summaryrefslogtreecommitdiffstats
path: root/include/iprt/cpp/list.h
blob: da5331c327e47585b0df07051859ca35c51e9e12 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/** @file
 * IPRT - Generic List Class.
 */

/*
 * Copyright (C) 2011-2019 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */

#ifndef IPRT_INCLUDED_cpp_list_h
#define IPRT_INCLUDED_cpp_list_h
#ifndef RT_WITHOUT_PRAGMA_ONCE
# pragma once
#endif

#include <iprt/cpp/meta.h>
#include <iprt/mem.h>
#include <iprt/string.h> /* for memcpy */
#include <iprt/assert.h>

#include <new> /* For std::bad_alloc */

/** @defgroup grp_rt_cpp_list   C++ List support
 * @ingroup grp_rt_cpp
 *
 * @brief  Generic C++ list class support.
 *
 * This list classes manage any amount of data in a fast and easy to use way.
 * They have no dependencies on STL, only on generic memory management methods
 * of IRPT. This allows list handling in situations where the use of STL
 * container classes is forbidden.
 *
 * Not all of the functionality of STL container classes is implemented. There
 * are no iterators or any other high level access/modifier methods (e.g.
 * std::algorithms).
 *
 * The implementation is array based which allows fast access to the items.
 * Appending items is usually also fast, cause the internal array is
 * preallocated. To minimize the memory overhead, native types (that is
 * everything smaller then the size of void*) are directly saved in the array.
 * If bigger types are used (e.g. RTCString) the internal array is an array of
 * pointers to the objects.
 *
 * The size of the internal array will usually not shrink, but grow
 * automatically. Only certain methods, like RTCList::clear or the "=" operator
 * will reset any previously allocated memory. You can call
 * RTCList::setCapacity for manual adjustment. If the size of an new list will
 * be known, calling the constructor with the necessary capacity will speed up
 * the insertion of the new items.
 *
 * For the full public interface these list classes offer see RTCListBase.
 *
 * There are some requirements for the types used which follow:
 * -# They need a default and a copy constructor.
 * -# Some methods (e.g. RTCList::contains) need an equal operator.
 * -# If the type is some complex class (that is, having a constructor which
 *    allocates members on the heap) it has to be greater than sizeof(void*) to
 *    be used correctly. If this is not the case you can manually overwrite the
 *    list behavior. Just add T* as a second parameter to the list template if
 *    your class is called T. Another possibility is to specialize the list for
 *    your target class. See below for more information.
 *
 * The native types like int, bool, ptr, ..., are meeting this criteria, so
 * they are save to use.
 *
 * Please note that the return type of some of the getter methods are slightly
 * different depending on the list type. Native types return the item by value,
 * items with a size greater than sizeof(void*) by reference. As native types
 * saved directly in the internal array, returning a reference to them (and
 * saving them in a reference as well) would make them invalid (or pointing to
 * a wrong item) when the list is changed in the meanwhile. Returning a
 * reference for bigger types isn't problematic and makes sure we get out the
 * best speed of the list. The one exception to this rule is the index
 * operator[]. This operator always return a reference to make it possible to
 * use it as a lvalue. Its your responsibility to make sure the list isn't
 * changed when using the value as reference returned by this operator.
 *
 * The list class is reentrant. For a thread-safe variant see RTCMTList.
 *
 * Implementation details:
 * It is possible to specialize any type. This might be necessary to get the
 * best speed out of the list. Examples are the 64-bit types, which use the
 * native (no pointers) implementation even on a 32-bit host. Consult the
 * source code for more details.
 *
 * Current specialized implementations:
 * - int64_t: RTCList<int64_t>
 * - uint64_t: RTCList<uint64_t>
 *
 * @{
 */

/**
 * The guard definition.
 */
template <bool G>
class RTCListGuard;

/**
 * The default guard which does nothing.
 */
template <>
class RTCListGuard<false>
{
public:
    inline void enterRead() const {}
    inline void leaveRead() const {}
    inline void enterWrite() {}
    inline void leaveWrite() {}

    /* Define our own new and delete. */
    RTMEMEF_NEW_AND_DELETE_OPERATORS();
};

