1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
/* $Id: asn1-ut-time-decode.cpp $ */
/** @file
* IPRT - ASN.1, UTC TIME and GENERALIZED TIME Types, Decoding.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include "internal/iprt.h"
#include <iprt/asn1.h>
#include <iprt/alloca.h>
#include <iprt/err.h>
#include <iprt/string.h>
#include <iprt/ctype.h>
#include <iprt/formats/asn1.h>
/**
* Common code for UTCTime and GeneralizedTime converters that normalizes the
* converted time and checks that the input values doesn't change.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to normalize and check.
* @param pszType The type name.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_NormalizeTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszType, const char *pszErrorTag)
{
int rc;
if ( pThis->Time.u8Month > 0
&& pThis->Time.u8Month <= 12
&& pThis->Time.u8Hour < 24
&& pThis->Time.u8Minute < 60
&& pThis->Time.u8Second <= 60)
{
/* Work around clever rounding error in DER_CFDateToUTCTime() on OS X. This also
supresses any attempt at feeding us leap seconds. If we pass 60 to the
normalization code will move on to the next min/hour/day, which is wrong both
for the OS X issue and for unwanted leap seconds. Leap seconds are not valid
ASN.1 by the by according to the specs available to us. */
if (pThis->Time.u8Second < 60)
{ /* likely */ }
else
pThis->Time.u8Second = 59;
/* Normalize and move on. */
RTTIME const TimeCopy = pThis->Time;
if (RTTimeNormalize(&pThis->Time))
{
if ( TimeCopy.u8MonthDay == pThis->Time.u8MonthDay
&& TimeCopy.u8Month == pThis->Time.u8Month
&& TimeCopy.i32Year == pThis->Time.i32Year
&& TimeCopy.u8Hour == pThis->Time.u8Hour
&& TimeCopy.u8Minute == pThis->Time.u8Minute
&& TimeCopy.u8Second == pThis->Time.u8Second)
return VINF_SUCCESS;
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_MISMATCH,
"%s: Normalized result not the same as %s: '%.*s' / %04u-%02u-%02uT%02u:%02u:%02u vs %04u-%02u-%02uT%02u:%02u:%02u",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
TimeCopy.i32Year, TimeCopy.u8Month, TimeCopy.u8MonthDay,
TimeCopy.u8Hour, TimeCopy.u8Minute, TimeCopy.u8Second,
pThis->Time.i32Year, pThis->Time.u8Month, pThis->Time.u8MonthDay,
pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_NORMALIZE_ERROR,
"%s: RTTimeNormalize failed on %s: '%.*s'",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_TIME_BAD_NORMALIZE_INPUT,
"%s: Bad %s values: '%.*s'; mth=%u h=%u min=%u sec=%u",
pszErrorTag, pszType, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch,
pThis->Time.u8Month, pThis->Time.u8Hour, pThis->Time.u8Minute, pThis->Time.u8Second);
return rc;
}
/**
* Converts the UTCTime string into an the RTTIME member of RTASN1TIME.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to parse.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertUTCTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
/*
* While the current spec says the seconds field is not optional, this
* restriction was added later on. So, when parsing UTCTime we must deal
* with it being absent.
*/
int rc;
bool fHaveSeconds = pThis->Asn1Core.cb == sizeof("YYMMDDHHMMSSZ") - 1;
if (fHaveSeconds || pThis->Asn1Core.cb == sizeof("YYMMDDHHMMZ") - 1)
{
const char *pachTime = pThis->Asn1Core.uData.pch;
/* Basic encoding validation. */
if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
&& RT_C_IS_DIGIT(pachTime[1]) /* Y */
&& RT_C_IS_DIGIT(pachTime[2]) /* M */
&& RT_C_IS_DIGIT(pachTime[3]) /* M */
&& RT_C_IS_DIGIT(pachTime[4]) /* D */
&& RT_C_IS_DIGIT(pachTime[5]) /* D */
&& RT_C_IS_DIGIT(pachTime[6]) /* H */
&& RT_C_IS_DIGIT(pachTime[7]) /* H */
&& RT_C_IS_DIGIT(pachTime[8]) /* M */
&& RT_C_IS_DIGIT(pachTime[9]) /* M */
&& ( !fHaveSeconds
|| ( RT_C_IS_DIGIT(pachTime[10]) /* S */
&& RT_C_IS_DIGIT(pachTime[11]) /* S */ ) )
&& pachTime[fHaveSeconds ? 12 : 10] == 'Z'
)
{
/* Basic conversion. */
pThis->Time.i32Year = (pachTime[0] - '0') * 10 + (pachTime[1] - '0');
pThis->Time.i32Year += pThis->Time.i32Year < 50 ? 2000 : 1900;
pThis->Time.u8Month = (pachTime[2] - '0') * 10 + (pachTime[3] - '0');
pThis->Time.u8WeekDay = 0;
pThis->Time.u16YearDay = 0;
pThis->Time.u8MonthDay = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
pThis->Time.u8Hour = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
pThis->Time.u8Minute = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
if (fHaveSeconds)
pThis->Time.u8Second = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
else
pThis->Time.u8Second = 0;
pThis->Time.u32Nanosecond = 0;
pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
pThis->Time.offUTC = 0;
/* Check the convered data and normalize the time structure. */
rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "UTCTime", pszErrorTag);
if (RT_SUCCESS(rc))
return rc;
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime encoding: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pachTime);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_UTC_TIME_ENCODING, "%s: Bad UTCTime length: %#x",
pszErrorTag, pThis->Asn1Core.cb);
RT_ZERO(*pThis);
return rc;
}
/**
* Converts the fraction part of a generalized time into nanoseconds.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pchFraction Pointer to the start of the fraction (dot).
