1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/** @file
* IPRT - Assembly Routines for Optimizing some Integers Math Operations.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
#ifndef IPRT_INCLUDED_asm_math_h
#define IPRT_INCLUDED_asm_math_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif
#include <iprt/types.h>
#if defined(_MSC_VER) && RT_INLINE_ASM_USES_INTRIN
# pragma warning(push)
# pragma warning(disable:4668) /* Several incorrect __cplusplus uses. */
# pragma warning(disable:4255) /* Incorrect __slwpcb prototype. */
# include <intrin.h>
# pragma warning(pop)
/* Emit the intrinsics at all optimization levels. */
# pragma intrinsic(__emul)
# pragma intrinsic(__emulu)
# ifdef RT_ARCH_AMD64
# pragma intrinsic(_mul128)
# pragma intrinsic(_umul128)
# endif
#endif
/** @defgroup grp_rt_asm_math Interger Math Optimizations
* @ingroup grp_rt_asm
* @{ */
/**
* Multiplies two unsigned 32-bit values returning an unsigned 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
DECLASM(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2);
#else
DECLINLINE(uint64_t) ASMMult2xU32RetU64(uint32_t u32F1, uint32_t u32F2)
{
# ifdef RT_ARCH_X86
uint64_t u64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("mull %%edx"
: "=A" (u64)
: "a" (u32F2), "d" (u32F1));
# elif RT_INLINE_ASM_USES_INTRIN
u64 = __emulu(u32F1, u32F2);
# else
__asm
{
mov edx, [u32F1]
mov eax, [u32F2]
mul edx
mov dword ptr [u64], eax
mov dword ptr [u64 + 4], edx
}
# endif
return u64;
# else /* generic: */
return (uint64_t)u32F1 * u32F2;
# endif
}
#endif
/**
* Multiplies two signed 32-bit values returning a signed 64-bit result.
*
* @returns u32F1 * u32F2.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN && defined(RT_ARCH_X86)
DECLASM(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2);
#else
DECLINLINE(int64_t) ASMMult2xS32RetS64(int32_t i32F1, int32_t i32F2)
{
# ifdef RT_ARCH_X86
int64_t i64;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("imull %%edx"
: "=A" (i64)
: "a" (i32F2), "d" (i32F1));
# elif RT_INLINE_ASM_USES_INTRIN
i64 = __emul(i32F1, i32F2);
# else
__asm
{
mov edx, [i32F1]
mov eax, [i32F2]
imul edx
mov dword ptr [i64], eax
mov dword ptr [i64 + 4], edx
}
# endif
return i64;
# else /* generic: */
return (int64_t)i32F1 * i32F2;
# endif
}
#endif
#if ARCH_BITS == 64
DECLINLINE(uint64_t) ASMMult2xU64Ret2xU64(uint64_t u64F1, uint64_t u64F2, uint64_t *pu64ProdHi)
{
# if defined(RT_ARCH_AMD64) && (RT_INLINE_ASM_GNU_STYLE || RT_INLINE_ASM_USES_INTRIN)
# if RT_INLINE_ASM_GNU_STYLE
uint64_t u64Low, u64High;
__asm__ __volatile__("mulq %%rdx"
: "=a" (u64Low), "=d" (u64High)
: "0" (u64F1), "1" (u64F2));
*pu64ProdHi = u64High;
return u64Low;
# elif RT_INLINE_ASM_USES_INTRIN
return _umul128(u64F1, u64F2, pu64ProdHi);
# else
# error "hmm"
# endif
# else /* generic: */
/*
* F1 * F2 = Prod
* -- --
* ab * cd = b*d + a*d*10 + b*c*10 + a*c*100
*
* Where a, b, c and d are 'digits', and 10 is max digit + 1.
*
* Our digits are 32-bit wide, so instead of 10 we multiply by 4G.
