
+#endif
+ return pVCpu->cpum.s.Guest.eflags.u32;
+}
+
+
+/**
+ * Sets the specified changed flags (CPUM_CHANGED_*).
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param fChangedAdd The changed flags to add.
+ */
+VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
+{
+ pVCpu->cpum.s.fChanged |= fChangedAdd;
+}
+
+
+/**
+ * Checks if the CPU supports the XSAVE and XRSTOR instruction.
+ *
+ * @returns true if supported.
+ * @returns false if not supported.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
+{
+ return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
+}
+
+
+/**
+ * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
+ * @returns true if used.
+ * @returns false if not used.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
+{
+ return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
+}
+
+
+/**
+ * Checks if the host OS uses the SYSCALL / SYSRET instructions.
+ * @returns true if used.
+ * @returns false if not used.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
+{
+ return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
+}
+
+#ifdef IN_RC
+
+/**
+ * Lazily sync in the FPU/XMM state.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu)
+{
+ return cpumHandleLazyFPUAsm(&pVCpu->cpum.s);
+}
+
+#endif /* !IN_RC */
+
+/**
+ * Checks if we activated the FPU/XMM state of the guest OS.
+ *
+ * This differs from CPUMIsGuestFPUStateLoaded() in that it refers to the next
+ * time we'll be executing guest code, so it may return true for 64-on-32 when
+ * we still haven't actually loaded the FPU status, just scheduled it to be
+ * loaded the next time we go thru the world switcher (CPUM_SYNC_FPU_STATE).
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_SYNC_FPU_STATE));
+}
+
+
+/**
+ * Checks if we've really loaded the FPU/XMM state of the guest OS.
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
+}
+
+
+/**
+ * Checks if we saved the FPU/XMM state of the host OS.
+ *
+ * @returns true / false.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
+}
+
+
+/**
+ * Checks if the guest debug state is active.
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
+}
+
+
+/**
+ * Checks if the guest debug state is to be made active during the world-switch
+ * (currently only used for the 32->64 switcher case).
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsGuestDebugStateActivePending(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_GUEST);
+}
+
+
+/**
+ * Checks if the hyper debug state is active.
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
+}
+
+
+/**
+ * Checks if the hyper debug state is to be made active during the world-switch
+ * (currently only used for the 32->64 switcher case).
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(bool) CPUMIsHyperDebugStateActivePending(PVMCPU pVCpu)
+{
+ return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_HYPER);
+}
+
+
+/**
+ * Mark the guest's debug state as inactive.
+ *
+ * @returns boolean
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @todo This API doesn't make sense any more.
+ */
+VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
+{
+ Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
+ NOREF(pVCpu);
+}
+
+
+/**
+ * Get the current privilege level of the guest.
+ *
+ * @returns CPL
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
+{
+ /*
+ * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
+ *
+ * Note! We used to check CS.DPL here, assuming it was always equal to
+ * CPL even if a conforming segment was loaded. But this turned out to
+ * only apply to older AMD-V. With VT-x we had an ACP2 regression
+ * during install after a far call to ring 2 with VT-x. Then on newer
+ * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
+ * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
+ *
+ * So, forget CS.DPL, always use SS.DPL.
+ *
+ * Note! The SS RPL is always equal to the CPL, while the CS RPL
+ * isn't necessarily equal if the segment is conforming.
+ * See section 4.11.1 in the AMD manual.
+ *
+ * Update: Where the heck does it say CS.RPL can differ from CPL other than
+ * right after real->prot mode switch and when in V8086 mode? That
+ * section says the RPL specified in a direct transfere (call, jmp,
+ * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
+ * it would be impossible for an exception handle or the iret
+ * instruction to figure out whether SS:ESP are part of the frame
+ * or not. VBox or qemu bug must've lead to this misconception.
+ *
+ * Update2: On an AMD bulldozer system here, I've no trouble loading a null
+ * selector into SS with an RPL other than the CPL when CPL != 3 and
+ * we're in 64-bit mode. The intel dev box doesn't allow this, on
+ * RPL = CPL. Weird.
+ */
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
+ uint32_t uCpl;
+ if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
+ {
+ if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
+ uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
+ else
+ {
+ uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+# ifdef VBOX_WITH_RAW_RING1
+ if (pVCpu->cpum.s.fRawEntered)
+ {
+ if ( uCpl == 2
+ && EMIsRawRing1Enabled(pVCpu->CTX_SUFF(pVM)))
+ uCpl = 1;
+ else if (uCpl == 1)
+ uCpl = 0;
+ }
+ Assert(uCpl != 2); /* ring 2 support not allowed anymore. */
+# else
+ if (uCpl == 1)
+ uCpl = 0;
+# endif
+#endif
+ }
+ }
+ else
+ uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
+ }
+ else
+ uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
+ return uCpl;
+}
+
+
+/**
+ * Gets the current guest CPU mode.