/**
 * General helper template for managing native values in RTCListBase.
 */
template <typename T1, typename T2>
class RTCListHelper
{
public:
    static inline void      set(T2 *p, size_t i, const T1 &v) { p[i] = v; }
    static inline T1 &      at(T2 *p, size_t i) { return p[i]; }
    static inline const T1 &atConst(T2 const *p, size_t i) { return p[i]; }
    static inline size_t    find(T2 *p, const T1 &v, size_t cElements)
    {
        size_t i = cElements;
        while (i-- > 0)
            if (p[i] == v)
                return i;
        return cElements;
    }
    static inline void      copyTo(T2 *p, T2 *const p1 , size_t iTo, size_t cSize)
    {
        if (cSize > 0)
            memcpy(&p[iTo], &p1[0], sizeof(T1) * cSize);
    }
    static inline void      erase(T2 * /* p */, size_t /* i */) { /* Nothing to do here. */ }
    static inline void      eraseRange(T2 * /* p */, size_t /* cFrom */, size_t /* cSize */) { /* Nothing to do here. */ }
};

/**
 * Specialized helper template for managing pointer values in RTCListBase.
 */
template <typename T1>
class RTCListHelper<T1, T1*>
{
public:
    static inline void      set(T1 **p, size_t i, const T1 &v) { p[i] = new T1(v); }
    static inline T1 &      at(T1 **p, size_t i) { return *p[i]; }
    static inline const T1 &atConst(T1 * const *p, size_t i) { return *p[i]; }
    static inline size_t    find(T1 **p, const T1 &v, size_t cElements)
    {
        size_t i = cElements;
        while (i-- > 0)
            if (*p[i] == v)
                return i;
        return cElements;
    }
    static inline void      copyTo(T1 **p, T1 **const p1 , size_t iTo, size_t cSize)
    {
        for (size_t i = 0; i < cSize; ++i)
            p[iTo + i] = new T1(*p1[i]);
    }
    static inline void      erase(T1 **p, size_t i) { delete p[i]; }
    static inline void      eraseRange(T1 **p, size_t iFrom, size_t cItems)
    {
        while (cItems-- > 0)
            delete p[iFrom++];
    }
};

/**
 * This is the base class for all other list classes. It implements the
 * necessary list functionality in a type independent way and offers the public
 * list interface to the user.
 */
template <class T, typename ITYPE, bool MT>
class RTCListBase
{
    /** @name Traits.
     *
     * Defines the return type of most of the getter methods. If the internal
     * used type is a pointer, we return a reference. If not we return by
     * value.
     *
     * @{
     */
    typedef typename RTCIfPtr<ITYPE, T&, T>::result GET_RTYPE;
    typedef typename RTCIfPtr<ITYPE, const T&, T>::result GET_CRTYPE;
    /** @}  */

public:
    /**
     * Creates a new list.
     *
     * This preallocates @a cCapacity elements within the list.
     *
     * @param   cCapacity    The initial capacity the list has.
     * @throws  std::bad_alloc
     */
    RTCListBase(size_t cCapacity = kDefaultCapacity)
        : m_pArray(0)
        , m_cElements(0)
        , m_cCapacity(0)
    {
        if (cCapacity > 0)
            growArray(cCapacity);
    }

    /**
     * Creates a copy of another list.
     *
     * The other list will be fully copied and the capacity will be the same as
     * the size of the other list.
     *
     * @param   other          The list to copy.
     * @throws  std::bad_alloc
     */
    RTCListBase(const RTCListBase<T, ITYPE, MT>& other)
        : m_pArray(0)
        , m_cElements(0)
        , m_cCapacity(0)
    {
        other.m_guard.enterRead();

        size_t const cElementsOther = other.m_cElements;
        resizeArrayNoErase(cElementsOther);
        RTCListHelper<T, ITYPE>::copyTo(m_pArray, other.m_pArray, 0, cElementsOther);
        m_cElements = cElementsOther;

        other.m_guard.leaveRead();
    }

    /**
     * Destructor.
     */
    ~RTCListBase()
    {
        RTCListHelper<T, ITYPE>::eraseRange(m_pArray, 0, m_cElements);
        if (m_pArray)
        {
            RTMemFree(m_pArray);
            m_pArray = NULL;
        }
        m_cElements = m_cCapacity = 0;
    }

