1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
|
/* $Id: DevHPET.cpp $ */
/** @file
* HPET virtual device - High Precision Event Timer emulation.
*/
/*
* Copyright (C) 2009-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*/
/* This implementation is based on the (generic) Intel IA-PC HPET specification
* and the Intel ICH9 datasheet.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#define LOG_GROUP LOG_GROUP_DEV_HPET
#include <VBox/vmm/pdmdev.h>
#include <VBox/vmm/stam.h>
#include <VBox/log.h>
#include <iprt/assert.h>
#include <iprt/asm-math.h>
#include <iprt/string.h>
#include "VBoxDD.h"
/*********************************************************************************************************************************
* Defined Constants And Macros *
*********************************************************************************************************************************/
/*
* Current limitations:
* - not entirely correct time of interrupt, i.e. never
* schedule interrupt earlier than in 1ms
* - statistics not implemented
* - level-triggered mode not implemented
*/
/** Base address for MMIO.
* On ICH9, it is 0xFED0x000 where 'x' is 0-3, default 0. We do not support
* relocation as the platform firmware is responsible for configuring the
* HPET base address and the OS isn't expected to move it.
* WARNING: This has to match the ACPI tables! */
#define HPET_BASE 0xfed00000
/** HPET reserves a 1K range. */
#define HPET_BAR_SIZE 0x1000
/** The number of timers for PIIX4 / PIIX3. */
#define HPET_NUM_TIMERS_PIIX 3 /* Minimal implementation. */
/** The number of timers for ICH9. */
#define HPET_NUM_TIMERS_ICH9 4
/** HPET clock period for PIIX4 / PIIX3.
* 10000000 femtoseconds == 10ns.
*/
#define HPET_CLK_PERIOD_PIIX UINT32_C(10000000)
/** HPET clock period for ICH9.
* 69841279 femtoseconds == 69.84 ns (1 / 14.31818MHz).
*/
#define HPET_CLK_PERIOD_ICH9 UINT32_C(69841279)
/**
* Femtosecods in a nanosecond
*/
#define FS_PER_NS 1000000
/** @name Interrupt type
* @{ */
#define HPET_TIMER_TYPE_LEVEL (1 << 1)
#define HPET_TIMER_TYPE_EDGE (0 << 1)
/** @} */
/** @name Delivery mode
* @{ */
#define HPET_TIMER_DELIVERY_APIC 0 /**< Delivery through APIC. */
#define HPET_TIMER_DELIVERY_FSB 1 /**< Delivery through FSB. */
/** @} */
#define HPET_TIMER_CAP_FSB_INT_DEL (1 << 15)
#define HPET_TIMER_CAP_PER_INT (1 << 4)
#define HPET_CFG_ENABLE 0x001 /**< ENABLE_CNF */
#define HPET_CFG_LEGACY 0x002 /**< LEG_RT_CNF */
/** @name Register offsets in HPET space.
* @{ */
#define HPET_ID 0x000 /**< Device ID. */
#define HPET_PERIOD 0x004 /**< Clock period in femtoseconds. */
#define HPET_CFG 0x010 /**< Configuration register. */
#define HPET_STATUS 0x020 /**< Status register. */
#define HPET_COUNTER 0x0f0 /**< Main HPET counter. */
/** @} */
/** @name Timer N offsets (within each timer's space).
* @{ */
#define HPET_TN_CFG 0x000 /**< Timer N configuration. */
#define HPET_TN_CMP 0x008 /**< Timer N comparator. */
#define HPET_TN_ROUTE 0x010 /**< Timer N interrupt route. */
/** @} */
#define HPET_CFG_WRITE_MASK 0x3
#define HPET_TN_INT_TYPE RT_BIT_64(1)
#define HPET_TN_ENABLE RT_BIT_64(2)
#define HPET_TN_PERIODIC RT_BIT_64(3)
#define HPET_TN_PERIODIC_CAP RT_BIT_64(4)
#define HPET_TN_SIZE_CAP RT_BIT_64(5)
#define HPET_TN_SETVAL RT_BIT_64(6)
#define HPET_TN_32BIT RT_BIT_64(8)
#define HPET_TN_INT_ROUTE_MASK UINT64_C(0x3e00)
#define HPET_TN_CFG_WRITE_MASK UINT64_C(0x3e46)
#define HPET_TN_INT_ROUTE_SHIFT 9
#define HPET_TN_INT_ROUTE_CAP_SHIFT 32
#define HPET_TN_CFG_BITS_READONLY_OR_RESERVED 0xffff80b1U
/** Extract the timer count from the capabilities. */
#define HPET_CAP_GET_TIMERS(a_u32) ( ((a_u32) >> 8) & 0x1f )
/** The version of the saved state. */
#define HPET_SAVED_STATE_VERSION 2
/** Empty saved state */
#define HPET_SAVED_STATE_VERSION_EMPTY 1
/**
* Acquires the HPET lock or returns.
*/
#define DEVHPET_LOCK_RETURN(a_pThis, a_rcBusy) \
do { \
int rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \
if (rcLock != VINF_SUCCESS) \
return rcLock; \
} while (0)
/**
* Releases the HPET lock.
*/
#define DEVHPET_UNLOCK(a_pThis) \
do { PDMCritSectLeave(&(a_pThis)->CritSect); } while (0)
/**
* Acquires the TM lock and HPET lock, returns on failure.
*/
#define DEVHPET_LOCK_BOTH_RETURN(a_pThis, a_rcBusy) \
do { \
int rcLock = TMTimerLock((a_pThis)->aTimers[0].CTX_SUFF(pTimer), (a_rcBusy)); \
if (rcLock != VINF_SUCCESS) \
return rcLock; \
rcLock = PDMCritSectEnter(&(a_pThis)->CritSect, (a_rcBusy)); \
if (rcLock != VINF_SUCCESS) \
{ \
TMTimerUnlock((a_pThis)->aTimers[0].CTX_SUFF(pTimer)); \
return rcLock; \
} \
} while (0)
/**
* Releases the HPET lock and TM lock.
*/
#define DEVHPET_UNLOCK_BOTH(a_pThis) \
do { \
PDMCritSectLeave(&(a_pThis)->CritSect); \
TMTimerUnlock((a_pThis)->aTimers[0].CTX_SUFF(pTimer)); \
} while (0)
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* A HPET timer.
*/
typedef struct HPETTIMER
{
/** The HPET timer - R3 Ptr. */
PTMTIMERR3 pTimerR3;
/** Pointer to the instance data - R3 Ptr. */
R3PTRTYPE(struct HPET *) pHpetR3;
/** The HPET timer - R0 Ptr. */
PTMTIMERR0 pTimerR0;
/** Pointer to the instance data - R0 Ptr. */
R0PTRTYPE(struct HPET *) pHpetR0;
/** The HPET timer - RC Ptr. */
PTMTIMERRC pTimerRC;
/** Pointer to the instance data - RC Ptr. */
RCPTRTYPE(struct HPET *) pHpetRC;
/** Timer index. */
uint8_t idxTimer;
/** Wrap. */
uint8_t u8Wrap;
/** Alignment. */
uint32_t alignment0;
/** @name Memory-mapped, software visible timer registers.