+ *
+ * If paging mode is what you need, check out PGMGetGuestMode().
+ *
+ * @returns The CPU mode.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
+ CPUMMODE enmMode;
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ enmMode = CPUMMODE_REAL;
+ else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ enmMode = CPUMMODE_PROTECTED;
+ else
+ enmMode = CPUMMODE_LONG;
+
+ return enmMode;
+}
+
+
+/**
+ * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
+ *
+ * @returns 16, 32 or 64.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ */
+VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
+
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ return 16;
+
+ if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
+ return 16;
+ }
+
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
+ && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ return 64;
+
+ if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
+ return 32;
+
+ return 16;
+}
+
+
+VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
+{
+ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
+
+ if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
+ return DISCPUMODE_16BIT;
+
+ if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
+ {
+ Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
+ return DISCPUMODE_16BIT;
+ }
+
+ CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
+ if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
+ && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
+ return DISCPUMODE_64BIT;
+
+ if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
+ return DISCPUMODE_32BIT;
+
+ return DISCPUMODE_16BIT;
+}
+
+
+/**
+ * Gets the guest MXCSR_MASK value.
+ *
+ * This does not access the x87 state, but the value we determined at VM
+ * initialization.
+ *
+ * @returns MXCSR mask.
+ * @param pVM The cross context VM structure.
+ */
+VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
+{
+ return pVM->cpum.s.GuestInfo.fMxCsrMask;
+}
+
+
+/**
+ * Returns whether the guest has physical interrupts enabled.
+ *
+ * @returns @c true if interrupts are enabled, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Warning! This function does -not- take into account the global-interrupt
+ * flag (GIF).
+ */
+VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
+{
+ if (!CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
+ {
+#ifdef VBOX_WITH_RAW_MODE_NOT_R0
+ uint32_t const fEFlags = !pVCpu->cpum.s.fRawEntered ? pVCpu->cpum.s.Guest.eflags.u : CPUMRawGetEFlags(pVCpu);
+#else
+ uint32_t const fEFlags = pVCpu->cpum.s.Guest.eflags.u;
+#endif
+ return RT_BOOL(fEFlags & X86_EFL_IF);
+ }
+
+ if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest))
+ return CPUMIsGuestVmxPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
+
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest));
+ return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
+}
+
+
+/**
+ * Returns whether the nested-guest has virtual interrupts enabled.
+ *
+ * @returns @c true if interrupts are enabled, @c false otherwise.
+ * @param pVCpu The cross context virtual CPU structure.
+ *
+ * @remarks Warning! This function does -not- take into account the global-interrupt
+ * flag (GIF).
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
+{
+ Assert(CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest));
+
+ if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest))
+ return CPUMIsGuestVmxVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
+
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest));
+ return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
+}
+
+
+/**
+ * Calculates the interruptiblity of the guest.
+ *
+ * @returns Interruptibility level.
+ * @param pVCpu The cross context virtual CPU structure.
+ */
+VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
+{
+#if 1
+ /* Global-interrupt flag blocks pretty much everything we care about here. */
+ if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
+ {
+ /*
+ * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
+ * it directly here. If and how EFLAGS are used depends on the context (nested-guest
+ * or raw-mode). Hence we use the function below which handles the details.
+ */
+ if ( CPUMIsGuestPhysIntrEnabled(pVCpu)
+ && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
+ || CPUMIsGuestVirtIntrEnabled(pVCpu))
+ return CPUMINTERRUPTIBILITY_UNRESTRAINED;
+
+ /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
+ return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
+ }
+
+ /*
+ * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
+ * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
+ * However, there is some uncertainity regarding the converse, i.e. whether
+ * NMI-blocking until IRET blocks delivery of physical interrupts.
+ *
+ * See Intel spec. 25.4.1 "Event Blocking".
+ */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ return CPUMINTERRUPTIBILITY_INT_INHIBITED;
+
+ return CPUMINTERRUPTIBILITY_INT_DISABLED;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+#else
+ if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
+ {
+ if (pVCpu->cpum.s.Guest.hwvirt.fGif)
+ {
+ if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
+ return CPUMINTERRUPTIBILITY_UNRESTRAINED;
+
+ /** @todo does blocking NMIs mean interrupts are also inhibited? */
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
+ {
+ if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ return CPUMINTERRUPTIBILITY_INT_INHIBITED;
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ }
+ AssertFailed();
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+ }
+ else
+ {
+ if (pVCpu->cpum.s.Guest.hwvirt.fGif)
+ {
+ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
+ return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
+ return CPUMINTERRUPTIBILITY_INT_DISABLED;
+ }
+ return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
+ }
+#endif
+}
+
+
+/**
+ * Checks whether the VMX nested-guest is in a state to receive physical (APIC)
+ * interrupts.