    /**
     * Sets a new capacity within the list.
     *
     * If the new capacity is bigger than the old size, it will be simply
     * preallocated more space for the new items.  If the new capacity is
     * smaller than the previous size, items at the end of the list will be
     * deleted.
     *
     * @param   cCapacity   The new capacity within the list.
     * @throws  std::bad_alloc
     */
    void setCapacity(size_t cCapacity)
    {
        m_guard.enterWrite();
        resizeArray(cCapacity);
        m_guard.leaveWrite();
    }

    /**
     * Return the current capacity of the list.
     *
     * @return   The actual capacity.
     */
    size_t capacity() const
    {
        m_guard.enterRead();
        size_t cRet = m_cCapacity;
        m_guard.leaveRead();
        return cRet;
    }

    /**
     * Check if an list contains any items.
     *
     * @return   True if there is more than zero items, false otherwise.
     */
    bool isEmpty() const
    {
        m_guard.enterRead();
        bool fEmpty = m_cElements == 0;
        m_guard.leaveRead();
        return fEmpty;
    }

    /**
     * Return the current count of elements within the list.
     *
     * @return   The current element count.
     */
    size_t size() const
    {
        m_guard.enterRead();
        size_t cRet = m_cElements;
        m_guard.leaveRead();
        return cRet;
    }

    /**
     * Inserts an item to the list at position @a i.
     *
     * @param   i     The position of the new item.  The must be within or at the
     *                exact end of the list.  Indexes specified beyond the end of
     *                the list will be changed to an append() operation and strict
     *                builds will raise an assert.
     * @param   val   The new item.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &insert(size_t i, const T &val)
    {
        m_guard.enterWrite();

        AssertMsgStmt(i <= m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements);

        if (m_cElements == m_cCapacity)
            growArray(m_cCapacity + kDefaultCapacity);

        memmove(&m_pArray[i + 1], &m_pArray[i], (m_cElements - i) * sizeof(ITYPE));
        RTCListHelper<T, ITYPE>::set(m_pArray, i, val);
        ++m_cElements;

        m_guard.leaveWrite();
        return *this;
    }

    /**
     * Inserts a list to the list at position @a i.
     *
     * @param   i       The position of the new item.  The must be within or at the
     *                  exact end of the list.  Indexes specified beyond the end of
     *                  the list will be changed to an append() operation and strict
     *                  builds will raise an assert.
     * @param   other   The other list. This MUST not be the same as the destination
     *                  list, will assert and return without doing anything if this
     *                  happens.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &insert(size_t i, const RTCListBase<T, ITYPE, MT> &other)
    {
        AssertReturn(this != &other, *this);

        other.m_guard.enterRead();
        m_guard.enterWrite();

        AssertMsgStmt(i <= m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements);

        size_t cElementsOther = other.m_cElements;
        if (RT_LIKELY(cElementsOther > 0))
        {
            if (m_cCapacity - m_cElements < cElementsOther)
                growArray(m_cCapacity + (cElementsOther - (m_cCapacity - m_cElements)));
            if (i < m_cElements)
                memmove(&m_pArray[i + cElementsOther], &m_pArray[i], (m_cElements - i) * sizeof(ITYPE));

            RTCListHelper<T, ITYPE>::copyTo(&m_pArray[i], other.m_pArray, 0, cElementsOther);
            m_cElements += cElementsOther;
        }

        m_guard.leaveWrite();
        other.m_guard.leaveRead();
        return *this;
    }

    /**
     * Prepend an item to the list.
     *
     * @param   val   The new item.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &prepend(const T &val)
    {
        return insert(0, val);
    }

    /**
     * Prepend a list of type T to the list.
     *
     * @param   other   The list to prepend.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &prepend(const RTCListBase<T, ITYPE, MT> &other)
    {
        return insert(0, other);
    }