* @{ */
/** Configuration/capabilities. */
uint64_t u64Config;
/** Comparator. */
uint64_t u64Cmp;
/** FSB route, not supported now. */
uint64_t u64Fsb;
/** @} */
/** @name Hidden register state.
* @{ */
/** Last value written to comparator. */
uint64_t u64Period;
/** @} */
} HPETTIMER;
AssertCompileMemberAlignment(HPETTIMER, u64Config, sizeof(uint64_t));
/**
* The HPET state.
*/
typedef struct HPET
{
/** Pointer to the device instance. - R3 ptr. */
PPDMDEVINSR3 pDevInsR3;
/** The HPET helpers - R3 Ptr. */
PCPDMHPETHLPR3 pHpetHlpR3;
/** Pointer to the device instance. - R0 ptr. */
PPDMDEVINSR0 pDevInsR0;
/** The HPET helpers - R0 Ptr. */
PCPDMHPETHLPR0 pHpetHlpR0;
/** Pointer to the device instance. - RC ptr. */
PPDMDEVINSRC pDevInsRC;
/** The HPET helpers - RC Ptr. */
PCPDMHPETHLPRC pHpetHlpRC;
/** Timer structures. */
HPETTIMER aTimers[RT_MAX(HPET_NUM_TIMERS_PIIX, HPET_NUM_TIMERS_ICH9)];
/** Offset realtive to the virtual sync clock. */
uint64_t u64HpetOffset;
/** @name Memory-mapped, software visible registers
* @{ */
/** Capabilities. */
uint32_t u32Capabilities;
/** HPET_PERIOD - . */
uint32_t u32Period;
/** Configuration. */
uint64_t u64HpetConfig;
/** Interrupt status register. */
uint64_t u64Isr;
/** Main counter. */
uint64_t u64HpetCounter;
/** @} */
/** Global device lock. */
PDMCRITSECT CritSect;
/** Whether we emulate ICH9 HPET (different frequency & timer count). */
bool fIch9;
/** Size alignment padding. */
uint8_t abPadding0[7];
} HPET;
#ifndef VBOX_DEVICE_STRUCT_TESTCASE
DECLINLINE(bool) hpet32bitTimer(HPETTIMER *pHpetTimer)
{
uint64_t u64Cfg = pHpetTimer->u64Config;
return ((u64Cfg & HPET_TN_SIZE_CAP) == 0) || ((u64Cfg & HPET_TN_32BIT) != 0);
}
DECLINLINE(uint64_t) hpetInvalidValue(HPETTIMER *pHpetTimer)
{
return hpet32bitTimer(pHpetTimer) ? UINT32_MAX : UINT64_MAX;
}
DECLINLINE(uint64_t) hpetTicksToNs(HPET *pThis, uint64_t value)
{
return ASMMultU64ByU32DivByU32(value, pThis->u32Period, FS_PER_NS);
}
DECLINLINE(uint64_t) nsToHpetTicks(HPET const *pThis, uint64_t u64Value)
{
return ASMMultU64ByU32DivByU32(u64Value, FS_PER_NS, pThis->u32Period);
}
DECLINLINE(uint64_t) hpetGetTicks(HPET const *pThis)
{
/*
* We can use any timer to get current time, they all go
* with the same speed.
*/
return nsToHpetTicks(pThis,
TMTimerGet(pThis->aTimers[0].CTX_SUFF(pTimer))
+ pThis->u64HpetOffset);
}
DECLINLINE(uint64_t) hpetUpdateMasked(uint64_t u64NewValue, uint64_t u64OldValue, uint64_t u64Mask)
{
u64NewValue &= u64Mask;
u64NewValue |= (u64OldValue & ~u64Mask);
return u64NewValue;
}
DECLINLINE(bool) hpetBitJustSet(uint64_t u64OldValue, uint64_t u64NewValue, uint64_t u64Mask)
{
return !(u64OldValue & u64Mask)
&& !!(u64NewValue & u64Mask);
}
DECLINLINE(bool) hpetBitJustCleared(uint64_t u64OldValue, uint64_t u64NewValue, uint64_t u64Mask)
{
return !!(u64OldValue & u64Mask)
&& !(u64NewValue & u64Mask);
}
DECLINLINE(uint64_t) hpetComputeDiff(HPETTIMER *pHpetTimer, uint64_t u64Now)
{
if (hpet32bitTimer(pHpetTimer))
{
uint32_t u32Diff;
u32Diff = (uint32_t)pHpetTimer->u64Cmp - (uint32_t)u64Now;
u32Diff = ((int32_t)u32Diff > 0) ? u32Diff : (uint32_t)0;
return (uint64_t)u32Diff;
}
else
{
uint64_t u64Diff;
u64Diff = pHpetTimer->u64Cmp - u64Now;
u64Diff = ((int64_t)u64Diff > 0) ? u64Diff : (uint64_t)0;
return u64Diff;
}
}
static void hpetAdjustComparator(HPETTIMER *pHpetTimer, uint64_t u64Now)
{
uint64_t u64Period = pHpetTimer->u64Period;
if ((pHpetTimer->u64Config & HPET_TN_PERIODIC) && u64Period)
{
uint64_t cPeriods = (u64Now - pHpetTimer->u64Cmp) / u64Period;
pHpetTimer->u64Cmp += (cPeriods + 1) * u64Period;
}
}
/**
* Sets the frequency hint if it's a periodic timer.
*
* @param pThis The HPET state.
* @param pHpetTimer The timer.
*/
DECLINLINE(void) hpetTimerSetFrequencyHint(HPET *pThis, HPETTIMER *pHpetTimer)
{
if (pHpetTimer->u64Config & HPET_TN_PERIODIC)
{
uint64_t const u64Period = pHpetTimer->u64Period;
uint32_t const u32Freq = pThis->u32Period;
if (u64Period > 0 && u64Period < u32Freq)
TMTimerSetFrequencyHint(pHpetTimer->CTX_SUFF(pTimer), u32Freq / (uint32_t)u64Period);
}
}
static void hpetProgramTimer(HPETTIMER *pHpetTimer)
{
/* no wrapping on new timers */
pHpetTimer->u8Wrap = 0;
uint64_t u64Ticks = hpetGetTicks(pHpetTimer->CTX_SUFF(pHpet));
hpetAdjustComparator(pHpetTimer, u64Ticks);
uint64_t u64Diff = hpetComputeDiff(pHpetTimer, u64Ticks);
/*
* HPET spec says in one-shot 32-bit mode, generate an interrupt when
* counter wraps in addition to an interrupt with comparator match.