* Prod = F1.s.Lo*F2.s.Lo + F1.s.Hi*F2.s.Lo*4G
* + F1.s.Lo*F2.s.Hi*4G + F1.s.Hi*F2.s.Hi*4G*4G
*/
RTUINT128U Prod;
RTUINT64U Tmp1;
uint64_t u64Tmp;
RTUINT64U F1, F2;
F1.u = u64F1;
F2.u = u64F2;
Prod.s.Lo = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Lo);
Tmp1.u = ASMMult2xU32RetU64(F1.s.Hi, F2.s.Lo);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
Prod.s.Hi = Tmp1.s.Hi;
Prod.s.Hi += u64Tmp >> 32; /* carry */
Tmp1.u = ASMMult2xU32RetU64(F1.s.Lo, F2.s.Hi);
u64Tmp = (uint64_t)Prod.DWords.dw1 + Tmp1.s.Lo;
Prod.DWords.dw1 = (uint32_t)u64Tmp;
u64Tmp >>= 32; /* carry */
u64Tmp += Prod.DWords.dw2;
u64Tmp += Tmp1.s.Hi;
Prod.DWords.dw2 = (uint32_t)u64Tmp;
Prod.DWords.dw3 += u64Tmp >> 32; /* carry */
Prod.s.Hi += ASMMult2xU32RetU64(F1.s.Hi, F2.s.Hi);
*pu64ProdHi = Prod.s.Hi;
return Prod.s.Lo;
# endif
}
#endif
/**
* Divides a 64-bit unsigned by a 32-bit unsigned returning an unsigned 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMDivU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (u32), "=d"(uDummy)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], eax
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 / u32);
# endif
}
#endif
/**
* Divides a 64-bit signed by a 32-bit signed returning a signed 32-bit result.
*
* @returns u64 / u32.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMDivS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (i32), "=d"(iDummy)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], eax
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 / i32);
# endif
}
#endif
/**
* Performs 64-bit unsigned by a 32-bit unsigned division with a 32-bit unsigned result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32);
#else
DECLINLINE(uint32_t) ASMModU64ByU32RetU32(uint64_t u64, uint32_t u32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG uDummy;
__asm__ __volatile__("divl %3"
: "=a" (uDummy), "=d"(u32)
: "A" (u64), "r" (u32));
# else
__asm
{
mov eax, dword ptr [u64]
mov edx, dword ptr [u64 + 4]
mov ecx, [u32]
div ecx
mov [u32], edx
}
# endif
return u32;
# else /* generic: */
return (uint32_t)(u64 % u32);
# endif
}
#endif
/**
* Performs 64-bit signed by a 32-bit signed division with a 32-bit signed result,
* returning the rest.
*
* @returns u64 % u32.
*
* @remarks It is important that the result is <= UINT32_MAX or we'll overflow and crash.
*/
#if RT_INLINE_ASM_EXTERNAL && defined(RT_ARCH_X86)
DECLASM(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32);
#else
DECLINLINE(int32_t) ASMModS64ByS32RetS32(int64_t i64, int32_t i32)
{
# ifdef RT_ARCH_X86
# if RT_INLINE_ASM_GNU_STYLE
RTCCUINTREG iDummy;
__asm__ __volatile__("idivl %3"
: "=a" (iDummy), "=d"(i32)
: "A" (i64), "r" (i32));
# else
__asm
{
mov eax, dword ptr [i64]
mov edx, dword ptr [i64 + 4]
mov ecx, [i32]
idiv ecx
mov [i32], edx
}
# endif
return i32;
# else /* generic: */
return (int32_t)(i64 % i32);
# endif
}
#endif
/**
* Multiple a 32-bit by a 32-bit integer and divide the result by a 32-bit integer
* using a 64 bit intermediate result.
*
* @returns (u32A * u32B) / u32C.
* @param u32A The 32-bit value (A).
* @param u32B The 32-bit value to multiple by A.
* @param u32C The 32-bit value to divide A*B by.
*
* @remarks Architecture specific.
* @remarks Make sure the result won't ever exceed 32-bit, because hardware
* exception may be raised if it does.
* @remarks On x86 this may be used to avoid dragging in 64-bit builtin
* arithmetics functions.