    /**
     * Append a default item to the list.
     *
     * @return  a mutable reference to the item
     * @throws  std::bad_alloc
     */
    GET_RTYPE append()
    {
        m_guard.enterWrite();
        if (m_cElements == m_cCapacity)
            growArray(m_cCapacity + kDefaultCapacity);
        RTCListHelper<T, ITYPE>::set(m_pArray, m_cElements, T());
        GET_RTYPE rRet = RTCListHelper<T, ITYPE>::at(m_pArray, m_cElements);
        ++m_cElements;
        m_guard.leaveWrite();

        return rRet;
    }

    /**
     * Append an item to the list.
     *
     * @param   val   The new item.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &append(const T &val)
    {
        m_guard.enterWrite();
        if (m_cElements == m_cCapacity)
            growArray(m_cCapacity + kDefaultCapacity);
        RTCListHelper<T, ITYPE>::set(m_pArray, m_cElements, val);
        ++m_cElements;
        m_guard.leaveWrite();

        return *this;
    }

    /**
     * Append a list of type T to the list.
     *
     * @param   other   The list to append. Must not be the same as the destination
     *                  list, will assert and return without doing anything.
     * @return  a reference to this list.
     * @throws  std::bad_alloc
     */
    RTCListBase<T, ITYPE, MT> &append(const RTCListBase<T, ITYPE, MT> &other)
    {
        AssertReturn(this != &other, *this);

        other.m_guard.enterRead();
        m_guard.enterWrite();

        insert(m_cElements, other);

        m_guard.leaveWrite();
        other.m_guard.leaveRead();
        return *this;
    }

    /**
     * Copy the items of the other list into this list.
     *
     * All previous items of this list are deleted.
     *
     * @param   other   The list to copy.
     * @return  a reference to this list.
     */
    RTCListBase<T, ITYPE, MT> &operator=(const RTCListBase<T, ITYPE, MT>& other)
    {
        /* Prevent self assignment */
        if (RT_LIKELY(this != &other))
        {

            other.m_guard.enterRead();
            m_guard.enterWrite();

            /* Delete all items. */
            RTCListHelper<T, ITYPE>::eraseRange(m_pArray, 0, m_cElements);

            /* Need we to realloc memory. */
            if (other.m_cElements != m_cCapacity)
                resizeArrayNoErase(other.m_cElements);
            m_cElements = other.m_cElements;

            /* Copy new items. */
            RTCListHelper<T, ITYPE>::copyTo(m_pArray, other.m_pArray, 0, other.m_cElements);

            m_guard.leaveWrite();
            other.m_guard.leaveRead();
        }
        return *this;
    }

    /**
     * Replace an item in the list.
     *
     * @param   i     The position of the item to replace.  If this is out of range,
     *                the request will be ignored, strict builds will assert.
     * @param   val   The new value.
     * @return  a reference to this list.
     */
    RTCListBase<T, ITYPE, MT> &replace(size_t i, const T &val)
    {
        m_guard.enterWrite();

        if (i < m_cElements)
        {
            RTCListHelper<T, ITYPE>::erase(m_pArray, i);
            RTCListHelper<T, ITYPE>::set(m_pArray, i, val);
        }
        else
            AssertMsgFailed(("i=%zu m_cElements=%zu\n", i, m_cElements));