*/
if ( hpet32bitTimer(pHpetTimer)
&& !(pHpetTimer->u64Config & HPET_TN_PERIODIC))
{
uint32_t u32TillWrap = 0xffffffff - (uint32_t)u64Ticks + 1;
if (u32TillWrap < (uint32_t)u64Diff)
{
Log(("wrap on timer %d: till=%u ticks=%lld diff64=%lld\n",
pHpetTimer->idxTimer, u32TillWrap, u64Ticks, u64Diff));
u64Diff = u32TillWrap;
pHpetTimer->u8Wrap = 1;
}
}
/*
* HACK ALERT! Avoid killing VM with interrupts.
*/
#if 1 /** @todo HACK, rethink, may have negative impact on the guest */
if (u64Diff == 0)
u64Diff = 100000; /* 1 millisecond */
#endif
Log4(("HPET: next IRQ in %lld ticks (%lld ns)\n", u64Diff, hpetTicksToNs(pHpetTimer->CTX_SUFF(pHpet), u64Diff)));
TMTimerSetNano(pHpetTimer->CTX_SUFF(pTimer), hpetTicksToNs(pHpetTimer->CTX_SUFF(pHpet), u64Diff));
hpetTimerSetFrequencyHint(pHpetTimer->CTX_SUFF(pHpet), pHpetTimer);
}
/* -=-=-=-=-=- Timer register accesses -=-=-=-=-=- */
/**
* Reads a HPET timer register.
*
* @returns VBox strict status code.
* @param pThis The HPET instance.
* @param iTimerNo The timer index.
* @param iTimerReg The index of the timer register to read.
* @param pu32Value Where to return the register value.
*
* @remarks ASSUMES the caller holds the HPET lock.
*/
static int hpetTimerRegRead32(HPET const *pThis, uint32_t iTimerNo, uint32_t iTimerReg, uint32_t *pu32Value)
{
Assert(PDMCritSectIsOwner(&pThis->CritSect));
if ( iTimerNo >= HPET_CAP_GET_TIMERS(pThis->u32Capabilities) /* The second check is only to satisfy Parfait; */
|| iTimerNo >= RT_ELEMENTS(pThis->aTimers) ) /* in practice, the number of configured timers */
{ /* will always be <= aTimers elements. */
LogRelMax(10, ("HPET: Using timer above configured range: %d\n", iTimerNo));
*pu32Value = 0;
return VINF_SUCCESS;
}
HPETTIMER const *pHpetTimer = &pThis->aTimers[iTimerNo];
uint32_t u32Value;
switch (iTimerReg)
{
case HPET_TN_CFG:
u32Value = (uint32_t)pHpetTimer->u64Config;
Log(("read HPET_TN_CFG on %d: %#x\n", iTimerNo, u32Value));
break;
case HPET_TN_CFG + 4:
u32Value = (uint32_t)(pHpetTimer->u64Config >> 32);
Log(("read HPET_TN_CFG+4 on %d: %#x\n", iTimerNo, u32Value));
break;
case HPET_TN_CMP:
u32Value = (uint32_t)pHpetTimer->u64Cmp;
Log(("read HPET_TN_CMP on %d: %#x (%#llx)\n", pHpetTimer->idxTimer, u32Value, pHpetTimer->u64Cmp));
break;
case HPET_TN_CMP + 4:
u32Value = (uint32_t)(pHpetTimer->u64Cmp >> 32);
Log(("read HPET_TN_CMP+4 on %d: %#x (%#llx)\n", pHpetTimer->idxTimer, u32Value, pHpetTimer->u64Cmp));
break;
case HPET_TN_ROUTE:
u32Value = (uint32_t)(pHpetTimer->u64Fsb >> 32); /** @todo Looks wrong, but since it's not supported, who cares. */
Log(("read HPET_TN_ROUTE on %d: %#x\n", iTimerNo, u32Value));
break;
default:
{
LogRelMax(10, ("HPET: Invalid HPET register read %d on %d\n", iTimerReg, pHpetTimer->idxTimer));
u32Value = 0;
break;
}
}
*pu32Value = u32Value;
return VINF_SUCCESS;
}
/**
* 32-bit write to a HPET timer register.
*
* @returns Strict VBox status code.
*
* @param pThis The HPET state.
* @param iTimerNo The timer being written to.
* @param iTimerReg The register being written to.
* @param u32NewValue The value being written.
*
* @remarks The caller should not hold the device lock, unless it also holds
* the TM lock.
*/
static int hpetTimerRegWrite32(HPET *pThis, uint32_t iTimerNo, uint32_t iTimerReg, uint32_t u32NewValue)
{
Assert(!PDMCritSectIsOwner(&pThis->CritSect) || TMTimerIsLockOwner(pThis->aTimers[0].CTX_SUFF(pTimer)));
if ( iTimerNo >= HPET_CAP_GET_TIMERS(pThis->u32Capabilities)
|| iTimerNo >= RT_ELEMENTS(pThis->aTimers) ) /* Parfait - see above. */
{
LogRelMax(10, ("HPET: Using timer above configured range: %d\n", iTimerNo));
return VINF_SUCCESS;
}
HPETTIMER *pHpetTimer = &pThis->aTimers[iTimerNo];
switch (iTimerReg)
{
case HPET_TN_CFG:
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
uint64_t u64Mask = HPET_TN_CFG_WRITE_MASK;
Log(("write HPET_TN_CFG: %d: %x\n", iTimerNo, u32NewValue));
if (pHpetTimer->u64Config & HPET_TN_PERIODIC_CAP)
u64Mask |= HPET_TN_PERIODIC;
if (pHpetTimer->u64Config & HPET_TN_SIZE_CAP)
u64Mask |= HPET_TN_32BIT;
else
u32NewValue &= ~HPET_TN_32BIT;
if (u32NewValue & HPET_TN_32BIT)
{
Log(("setting timer %d to 32-bit mode\n", iTimerNo));
pHpetTimer->u64Cmp = (uint32_t)pHpetTimer->u64Cmp;
pHpetTimer->u64Period = (uint32_t)pHpetTimer->u64Period;
}
if ((u32NewValue & HPET_TN_INT_TYPE) == HPET_TIMER_TYPE_LEVEL)
{
LogRelMax(10, ("HPET: Level-triggered config not yet supported\n"));
AssertFailed();
}
/* We only care about lower 32-bits so far */
pHpetTimer->u64Config = hpetUpdateMasked(u32NewValue, pHpetTimer->u64Config, u64Mask);
DEVHPET_UNLOCK(pThis);
break;
}
case HPET_TN_CFG + 4: /* Interrupt capabilities - read only. */