*/
#if RT_INLINE_ASM_EXTERNAL && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
DECLASM(uint32_t) ASMMultU32ByU32DivByU32(uint32_t u32A, uint32_t u32B, uint32_t u32C);
#else
DECLINLINE(uint32_t) ASMMultU32ByU32DivByU32(uint32_t u32A, uint32_t u32B, uint32_t u32C)
{
# if RT_INLINE_ASM_GNU_STYLE && (defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86))
uint32_t u32Result, u32Spill;
__asm__ __volatile__("mull %2\n\t"
"divl %3\n\t"
: "=&a" (u32Result),
"=&d" (u32Spill)
: "r" (u32B),
"r" (u32C),
"0" (u32A));
return u32Result;
# else
return (uint32_t)(((uint64_t)u32A * u32B) / u32C);
# endif
}
#endif
/**
* Multiple a 64-bit by a 32-bit integer and divide the result by a 32-bit integer
* using a 96 bit intermediate result.
*
* @returns (u64A * u32B) / u32C.
* @param u64A The 64-bit value.
* @param u32B The 32-bit value to multiple by A.
* @param u32C The 32-bit value to divide A*B by.
*
* @remarks Architecture specific.
* @remarks Make sure the result won't ever exceed 64-bit, because hardware
* exception may be raised if it does.
* @remarks On x86 this may be used to avoid dragging in 64-bit builtin
* arithmetics function.
*/
#if RT_INLINE_ASM_EXTERNAL || !defined(__GNUC__) || (!defined(RT_ARCH_AMD64) && !defined(RT_ARCH_X86))
DECLASM(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C);
#else
DECLINLINE(uint64_t) ASMMultU64ByU32DivByU32(uint64_t u64A, uint32_t u32B, uint32_t u32C)
{
# if RT_INLINE_ASM_GNU_STYLE
# ifdef RT_ARCH_AMD64
uint64_t u64Result, u64Spill;
__asm__ __volatile__("mulq %2\n\t"
"divq %3\n\t"
: "=&a" (u64Result),
"=&d" (u64Spill)
: "r" ((uint64_t)u32B),
"r" ((uint64_t)u32C),
"0" (u64A));
return u64Result;
# else
uint32_t u32Dummy;
uint64_t u64Result;
__asm__ __volatile__("mull %%ecx \n\t" /* eax = u64Lo.lo = (u64A.lo * u32B).lo
edx = u64Lo.hi = (u64A.lo * u32B).hi */
"xchg %%eax,%%esi \n\t" /* esi = u64Lo.lo
eax = u64A.hi */
"xchg %%edx,%%edi \n\t" /* edi = u64Low.hi
edx = u32C */
"xchg %%edx,%%ecx \n\t" /* ecx = u32C
edx = u32B */
"mull %%edx \n\t" /* eax = u64Hi.lo = (u64A.hi * u32B).lo
edx = u64Hi.hi = (u64A.hi * u32B).hi */
"addl %%edi,%%eax \n\t" /* u64Hi.lo += u64Lo.hi */
"adcl $0,%%edx \n\t" /* u64Hi.hi += carry */
"divl %%ecx \n\t" /* eax = u64Hi / u32C
edx = u64Hi % u32C */
"movl %%eax,%%edi \n\t" /* edi = u64Result.hi = u64Hi / u32C */
"movl %%esi,%%eax \n\t" /* eax = u64Lo.lo */
"divl %%ecx \n\t" /* u64Result.lo */
"movl %%edi,%%edx \n\t" /* u64Result.hi */
: "=A"(u64Result), "=c"(u32Dummy),
"=S"(u32Dummy), "=D"(u32Dummy)
: "a"((uint32_t)u64A),
"S"((uint32_t)(u64A >> 32)),
"c"(u32B),
"D"(u32C));
return u64Result;
# endif
# else
RTUINT64U u;
uint64_t u64Lo = (uint64_t)(u64A & 0xffffffff) * u32B;
uint64_t u64Hi = (uint64_t)(u64A >> 32) * u32B;
u64Hi += (u64Lo >> 32);
u.s.Hi = (uint32_t)(u64Hi / u32C);
u.s.Lo = (uint32_t)((((u64Hi % u32C) << 32) + (u64Lo & 0xffffffff)) / u32C);
return u.u;
# endif
}
#endif
/** @} */
#endif /* !IPRT_INCLUDED_asm_math_h */
|