        m_guard.leaveWrite();
        return *this;
    }

    /**
     * Return the first item as constant object.
     *
     * @return   A reference or pointer to the first item.
     *
     * @note     No boundary checks are done. Make sure there is at least one
     *           element.
     */
    GET_CRTYPE first() const
    {
        m_guard.enterRead();
        Assert(m_cElements > 0);
        GET_CRTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, 0);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the first item.
     *
     * @return   A reference or pointer to the first item.
     *
     * @note     No boundary checks are done. Make sure there is at least one
     *           element.
     */
    GET_RTYPE first()
    {
        m_guard.enterRead();
        Assert(m_cElements > 0);
        GET_RTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, 0);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the last item as constant object.
     *
     * @return   A reference or pointer to the last item.
     *
     * @note     No boundary checks are done. Make sure there is at least one
     *           element.
     */
    GET_CRTYPE last() const
    {
        m_guard.enterRead();
        Assert(m_cElements > 0);
        GET_CRTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, m_cElements - 1);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the last item.
     *
     * @return   A reference or pointer to the last item.
     *
     * @note     No boundary checks are done. Make sure there is at least one
     *           element.
     */
    GET_RTYPE last()
    {
        m_guard.enterRead();
        Assert(m_cElements > 0);
        GET_RTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, m_cElements - 1);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the item at position @a i as constant object.
     *
     * @param   i     The position of the item to return.  This better not be out of
     *                bounds, however should it be the last element of the array
     *                will be return and strict builds will raise an assertion.
     *                Should the array be empty, a crash is very likely.
     * @return  The item at position @a i.
     */
    GET_CRTYPE at(size_t i) const
    {
        m_guard.enterRead();
        AssertMsgStmt(i < m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements - 1);
        GET_CRTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, i);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the item at position @a i.
     *
     * @param   i     The position of the item to return.  This better not be out of
     *                bounds, however should it be the last element of the array
     *                will be return and strict builds will raise an assertion.
     *                Should the array be empty, a crash is very likely.
     * @return   The item at position @a i.
     */
    GET_RTYPE at(size_t i)
    {
        m_guard.enterRead();
        AssertMsgStmt(i < m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements - 1);
        GET_RTYPE res = RTCListHelper<T, ITYPE>::at(m_pArray, i);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the item at position @a i as mutable reference.
     *
     * @param   i     The position of the item to return.  This better not be out of
     *                bounds, however should it be the last element of the array
     *                will be return and strict builds will raise an assertion.
     *                Should the array be empty, a crash is very likely.
     * @return   The item at position @a i.
     */
    T &operator[](size_t i)
    {
        m_guard.enterRead();
        AssertMsgStmt(i < m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements - 1);
        T &res = RTCListHelper<T, ITYPE>::at(m_pArray, i);
        m_guard.leaveRead();
        return res;
    }

    /**
     * Return the item at position @a i as immutable reference.
     *
     * @param   i     The position of the item to return.  This better not be out of
     *                bounds, however should it be the last element of the array
     *                will be return and strict builds will raise an assertion.
     *                Should the array be empty, a crash is very likely.
     * @return   The item at position @a i.
     */
    const T &operator[](size_t i) const
    {
        m_guard.enterRead();
        AssertMsgStmt(i < m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements), i = m_cElements - 1);
        const T &rRet = RTCListHelper<T, ITYPE>::atConst(m_pArray, i);
        m_guard.leaveRead();
        return rRet;
    }

    /**
     * Return a copy of the item at position @a i or default value if out of range.
     *
     * @param   i              The position of the item to return.
     * @return  Copy of the item at position @a i or default value.
     */
    T value(size_t i) const
    {
        m_guard.enterRead();
        if (RT_LIKELY(i < m_cElements))
        {
            T res = RTCListHelper<T, ITYPE>::at(m_pArray, i);
            m_guard.leaveRead();
            return res;
        }
        m_guard.leaveRead();
        return T();
    }

    /**
     * Return a copy of the item at position @a i, or @a defaultVal if out of range.
     *
     * @param   i              The position of the item to return.
     * @param   defaultVal     The value to return in case @a i is invalid.
     * @return  Copy of the item at position @a i or @a defaultVal.
     */
    T value(size_t i, const T &defaultVal) const
    {
        m_guard.enterRead();
        if (RT_LIKELY(i < m_cElements))
        {
            T res = RTCListHelper<T, ITYPE>::at(m_pArray, i);
            m_guard.leaveRead();
            return res;
        }
        m_guard.leaveRead();
        return defaultVal;
    }

    /**
     * Check if @a val is contained in the array.
     *
     * @param   val     The value to check for.
     * @return  true if it is found, false otherwise.
     */
    bool contains(const T &val) const
    {
        m_guard.enterRead();
        bool fRc = RTCListHelper<T, ITYPE>::find(m_pArray, val, m_cElements) < m_cElements;
        m_guard.leaveRead();
        return fRc;
    }

    /**
     * Remove the first item.
     *
     * @note You should make sure the list isn't empty. Strict builds will assert.
     *       The other builds will quietly ignore the request.
     */
    void removeFirst()
    {
        removeAt(0);
    }

    /**
     * Remove the last item.
     *
     * @note You should make sure the list isn't empty. Strict builds will assert.
     *       The other builds will quietly ignore the request.
     */
    void removeLast()
    {
        m_guard.enterWrite();
        removeAtLocked(m_cElements - 1);
        m_guard.leaveWrite();
    }

    /**
     * Remove the item at position @a i.
     *
     * @param   i   The position of the item to remove.  Out of bounds values will
     *              be ignored and an assertion will be raised in strict builds.
     */
    void removeAt(size_t i)
    {
        m_guard.enterWrite();
        removeAtLocked(i);
        m_guard.leaveWrite();
    }