+ *
+ * @returns VBox status code.
+ * @retval true if it's ready, false otherwise.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxPhysIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+#ifdef IN_RC
+ RT_NOREF2(pVCpu, pCtx);
+ AssertReleaseFailedReturn(false);
+#else
+ RT_NOREF(pVCpu);
+ Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
+
+ return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
+#endif
+}
+
+
+/**
+ * Checks whether the VMX nested-guest is in a state to receive virtual interrupts
+ * (those injected with the "virtual-interrupt delivery" feature).
+ *
+ * @returns VBox status code.
+ * @retval true if it's ready, false otherwise.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestVmxVirtIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+#ifdef IN_RC
+ RT_NOREF2(pVCpu, pCtx);
+ AssertReleaseFailedReturn(false);
+#else
+ RT_NOREF2(pVCpu, pCtx);
+ Assert(CPUMIsGuestInVmxNonRootMode(pCtx));
+
+ if ( (pCtx->eflags.u & X86_EFL_IF)
+ && !CPUMIsGuestVmxProcCtlsSet(pVCpu, pCtx, VMX_PROC_CTLS_INT_WINDOW_EXIT))
+ return true;
+ return false;
+#endif
+}
+
+
+/**
+ * Checks whether the SVM nested-guest has physical interrupts enabled.
+ *
+ * @returns true if interrupts are enabled, false otherwise.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ *
+ * @remarks This does -not- take into account the global-interrupt flag.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+ /** @todo Optimization: Avoid this function call and use a pointer to the
+ * relevant eflags instead (setup during VMRUN instruction emulation). */
+#ifdef IN_RC
+ RT_NOREF2(pVCpu, pCtx);
+ AssertReleaseFailedReturn(false);
+#else
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+
+ X86EFLAGS fEFlags;
+ if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
+ fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
+ else
+ fEFlags.u = pCtx->eflags.u;
+
+ return fEFlags.Bits.u1IF;
+#endif
+}
+
+
+/**
+ * Checks whether the SVM nested-guest is in a state to receive virtual (setup
+ * for injection by VMRUN instruction) interrupts.
+ *
+ * @returns VBox status code.
+ * @retval true if it's ready, false otherwise.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PVMCPU pVCpu, PCCPUMCTX pCtx)
+{
+#ifdef IN_RC
+ RT_NOREF2(pVCpu, pCtx);
+ AssertReleaseFailedReturn(false);
+#else
+ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
+
+ PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
+ Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
+ if ( !pVmcbIntCtrl->n.u1IgnoreTPR
+ && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
+ return false;
+
+ X86EFLAGS fEFlags;
+ if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
+ fEFlags.u = pCtx->eflags.u;
+ else
+ fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
+
+ return fEFlags.Bits.u1IF;
+#endif
+}
+
+
+/**
+ * Gets the pending SVM nested-guest interruptvector.
+ *
+ * @returns The nested-guest interrupt to inject.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
+{
+#ifdef IN_RC
+ RT_NOREF(pCtx);
+ AssertReleaseFailedReturn(0);
+#else
+ PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
+ return pVmcbCtrl->IntCtrl.n.u8VIntrVector;
+#endif
+}
+
+
+/**
+ * Restores the host-state from the host-state save area as part of a \#VMEXIT.
+ *
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param pCtx The guest-CPU context.
+ */
+VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPU pVCpu, PCPUMCTX pCtx)
+{
+ /*
+ * Reload the guest's "host state".
+ */
+ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
+ pCtx->es = pHostState->es;
+ pCtx->cs = pHostState->cs;
+ pCtx->ss = pHostState->ss;
+ pCtx->ds = pHostState->ds;
+ pCtx->gdtr = pHostState->gdtr;
+ pCtx->idtr = pHostState->idtr;
+ CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
+ CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
+ pCtx->cr3 = pHostState->uCr3;
+ CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
+ pCtx->rflags = pHostState->rflags;
+ pCtx->rflags.Bits.u1VM = 0;
+ pCtx->rip = pHostState->uRip;
+ pCtx->rsp = pHostState->uRsp;
+ pCtx->rax = pHostState->uRax;
+ pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
+ pCtx->dr[7] |= X86_DR7_RA1_MASK;
+ Assert(pCtx->ss.Attr.n.u2Dpl == 0);
+
+ /** @todo if RIP is not canonical or outside the CS segment limit, we need to
+ * raise \#GP(0) in the guest. */
+
+ /** @todo check the loaded host-state for consistency. Figure out what
+ * exactly this involves? */
+}
+
+
+/**
+ * Saves the host-state to the host-state save area as part of a VMRUN.