Log(("write HPET_TN_CFG + 4, useless\n"));
break;
case HPET_TN_CMP: /* lower bits of comparator register */
{
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
Log(("write HPET_TN_CMP on %d: %#x\n", iTimerNo, u32NewValue));
if (pHpetTimer->u64Config & HPET_TN_PERIODIC)
pHpetTimer->u64Period = RT_MAKE_U64(u32NewValue, RT_HI_U32(pHpetTimer->u64Period));
pHpetTimer->u64Cmp = RT_MAKE_U64(u32NewValue, RT_HI_U32(pHpetTimer->u64Cmp));
pHpetTimer->u64Config &= ~HPET_TN_SETVAL;
Log2(("after HPET_TN_CMP cmp=%#llx per=%#llx\n", pHpetTimer->u64Cmp, pHpetTimer->u64Period));
if (pThis->u64HpetConfig & HPET_CFG_ENABLE)
hpetProgramTimer(pHpetTimer);
DEVHPET_UNLOCK_BOTH(pThis);
break;
}
case HPET_TN_CMP + 4: /* upper bits of comparator register */
{
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
Log(("write HPET_TN_CMP + 4 on %d: %#x\n", iTimerNo, u32NewValue));
if (!hpet32bitTimer(pHpetTimer))
{
if (pHpetTimer->u64Config & HPET_TN_PERIODIC)
pHpetTimer->u64Period = RT_MAKE_U64(RT_LO_U32(pHpetTimer->u64Period), u32NewValue);
pHpetTimer->u64Cmp = RT_MAKE_U64(RT_LO_U32(pHpetTimer->u64Cmp), u32NewValue);
Log2(("after HPET_TN_CMP+4 cmp=%llx per=%llx tmr=%d\n", pHpetTimer->u64Cmp, pHpetTimer->u64Period, iTimerNo));
pHpetTimer->u64Config &= ~HPET_TN_SETVAL;
if (pThis->u64HpetConfig & HPET_CFG_ENABLE)
hpetProgramTimer(pHpetTimer);
}
DEVHPET_UNLOCK_BOTH(pThis);
break;
}
case HPET_TN_ROUTE:
Log(("write HPET_TN_ROUTE\n"));
break;
case HPET_TN_ROUTE + 4:
Log(("write HPET_TN_ROUTE + 4\n"));
break;
default:
LogRelMax(10, ("HPET: Invalid timer register write: %d\n", iTimerReg));
break;
}
return VINF_SUCCESS;
}
/* -=-=-=-=-=- Non-timer register accesses -=-=-=-=-=- */
/**
* Read a 32-bit HPET register.
*
* @returns Strict VBox status code.
* @param pThis The HPET state.
* @param idxReg The register to read.
* @param pu32Value Where to return the register value.
*
* @remarks The caller must not own the device lock if HPET_COUNTER is read.
*/
static int hpetConfigRegRead32(HPET *pThis, uint32_t idxReg, uint32_t *pu32Value)
{
Assert(!PDMCritSectIsOwner(&pThis->CritSect) || (idxReg != HPET_COUNTER && idxReg != HPET_COUNTER + 4));
uint32_t u32Value;
switch (idxReg)
{
case HPET_ID:
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
u32Value = pThis->u32Capabilities;
DEVHPET_UNLOCK(pThis);
Log(("read HPET_ID: %#x\n", u32Value));
break;
case HPET_PERIOD:
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
u32Value = pThis->u32Period;
DEVHPET_UNLOCK(pThis);
Log(("read HPET_PERIOD: %#x\n", u32Value));
break;
case HPET_CFG:
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
u32Value = (uint32_t)pThis->u64HpetConfig;
DEVHPET_UNLOCK(pThis);
Log(("read HPET_CFG: %#x\n", u32Value));
break;
case HPET_CFG + 4:
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
u32Value = (uint32_t)(pThis->u64HpetConfig >> 32);
DEVHPET_UNLOCK(pThis);
Log(("read of HPET_CFG + 4: %#x\n", u32Value));
break;
case HPET_COUNTER:
case HPET_COUNTER + 4:
{
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
uint64_t u64Ticks;
if (pThis->u64HpetConfig & HPET_CFG_ENABLE)
u64Ticks = hpetGetTicks(pThis);
else
u64Ticks = pThis->u64HpetCounter;
DEVHPET_UNLOCK_BOTH(pThis);
/** @todo is it correct? */
u32Value = (idxReg == HPET_COUNTER) ? (uint32_t)u64Ticks : (uint32_t)(u64Ticks >> 32);
Log(("read HPET_COUNTER: %s part value %x (%#llx)\n",
(idxReg == HPET_COUNTER) ? "low" : "high", u32Value, u64Ticks));
break;
}
case HPET_STATUS:
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
u32Value = (uint32_t)pThis->u64Isr;
DEVHPET_UNLOCK(pThis);
Log(("read HPET_STATUS: %#x\n", u32Value));
break;
default:
Log(("invalid HPET register read: %x\n", idxReg));
u32Value = 0;
break;
}
*pu32Value = u32Value;
return VINF_SUCCESS;
}
/**
* 32-bit write to a config register.
*
* @returns Strict VBox status code.
*
* @param pThis The HPET state.
* @param idxReg The register being written to.
* @param u32NewValue The value being written.
*
* @remarks The caller should not hold the device lock, unless it also holds
* the TM lock.
*/
static int hpetConfigRegWrite32(HPET *pThis, uint32_t idxReg, uint32_t u32NewValue)
{
Assert(!PDMCritSectIsOwner(&pThis->CritSect) || TMTimerIsLockOwner(pThis->aTimers[0].CTX_SUFF(pTimer)));
int rc = VINF_SUCCESS;
switch (idxReg)
{
case HPET_ID:
case HPET_ID + 4:
{
Log(("write HPET_ID, useless\n"));
break;
}
case HPET_CFG:
{
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
uint32_t const iOldValue = (uint32_t)(pThis->u64HpetConfig);
Log(("write HPET_CFG: %x (old %x)\n", u32NewValue, iOldValue));
/*
* This check must be here, before actual update, as hpetLegacyMode
* may request retry in R3 - so we must keep state intact.