    /**
     * Remove a range of items from the list.
     *
     * @param   iStart  The start position of the items to remove.
     * @param   iEnd    The end position of the items to remove (excluded).
     */
    void removeRange(size_t iStart, size_t iEnd)
    {
        AssertReturnVoid(iStart <= iEnd);
        m_guard.enterWrite();

        AssertMsgStmt(iEnd   <= m_cElements, ("iEnd=%zu m_cElements=%zu\n",   iEnd,   m_cElements), iEnd   = m_cElements);
        AssertMsgStmt(iStart <  m_cElements, ("iStart=%zu m_cElements=%zu\n", iStart, m_cElements), iStart = m_cElements);
        size_t const cElements = iEnd - iStart;
        if (cElements > 0)
        {
            Assert(iStart < m_cElements);
            RTCListHelper<T, ITYPE>::eraseRange(m_pArray, iStart, cElements);
            if (m_cElements > iEnd)
                memmove(&m_pArray[iStart], &m_pArray[iEnd], (m_cElements - iEnd) * sizeof(ITYPE));
            m_cElements -= cElements;
        }

        m_guard.leaveWrite();
    }

    /**
     * Delete all items in the list.
     */
    void clear()
    {
        m_guard.enterWrite();

        /* Values cleanup */
        RTCListHelper<T, ITYPE>::eraseRange(m_pArray, 0, m_cElements);
        if (m_cElements != kDefaultCapacity)
            resizeArrayNoErase(kDefaultCapacity);
        m_cElements = 0;

        m_guard.leaveWrite();
    }

    /**
     * Return the raw array.
     *
     * For native types this is a pointer to continuous memory of the items. For
     * pointer types this is a continuous memory of pointers to the items.
     *
     * @warning If you change anything in the underlaying list, this memory
     *          will very likely become invalid. So take care when using this
     *          method and better try to avoid using it.
     *
     * @returns the raw memory.
     */
    ITYPE *raw() const
    {
        m_guard.enterRead();
        ITYPE *pRet = m_pArray;
        m_guard.leaveRead();
        return pRet;
    }

    RTCListBase<T, ITYPE, MT> &operator<<(const T &val)
    {
        return append(val);
    }

    /* Define our own new and delete. */
    RTMEMEF_NEW_AND_DELETE_OPERATORS();

    /**
     * The default capacity of the list. This is also used as grow factor.
     */
    static const size_t kDefaultCapacity;

protected:

    /**
     * Generic resizes the array, surplus elements are erased.
     *
     * @param   cElementsNew    The new array size.
     * @throws  std::bad_alloc.
     */
    void resizeArray(size_t cElementsNew)
    {
        /* Same size? */
        if (cElementsNew == m_cCapacity)
            return;

        /* If we get smaller we have to delete some of the objects at the end
           of the list. */
        if (   cElementsNew < m_cElements
            && m_pArray)
            RTCListHelper<T, ITYPE>::eraseRange(m_pArray, cElementsNew, m_cElements - cElementsNew);

        resizeArrayNoErase(cElementsNew);
    }

    /**
     * Resizes the array without doing the erase() thing on surplus elements.
     *
     * @param   cElementsNew    The new array size.
     * @throws  std::bad_alloc.
     */
    void resizeArrayNoErase(size_t cElementsNew)
    {
        /* Same size? */
        if (cElementsNew == m_cCapacity)
            return;

        /* Resize the array. */
        if (cElementsNew > 0)
        {
            void *pvNew = RTMemRealloc(m_pArray, sizeof(ITYPE) * cElementsNew);
            if (!pvNew)
            {
#ifdef RT_EXCEPTIONS_ENABLED
                throw std::bad_alloc();
#endif
                return;
            }
            m_pArray = static_cast<ITYPE*>(pvNew);
        }
        /* If we get zero we delete the array it self. */
        else if (m_pArray)
        {
            RTMemFree(m_pArray);
            m_pArray = NULL;
        }

        m_cCapacity = cElementsNew;
        if (m_cElements > cElementsNew)
            m_cElements = cElementsNew;
    }