+ *
+ * @param pCtx The guest-CPU context.
+ * @param cbInstr The length of the VMRUN instruction in bytes.
+ */
+VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
+{
+ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
+ pHostState->es = pCtx->es;
+ pHostState->cs = pCtx->cs;
+ pHostState->ss = pCtx->ss;
+ pHostState->ds = pCtx->ds;
+ pHostState->gdtr = pCtx->gdtr;
+ pHostState->idtr = pCtx->idtr;
+ pHostState->uEferMsr = pCtx->msrEFER;
+ pHostState->uCr0 = pCtx->cr0;
+ pHostState->uCr3 = pCtx->cr3;
+ pHostState->uCr4 = pCtx->cr4;
+ pHostState->rflags = pCtx->rflags;
+ pHostState->uRip = pCtx->rip + cbInstr;
+ pHostState->uRsp = pCtx->rsp;
+ pHostState->uRax = pCtx->rax;
+}
+
+
+/**
+ * Applies the TSC offset of a nested-guest if any and returns the new TSC
+ * value for the guest (or nested-guest).
+ *
+ * @returns The TSC offset after applying any nested-guest TSC offset.
+ * @param pVCpu The cross context virtual CPU structure of the calling EMT.
+ * @param uTicks The guest TSC.
+ *
+ * @sa HMApplySvmNstGstTscOffset.
+ */
+VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PVMCPU pVCpu, uint64_t uTicks)
+{
+#ifndef IN_RC
+ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
+ if (CPUMIsGuestInVmxNonRootMode(pCtx))
+ {
+ PCVMXVVMCS pVmcs = pCtx->hwvirt.vmx.CTX_SUFF(pVmcs);
+ if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TSC_OFFSETTING)
+ return uTicks + pVmcs->u64TscOffset.u;
+ return uTicks;
+ }
+
+ if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
+ {
+ if (!HMHasGuestSvmVmcbCached(pVCpu))
+ {
+ PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
+ return uTicks + pVmcb->ctrl.u64TSCOffset;
+ }
+ return HMApplySvmNstGstTscOffset(pVCpu, uTicks);
+ }
+#else
+ RT_NOREF(pVCpu);
+#endif
+ return uTicks;
+}
+
+
+/**
+ * Used to dynamically imports state residing in NEM or HM.
+ *
+ * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
+ *
+ * @returns VBox status code.
+ * @param pVCpu The cross context virtual CPU structure of the calling thread.
+ * @param fExtrnImport The fields to import.
+ * @thread EMT(pVCpu)
+ */
+VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPU pVCpu, uint64_t fExtrnImport)
+{
+ VMCPU_ASSERT_EMT(pVCpu);
+ if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
+ {
+#ifndef IN_RC
+ switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
+ {
+ case CPUMCTX_EXTRN_KEEPER_NEM:
+ {
+ int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
+ Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
+ return rc;
+ }
+
+ case CPUMCTX_EXTRN_KEEPER_HM:
+ {
+#ifdef IN_RING0
+ int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
+ Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
+ return rc;
+#else
+ AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
+ return VINF_SUCCESS;
+#endif
+ }
+ default:
+ AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
+ }
+#else
+ AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
+#endif
+ }
+ return VINF_SUCCESS;
+}
+
+
+/**
+ * Gets valid CR4 bits for the guest.
+ *
+ * @returns Valid CR4 bits.
+ * @param pVM The cross context VM structure.
+ */
+VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
+{
+ PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
+ uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
+ | X86_CR4_TSD | X86_CR4_DE
+ | X86_CR4_PSE | X86_CR4_PAE
+ | X86_CR4_MCE | X86_CR4_PGE
+ | X86_CR4_PCE
+ | X86_CR4_OSXMMEEXCPT; /** @todo r=ramshankar: Introduced in Pentium III along with SSE. Check fSse here? */
+ if (pGuestFeatures->fFxSaveRstor)
+ fMask |= X86_CR4_OSFXSR;
+ if (pGuestFeatures->fVmx)
+ fMask |= X86_CR4_VMXE;
+ if (pGuestFeatures->fXSaveRstor)
+ fMask |= X86_CR4_OSXSAVE;
+ if (pGuestFeatures->fPcid)
+ fMask |= X86_CR4_PCIDE;
+ if (pGuestFeatures->fFsGsBase)
+ fMask |= X86_CR4_FSGSBASE;
+ return fMask;
+}
+