*/
if ( ((iOldValue ^ u32NewValue) & HPET_CFG_LEGACY)
&& pThis->pHpetHlpR3 != NIL_RTR3PTR)
{
#ifdef IN_RING3
rc = pThis->pHpetHlpR3->pfnSetLegacyMode(pThis->pDevInsR3, RT_BOOL(u32NewValue & HPET_CFG_LEGACY));
if (rc != VINF_SUCCESS)
#else
rc = VINF_IOM_R3_MMIO_WRITE;
#endif
{
DEVHPET_UNLOCK_BOTH(pThis);
break;
}
}
pThis->u64HpetConfig = hpetUpdateMasked(u32NewValue, iOldValue, HPET_CFG_WRITE_MASK);
uint32_t const cTimers = HPET_CAP_GET_TIMERS(pThis->u32Capabilities);
if (hpetBitJustSet(iOldValue, u32NewValue, HPET_CFG_ENABLE))
{
/** @todo Only get the time stamp once when reprogramming? */
/* Enable main counter and interrupt generation. */
pThis->u64HpetOffset = hpetTicksToNs(pThis, pThis->u64HpetCounter)
- TMTimerGet(pThis->aTimers[0].CTX_SUFF(pTimer));
for (uint32_t i = 0; i < cTimers; i++)
if (pThis->aTimers[i].u64Cmp != hpetInvalidValue(&pThis->aTimers[i]))
hpetProgramTimer(&pThis->aTimers[i]);
}
else if (hpetBitJustCleared(iOldValue, u32NewValue, HPET_CFG_ENABLE))
{
/* Halt main counter and disable interrupt generation. */
pThis->u64HpetCounter = hpetGetTicks(pThis);
for (uint32_t i = 0; i < cTimers; i++)
TMTimerStop(pThis->aTimers[i].CTX_SUFF(pTimer));
}
DEVHPET_UNLOCK_BOTH(pThis);
break;
}
case HPET_CFG + 4:
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
pThis->u64HpetConfig = hpetUpdateMasked((uint64_t)u32NewValue << 32,
pThis->u64HpetConfig,
UINT64_C(0xffffffff00000000));
Log(("write HPET_CFG + 4: %x -> %#llx\n", u32NewValue, pThis->u64HpetConfig));
DEVHPET_UNLOCK(pThis);
break;
}
case HPET_STATUS:
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
/* Clear ISR for all set bits in u32NewValue, see p. 14 of the HPET spec. */
pThis->u64Isr &= ~((uint64_t)u32NewValue);
Log(("write HPET_STATUS: %x -> ISR=%#llx\n", u32NewValue, pThis->u64Isr));
DEVHPET_UNLOCK(pThis);
break;
}
case HPET_STATUS + 4:
{
Log(("write HPET_STATUS + 4: %x\n", u32NewValue));
if (u32NewValue != 0)
LogRelMax(10, ("HPET: Writing HPET_STATUS + 4 with non-zero, ignored\n"));
break;
}
case HPET_COUNTER:
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
pThis->u64HpetCounter = RT_MAKE_U64(u32NewValue, RT_HI_U32(pThis->u64HpetCounter));
Log(("write HPET_COUNTER: %#x -> %llx\n", u32NewValue, pThis->u64HpetCounter));
DEVHPET_UNLOCK(pThis);
break;
}
case HPET_COUNTER + 4:
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
pThis->u64HpetCounter = RT_MAKE_U64(RT_LO_U32(pThis->u64HpetCounter), u32NewValue);
Log(("write HPET_COUNTER + 4: %#x -> %llx\n", u32NewValue, pThis->u64HpetCounter));
DEVHPET_UNLOCK(pThis);
break;
}
default:
LogRelMax(10, ("HPET: Invalid HPET config write: %x\n", idxReg));
break;
}
return rc;
}
/* -=-=-=-=-=- MMIO callbacks -=-=-=-=-=- */
/**
* @callback_method_impl{FNIOMMMIOREAD}
*/
PDMBOTHCBDECL(int) hpetMMIORead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET*);
uint32_t const idxReg = (uint32_t)(GCPhysAddr - HPET_BASE);
NOREF(pvUser);
Assert(cb == 4 || cb == 8);
LogFlow(("hpetMMIORead (%d): %llx (%x)\n", cb, (uint64_t)GCPhysAddr, idxReg));
int rc;
if (cb == 4)
{
/*
* 4-byte access.
*/
if (idxReg >= 0x100 && idxReg < 0x400)
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
rc = hpetTimerRegRead32(pThis,
(idxReg - 0x100) / 0x20,
(idxReg - 0x100) % 0x20,
(uint32_t *)pv);
DEVHPET_UNLOCK(pThis);
}
else
rc = hpetConfigRegRead32(pThis, idxReg, (uint32_t *)pv);
}
else
{
/*
* 8-byte access - Split the access except for timing sensitive registers.
* The others assume the protection of the lock.
*/
PRTUINT64U pValue = (PRTUINT64U)pv;
if (idxReg == HPET_COUNTER)
{
/* When reading HPET counter we must read it in a single read,
to avoid unexpected time jumps on 32-bit overflow. */
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
if (pThis->u64HpetConfig & HPET_CFG_ENABLE)
pValue->u = hpetGetTicks(pThis);
else
pValue->u = pThis->u64HpetCounter;
DEVHPET_UNLOCK_BOTH(pThis);
rc = VINF_SUCCESS;
}
else
{
DEVHPET_LOCK_RETURN(pThis, VINF_IOM_R3_MMIO_READ);
if (idxReg >= 0x100 && idxReg < 0x400)
{
uint32_t iTimer = (idxReg - 0x100) / 0x20;
uint32_t iTimerReg = (idxReg - 0x100) % 0x20;
rc = hpetTimerRegRead32(pThis, iTimer, iTimerReg, &pValue->s.Lo);
if (rc == VINF_SUCCESS)
rc = hpetTimerRegRead32(pThis, iTimer, iTimerReg + 4, &pValue->s.Hi);
}
else
{
/* for most 8-byte accesses we just split them, happens under lock anyway. */
rc = hpetConfigRegRead32(pThis, idxReg, &pValue->s.Lo);
if (rc == VINF_SUCCESS)
rc = hpetConfigRegRead32(pThis, idxReg + 4, &pValue->s.Hi);
}
DEVHPET_UNLOCK(pThis);
}
}
return rc;
}
/**
* @callback_method_impl{FNIOMMMIOWRITE}
*/
PDMBOTHCBDECL(int) hpetMMIOWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET*);
uint32_t idxReg = (uint32_t)(GCPhysAddr - HPET_BASE);
LogFlow(("hpetMMIOWrite: cb=%u reg=%03x (%RGp) val=%llx\n",
cb, idxReg, GCPhysAddr, cb == 4 ? *(uint32_t *)pv : cb == 8 ? *(uint64_t *)pv : 0xdeadbeef));
NOREF(pvUser);
Assert(cb == 4 || cb == 8);
int rc;
if (cb == 4)
{
if (idxReg >= 0x100 && idxReg < 0x400)
rc = hpetTimerRegWrite32(pThis,
(idxReg - 0x100) / 0x20,
(idxReg - 0x100) % 0x20,
*(uint32_t const *)pv);
else
rc = hpetConfigRegWrite32(pThis, idxReg, *(uint32_t const *)pv);
}
else
{
/*
* 8-byte access.