    /**
     * Special realloc method which require that the array will grow.
     *
     * @param   cElementsNew    The new array size.
     * @throws  std::bad_alloc.
     * @note No boundary checks are done!
     */
    void growArray(size_t cElementsNew)
    {
        Assert(cElementsNew > m_cCapacity);
        void *pvNew = RTMemRealloc(m_pArray, sizeof(ITYPE) * cElementsNew);
        if (pvNew)
        {
            m_cCapacity = cElementsNew;
            m_pArray = static_cast<ITYPE*>(pvNew);
        }
        else
        {
#ifdef RT_EXCEPTIONS_ENABLED
            throw std::bad_alloc();
#endif
        }
    }

    /**
     * Remove the item at position @a i.
     *
     * @param   i   The position of the item to remove.  Out of bounds values will
     *              be ignored and an assertion will be raised in strict builds.
     * @remarks
     */
    void removeAtLocked(size_t i)
    {
        AssertMsgReturnVoid(i < m_cElements, ("i=%zu m_cElements=%zu\n", i, m_cElements));

        RTCListHelper<T, ITYPE>::erase(m_pArray, i);
        if (i < m_cElements - 1)
            memmove(&m_pArray[i], &m_pArray[i + 1], (m_cElements - i - 1) * sizeof(ITYPE));
        --m_cElements;
    }


    /** The internal list array. */
    ITYPE *m_pArray;
    /** The current count of items in use. */
    size_t m_cElements;
    /** The current capacity of the internal array. */
    size_t m_cCapacity;
    /** The guard used to serialize the access to the items. */
    RTCListGuard<MT> m_guard;
};

template <class T, typename ITYPE, bool MT>
const size_t RTCListBase<T, ITYPE, MT>::kDefaultCapacity = 10;

/**
 * Template class which automatically determines the type of list to use.
 *
 * @see RTCListBase
 */
template <class T, typename ITYPE = typename RTCIf<(sizeof(T) > sizeof(void*)), T*, T>::result>
class RTCList : public RTCListBase<T, ITYPE, false>
{
    /* Traits */
    typedef RTCListBase<T, ITYPE, false> BASE;

public:
    /**
     * Creates a new list.
     *
     * This preallocates @a cCapacity elements within the list.
     *
     * @param   cCapacity    The initial capacity the list has.
     * @throws  std::bad_alloc
     */
    RTCList(size_t cCapacity = BASE::kDefaultCapacity)
        : BASE(cCapacity) {}

    RTCList(const BASE &other)
        : BASE(other) {}

    /* Define our own new and delete. */
    RTMEMEF_NEW_AND_DELETE_OPERATORS();
};

/**
 * Specialized class for using the native type list for unsigned 64-bit
 * values even on a 32-bit host.
 *
 * @see RTCListBase
 */
template <>
class RTCList<uint64_t>: public RTCListBase<uint64_t, uint64_t, false>
{
    /* Traits */
    typedef RTCListBase<uint64_t, uint64_t, false> BASE;

public:
    /**
     * Creates a new list.
     *
     * This preallocates @a cCapacity elements within the list.
     *
     * @param   cCapacity    The initial capacity the list has.
     * @throws  std::bad_alloc
     */
    RTCList(size_t cCapacity = BASE::kDefaultCapacity)
        : BASE(cCapacity) {}

    /* Define our own new and delete. */
    RTMEMEF_NEW_AND_DELETE_OPERATORS();
};

/**
 * Specialized class for using the native type list for signed 64-bit
 * values even on a 32-bit host.
 *
 * @see RTCListBase
 */
template <>
class RTCList<int64_t>: public RTCListBase<int64_t, int64_t, false>
{
    /* Traits */
    typedef RTCListBase<int64_t, int64_t, false> BASE;

public:
    /**
     * Creates a new list.
     *
     * This preallocates @a cCapacity elements within the list.
     *
     * @param   cCapacity    The initial capacity the list has.
     * @throws  std::bad_alloc
     */
    RTCList(size_t cCapacity = BASE::kDefaultCapacity)
        : BASE(cCapacity) {}

    /* Define our own new and delete. */
    RTMEMEF_NEW_AND_DELETE_OPERATORS();
};

/** @} */

#endif /* !IPRT_INCLUDED_cpp_list_h */