*/
/* Split the access and rely on the locking to prevent trouble. */
DEVHPET_LOCK_BOTH_RETURN(pThis, VINF_IOM_R3_MMIO_WRITE);
RTUINT64U uValue;
uValue.u = *(uint64_t const *)pv;
if (idxReg >= 0x100 && idxReg < 0x400)
{
uint32_t iTimer = (idxReg - 0x100) / 0x20;
uint32_t iTimerReg = (idxReg - 0x100) % 0x20;
/** @todo Consider handling iTimerReg == HPET_TN_CMP specially here */
rc = hpetTimerRegWrite32(pThis, iTimer, iTimerReg, uValue.s.Lo);
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = hpetTimerRegWrite32(pThis, iTimer, iTimerReg + 4, uValue.s.Hi);
}
else
{
rc = hpetConfigRegWrite32(pThis, idxReg, uValue.s.Lo);
if (RT_LIKELY(rc == VINF_SUCCESS))
rc = hpetConfigRegWrite32(pThis, idxReg + 4, uValue.s.Hi);
}
DEVHPET_UNLOCK_BOTH(pThis);
}
return rc;
}
#ifdef IN_RING3
/* -=-=-=-=-=- Timer Callback Processing -=-=-=-=-=- */
/**
* Gets the IRQ of an HPET timer.
*
* @returns IRQ number.
* @param pHpetTimer The HPET timer.
*/
static uint32_t hpetR3TimerGetIrq(struct HPETTIMER const *pHpetTimer)
{
/*
* Per spec, in legacy mode the HPET timers are wired as follows:
* timer 0: IRQ0 for PIC and IRQ2 for APIC
* timer 1: IRQ8 for both PIC and APIC
*
* ISA IRQ delivery logic will take care of correct delivery
* to the different ICs.
*/
if ( (pHpetTimer->idxTimer <= 1)
&& (pHpetTimer->CTX_SUFF(pHpet)->u64HpetConfig & HPET_CFG_LEGACY))
return (pHpetTimer->idxTimer == 0) ? 0 : 8;
return (pHpetTimer->u64Config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
}
/**
* Used by hpetR3Timer to update the IRQ status.
*
* @param pThis The HPET device state.
* @param pHpetTimer The HPET timer.
*/
static void hpetR3TimerUpdateIrq(HPET *pThis, struct HPETTIMER *pHpetTimer)
{
/** @todo is it correct? */
if ( !!(pHpetTimer->u64Config & HPET_TN_ENABLE)
&& !!(pThis->u64HpetConfig & HPET_CFG_ENABLE))
{
uint32_t irq = hpetR3TimerGetIrq(pHpetTimer);
Log4(("HPET: raising IRQ %d\n", irq));
/* ISR bits are only set in level-triggered mode. */
if ((pHpetTimer->u64Config & HPET_TN_INT_TYPE) == HPET_TIMER_TYPE_LEVEL)
pThis->u64Isr |= UINT64_C(1) << pHpetTimer->idxTimer;
/* We trigger flip/flop in edge-triggered mode and do nothing in
level-triggered mode yet. */
if ((pHpetTimer->u64Config & HPET_TN_INT_TYPE) == HPET_TIMER_TYPE_EDGE)
pThis->pHpetHlpR3->pfnSetIrq(pThis->CTX_SUFF(pDevIns), irq, PDM_IRQ_LEVEL_FLIP_FLOP);
else
AssertFailed();
/** @todo implement IRQs in level-triggered mode */
}
}
/**
* Device timer callback function.
*
* @param pDevIns Device instance of the device which registered the timer.
* @param pTimer The timer handle.
* @param pvUser Pointer to the HPET timer state.
*/
static DECLCALLBACK(void) hpetR3Timer(PPDMDEVINS pDevIns, PTMTIMER pTimer, void *pvUser)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
HPETTIMER *pHpetTimer = (HPETTIMER *)pvUser;
uint64_t u64Period = pHpetTimer->u64Period;
uint64_t u64CurTick = hpetGetTicks(pThis);
uint64_t u64Diff;
if (pHpetTimer->u64Config & HPET_TN_PERIODIC)
{
if (u64Period) {
hpetAdjustComparator(pHpetTimer, u64CurTick);
u64Diff = hpetComputeDiff(pHpetTimer, u64CurTick);
Log4(("HPET: periodic: next in %llu\n", hpetTicksToNs(pThis, u64Diff)));
TMTimerSetNano(pTimer, hpetTicksToNs(pThis, u64Diff));
}
}
else if (hpet32bitTimer(pHpetTimer))
{
/* For 32-bit non-periodic timers, generate wrap-around interrupts. */
if (pHpetTimer->u8Wrap)
{
u64Diff = hpetComputeDiff(pHpetTimer, u64CurTick);
TMTimerSetNano(pTimer, hpetTicksToNs(pThis, u64Diff));
pHpetTimer->u8Wrap = 0;
}
}
/* Should it really be under lock, does it really matter? */
hpetR3TimerUpdateIrq(pThis, pHpetTimer);
}
/* -=-=-=-=-=- DBGF Info Handlers -=-=-=-=-=- */
/**
* @callback_method_impl{FNDBGFHANDLERDEV}
*/
static DECLCALLBACK(void) hpetR3Info(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
NOREF(pszArgs);
pHlp->pfnPrintf(pHlp,
"HPET status:\n"
" config=%016RX64 isr=%016RX64\n"
" offset=%016RX64 counter=%016RX64 frequency=%08x\n"
" legacy-mode=%s timer-count=%u\n",
pThis->u64HpetConfig, pThis->u64Isr,
pThis->u64HpetOffset, pThis->u64HpetCounter, pThis->u32Period,
!!(pThis->u64HpetConfig & HPET_CFG_LEGACY) ? "on " : "off",
HPET_CAP_GET_TIMERS(pThis->u32Capabilities));
pHlp->pfnPrintf(pHlp,
"Timers:\n");
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aTimers); i++)
{
pHlp->pfnPrintf(pHlp, " %d: comparator=%016RX64 period(hidden)=%016RX64 cfg=%016RX64\n",
pThis->aTimers[i].idxTimer,
pThis->aTimers[i].u64Cmp,
pThis->aTimers[i].u64Period,
pThis->aTimers[i].u64Config);
}
}
/* -=-=-=-=-=- Saved State -=-=-=-=-=- */
/**
* @callback_method_impl{FNSSMDEVLIVEEXEC}
*/
static DECLCALLBACK(int) hpetR3LiveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uPass)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
NOREF(uPass);
SSMR3PutU8(pSSM, HPET_CAP_GET_TIMERS(pThis->u32Capabilities));
return VINF_SSM_DONT_CALL_AGAIN;
}
/**
* @callback_method_impl{FNSSMDEVSAVEEXEC}
*/
static DECLCALLBACK(int) hpetR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
/*
* The config.
*/
hpetR3LiveExec(pDevIns, pSSM, SSM_PASS_FINAL);
/*
* The state.
*/
uint32_t const cTimers = HPET_CAP_GET_TIMERS(pThis->u32Capabilities);
for (uint32_t iTimer = 0; iTimer < cTimers; iTimer++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[iTimer];
TMR3TimerSave(pHpetTimer->pTimerR3, pSSM);
SSMR3PutU8(pSSM, pHpetTimer->u8Wrap);
SSMR3PutU64(pSSM, pHpetTimer->u64Config);
SSMR3PutU64(pSSM, pHpetTimer->u64Cmp);
SSMR3PutU64(pSSM, pHpetTimer->u64Fsb);
SSMR3PutU64(pSSM, pHpetTimer->u64Period);
}
SSMR3PutU64(pSSM, pThis->u64HpetOffset);
uint64_t u64CapPer = RT_MAKE_U64(pThis->u32Capabilities, pThis->u32Period);
SSMR3PutU64(pSSM, u64CapPer);
SSMR3PutU64(pSSM, pThis->u64HpetConfig);
SSMR3PutU64(pSSM, pThis->u64Isr);
return SSMR3PutU64(pSSM, pThis->u64HpetCounter);
}
/**
* @callback_method_impl{FNSSMDEVLOADEXEC}
*/
static DECLCALLBACK(int) hpetR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
/*
* Version checks.
*/
if (uVersion == HPET_SAVED_STATE_VERSION_EMPTY)
return VINF_SUCCESS;
if (uVersion != HPET_SAVED_STATE_VERSION)
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
/*
* The config.
*/
uint8_t cTimers;
int rc = SSMR3GetU8(pSSM, &cTimers);
AssertRCReturn(rc, rc);
if (cTimers > RT_ELEMENTS(pThis->aTimers))
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Config mismatch - too many timers: saved=%#x config=%#x"),
cTimers, RT_ELEMENTS(pThis->aTimers));
if (uPass != SSM_PASS_FINAL)
return VINF_SUCCESS;
/*
* The state.
*/
for (uint32_t iTimer = 0; iTimer < cTimers; iTimer++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[iTimer];
TMR3TimerLoad(pHpetTimer->pTimerR3, pSSM);
SSMR3GetU8(pSSM, &pHpetTimer->u8Wrap);
SSMR3GetU64(pSSM, &pHpetTimer->u64Config);
SSMR3GetU64(pSSM, &pHpetTimer->u64Cmp);
SSMR3GetU64(pSSM, &pHpetTimer->u64Fsb);
SSMR3GetU64(pSSM, &pHpetTimer->u64Period);
}
SSMR3GetU64(pSSM, &pThis->u64HpetOffset);
uint64_t u64CapPer;
SSMR3GetU64(pSSM, &u64CapPer);
SSMR3GetU64(pSSM, &pThis->u64HpetConfig);
SSMR3GetU64(pSSM, &pThis->u64Isr);
rc = SSMR3GetU64(pSSM, &pThis->u64HpetCounter);
if (RT_FAILURE(rc))
return rc;
if (HPET_CAP_GET_TIMERS(RT_LO_U32(u64CapPer)) != cTimers)
return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Capabilities does not match timer count: cTimers=%#x caps=%#x"),
cTimers, (unsigned)HPET_CAP_GET_TIMERS(u64CapPer));
pThis->u32Capabilities = RT_LO_U32(u64CapPer);
pThis->u32Period = RT_HI_U32(u64CapPer);
/*
* Set the timer frequency hints.
*/
PDMCritSectEnter(&pThis->CritSect, VERR_IGNORED);
for (uint32_t iTimer = 0; iTimer < cTimers; iTimer++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[iTimer];
if (TMTimerIsActive(pHpetTimer->CTX_SUFF(pTimer)))
hpetTimerSetFrequencyHint(pThis, pHpetTimer);
}
PDMCritSectLeave(&pThis->CritSect);
return VINF_SUCCESS;
}
/* -=-=-=-=-=- PDMDEVREG -=-=-=-=-=- */
/**
* @interface_method_impl{PDMDEVREG,pfnRelocate}
*/
static DECLCALLBACK(void) hpetR3Relocate(PPDMDEVINS pDevIns, RTGCINTPTR offDelta)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
LogFlow(("hpetR3Relocate:\n"));
NOREF(offDelta);
pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
pThis->pHpetHlpRC = pThis->pHpetHlpR3->pfnGetRCHelpers(pDevIns);
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aTimers); i++)
{
HPETTIMER *pTm = &pThis->aTimers[i];
if (pTm->pTimerR3)
pTm->pTimerRC = TMTimerRCPtr(pTm->pTimerR3);
pTm->pHpetRC = PDMINS_2_DATA_RCPTR(pDevIns);
}
}
/**
* @interface_method_impl{PDMDEVREG,pfnReset}
*/
static DECLCALLBACK(void) hpetR3Reset(PPDMDEVINS pDevIns)
{
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
LogFlow(("hpetR3Reset:\n"));
/*
* The timers first.
*/
TMTimerLock(pThis->aTimers[0].pTimerR3, VERR_IGNORED);
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aTimers); i++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[i];
Assert(pHpetTimer->idxTimer == i);
TMTimerStop(pHpetTimer->pTimerR3);
/* capable of periodic operations and 64-bits */
if (pThis->fIch9)
pHpetTimer->u64Config = (i == 0)
? (HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP)
: 0;
else
pHpetTimer->u64Config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
/* We can do all IRQs */
uint32_t u32RoutingCap = 0xffffffff;
pHpetTimer->u64Config |= ((uint64_t)u32RoutingCap) << 32;
pHpetTimer->u64Period = 0;
pHpetTimer->u8Wrap = 0;
pHpetTimer->u64Cmp = hpetInvalidValue(pHpetTimer);
}
TMTimerUnlock(pThis->aTimers[0].pTimerR3);
/*
* The HPET state.
*/
pThis->u64HpetConfig = 0;
pThis->u64HpetCounter = 0;
pThis->u64HpetOffset = 0;
/* 64-bit main counter; 3 timers supported; LegacyReplacementRoute. */
pThis->u32Capabilities = (1 << 15) /* LEG_RT_CAP - LegacyReplacementRoute capable. */
| (1 << 13) /* COUNTER_SIZE_CAP - Main counter is 64-bit capable. */
| 1; /* REV_ID - Revision, must not be 0 */
if (pThis->fIch9) /* NUM_TIM_CAP - Number of timers -1. */
pThis->u32Capabilities |= (HPET_NUM_TIMERS_ICH9 - 1) << 8;
else
pThis->u32Capabilities |= (HPET_NUM_TIMERS_PIIX - 1) << 8;
pThis->u32Capabilities |= UINT32_C(0x80860000); /* VENDOR */
AssertCompile(HPET_NUM_TIMERS_ICH9 <= RT_ELEMENTS(pThis->aTimers));
AssertCompile(HPET_NUM_TIMERS_PIIX <= RT_ELEMENTS(pThis->aTimers));
pThis->u32Period = pThis->fIch9 ? HPET_CLK_PERIOD_ICH9 : HPET_CLK_PERIOD_PIIX;
/*
* Notify the PIT/RTC devices.
*/
if (pThis->pHpetHlpR3)
pThis->pHpetHlpR3->pfnSetLegacyMode(pDevIns, false /*fActive*/);
}
/**
* @interface_method_impl{PDMDEVREG,pfnConstruct}
*/
static DECLCALLBACK(int) hpetR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
{
PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
HPET *pThis = PDMINS_2_DATA(pDevIns, HPET *);
/* Only one HPET device now, as we use fixed MMIO region. */
Assert(iInstance == 0); RT_NOREF(iInstance);
/*
* Initialize the device state.
*/
pThis->pDevInsR3 = pDevIns;
pThis->pDevInsR0 = PDMDEVINS_2_R0PTR(pDevIns);
pThis->pDevInsRC = PDMDEVINS_2_RCPTR(pDevIns);
/* Init the HPET timers (init all regardless of how many we expose). */
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aTimers); i++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[i];
pHpetTimer->idxTimer = i;
pHpetTimer->pHpetR3 = pThis;
pHpetTimer->pHpetR0 = PDMINS_2_DATA_R0PTR(pDevIns);
pHpetTimer->pHpetRC = PDMINS_2_DATA_RCPTR(pDevIns);
}
/*
* Validate and read the configuration.
*/
PDMDEV_VALIDATE_CONFIG_RETURN(pDevIns, "GCEnabled|R0Enabled|ICH9", "");
bool fRCEnabled;
int rc = CFGMR3QueryBoolDef(pCfg, "GCEnabled", &fRCEnabled, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: Querying \"GCEnabled\" as a bool failed"));
bool fR0Enabled;
rc = CFGMR3QueryBoolDef(pCfg, "R0Enabled", &fR0Enabled, true);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: failed to read R0Enabled as boolean"));
rc = CFGMR3QueryBoolDef(pCfg, "ICH9", &pThis->fIch9, false);
if (RT_FAILURE(rc))
return PDMDEV_SET_ERROR(pDevIns, rc,
N_("Configuration error: failed to read ICH9 as boolean"));
/*
* Create critsect and timers.
* Note! We don't use the default critical section of the device, but our own.
*/
rc = PDMDevHlpCritSectInit(pDevIns, &pThis->CritSect, RT_SRC_POS, "HPET");
AssertRCReturn(rc, rc);
rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
AssertRCReturn(rc, rc);
/* Init the HPET timers (init all regardless of how many we expose). */
for (unsigned i = 0; i < RT_ELEMENTS(pThis->aTimers); i++)
{
HPETTIMER *pHpetTimer = &pThis->aTimers[i];
rc = PDMDevHlpTMTimerCreate(pDevIns, TMCLOCK_VIRTUAL_SYNC, hpetR3Timer, pHpetTimer,
TMTIMER_FLAGS_NO_CRIT_SECT, "HPET Timer",
&pThis->aTimers[i].pTimerR3);
AssertRCReturn(rc, rc);
pThis->aTimers[i].pTimerRC = TMTimerRCPtr(pThis->aTimers[i].pTimerR3);
pThis->aTimers[i].pTimerR0 = TMTimerR0Ptr(pThis->aTimers[i].pTimerR3);
rc = TMR3TimerSetCritSect(pThis->aTimers[i].pTimerR3, &pThis->CritSect);
AssertRCReturn(rc, rc);
}
/*
* This must be done prior to registering the HPET, right?
*/
hpetR3Reset(pDevIns);
/*
* Register the HPET and get helpers.
*/
PDMHPETREG HpetReg;
HpetReg.u32Version = PDM_HPETREG_VERSION;
rc = PDMDevHlpHPETRegister(pDevIns, &HpetReg, &pThis->pHpetHlpR3);
AssertRCReturn(rc, rc);
/*
* Register the MMIO range, PDM API requests page aligned
* addresses and sizes.
*/
rc = PDMDevHlpMMIORegister(pDevIns, HPET_BASE, HPET_BAR_SIZE, pThis,
IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_ONLY_DWORD_QWORD,
hpetMMIOWrite, hpetMMIORead, "HPET Memory");
AssertRCReturn(rc, rc);
if (fRCEnabled)
{
rc = PDMDevHlpMMIORegisterRC(pDevIns, HPET_BASE, HPET_BAR_SIZE, NIL_RTRCPTR /*pvUser*/, "hpetMMIOWrite", "hpetMMIORead");
AssertRCReturn(rc, rc);
pThis->pHpetHlpRC = pThis->pHpetHlpR3->pfnGetRCHelpers(pDevIns);
}
if (fR0Enabled)
{
rc = PDMDevHlpMMIORegisterR0(pDevIns, HPET_BASE, HPET_BAR_SIZE, NIL_RTR0PTR /*pvUser*/,
"hpetMMIOWrite", "hpetMMIORead");
AssertRCReturn(rc, rc);
pThis->pHpetHlpR0 = pThis->pHpetHlpR3->pfnGetR0Helpers(pDevIns);
AssertReturn(pThis->pHpetHlpR0 != NIL_RTR0PTR, VERR_INTERNAL_ERROR);
}
/* Register SSM callbacks */
rc = PDMDevHlpSSMRegister3(pDevIns, HPET_SAVED_STATE_VERSION, sizeof(*pThis), hpetR3LiveExec, hpetR3SaveExec, hpetR3LoadExec);
AssertRCReturn(rc, rc);
/* Register an info callback. */
PDMDevHlpDBGFInfoRegister(pDevIns, "hpet", "Display HPET status. (no arguments)", hpetR3Info);
return VINF_SUCCESS;
}
/**
* The device registration structure.
*/
const PDMDEVREG g_DeviceHPET =
{
/* u32Version */
PDM_DEVREG_VERSION,
/* szName */
"hpet",
/* szRCMod */
"VBoxDDRC.rc",
/* szR0Mod */
"VBoxDDR0.r0",
/* pszDescription */
" High Precision Event Timer (HPET) Device",
/* fFlags */
PDM_DEVREG_FLAGS_HOST_BITS_DEFAULT | PDM_DEVREG_FLAGS_GUEST_BITS_32_64 | PDM_DEVREG_FLAGS_PAE36
| PDM_DEVREG_FLAGS_RC | PDM_DEVREG_FLAGS_R0,
/* fClass */
PDM_DEVREG_CLASS_PIT,
/* cMaxInstances */
1,
/* cbInstance */
sizeof(HPET),
/* pfnConstruct */
hpetR3Construct,
/* pfnDestruct */
NULL,
/* pfnRelocate */
hpetR3Relocate,
/* pfnMemSetup */
NULL,
/* pfnPowerOn */
NULL,
/* pfnReset */
hpetR3Reset,
/* pfnSuspend */
NULL,
/* pfnResume */
NULL,
/* pfnAttach */
NULL,
/* pfnDetach */
NULL,
/* pfnQueryInterface. */
NULL,
/* pfnInitComplete */
NULL,
/* pfnPowerOff */
NULL,
/* pfnSoftReset */
NULL,
/* u32VersionEnd */
PDM_DEVREG_VERSION
};
#endif /* IN_RING3 */
#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
|