* @param cchFraction The length of the fraction.
* @param pThis The time object we're working on,
* Time.u32Nanoseconds will be update.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertGeneralizedTimeFraction(PRTASN1CURSOR pCursor, const char *pchFraction, uint32_t cchFraction,
PRTASN1TIME pThis, const char *pszErrorTag)
{
pThis->Time.u32Nanosecond = 0;
/*
* Check the dot.
*/
if (*pchFraction != '.')
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Expected GeneralizedTime fraction dot, found: '%c' ('%.*s')",
pszErrorTag, *pchFraction, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
pchFraction++;
cchFraction--;
if (!cchFraction)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: No digit following GeneralizedTime fraction dot: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core);
/*
* Do the conversion.
*/
char chLastDigit;
uint32_t uMult = 100000000;
do
{
char chDigit = chLastDigit = *pchFraction;
if (!RT_C_IS_DIGIT(chDigit))
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime fraction digit: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
pThis->Time.u32Nanosecond += uMult * (uint32_t)(chDigit - '0');
/* Advance */
cchFraction--;
pchFraction++;
uMult /= 10;
} while (cchFraction > 0 && uMult > 0);
/*
* Lazy bird: For now, we don't permit higher resolution than we can
* internally represent. Deal with this if it ever becomes an issue.
*/
if (cchFraction > 0)
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime fraction too long: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
if (chLastDigit == '0')
return RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Trailing zeros not allowed for GeneralizedTime: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pThis->Asn1Core.uData.pch);
return VINF_SUCCESS;
}
/**
* Converts the GeneralizedTime string into an the RTTIME member of RTASN1TIME.
*
* @returns IPRT status code.
* @param pCursor The cursor to use when reporting an error.
* @param pThis The time to parse.
* @param pszErrorTag The error tag.
*/
static int rtAsn1Time_ConvertGeneralizedTime(PRTASN1CURSOR pCursor, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc;
if (pThis->Asn1Core.cb >= sizeof("YYYYMMDDHHMMSSZ") - 1)
{
const char *pachTime = pThis->Asn1Core.uData.pch;
/* Basic encoding validation. */
if ( RT_C_IS_DIGIT(pachTime[0]) /* Y */
&& RT_C_IS_DIGIT(pachTime[1]) /* Y */
&& RT_C_IS_DIGIT(pachTime[2]) /* Y */
&& RT_C_IS_DIGIT(pachTime[3]) /* Y */
&& RT_C_IS_DIGIT(pachTime[4]) /* M */
&& RT_C_IS_DIGIT(pachTime[5]) /* M */
&& RT_C_IS_DIGIT(pachTime[6]) /* D */
&& RT_C_IS_DIGIT(pachTime[7]) /* D */
&& RT_C_IS_DIGIT(pachTime[8]) /* H */
&& RT_C_IS_DIGIT(pachTime[9]) /* H */
&& RT_C_IS_DIGIT(pachTime[10]) /* M */
&& RT_C_IS_DIGIT(pachTime[11]) /* M */
&& RT_C_IS_DIGIT(pachTime[12]) /* S */ /** @todo was this once optional? */
&& RT_C_IS_DIGIT(pachTime[13]) /* S */
&& pachTime[pThis->Asn1Core.cb - 1] == 'Z'
)
{
/* Basic conversion. */
pThis->Time.i32Year = 1000 * (pachTime[0] - '0')
+ 100 * (pachTime[1] - '0')
+ 10 * (pachTime[2] - '0')
+ (pachTime[3] - '0');
pThis->Time.u8Month = (pachTime[4] - '0') * 10 + (pachTime[5] - '0');
pThis->Time.u8WeekDay = 0;
pThis->Time.u16YearDay = 0;
pThis->Time.u8MonthDay = (pachTime[6] - '0') * 10 + (pachTime[7] - '0');
pThis->Time.u8Hour = (pachTime[8] - '0') * 10 + (pachTime[9] - '0');
pThis->Time.u8Minute = (pachTime[10] - '0') * 10 + (pachTime[11] - '0');
pThis->Time.u8Second = (pachTime[12] - '0') * 10 + (pachTime[13] - '0');
pThis->Time.u32Nanosecond = 0;
pThis->Time.fFlags = RTTIME_FLAGS_TYPE_UTC;
pThis->Time.offUTC = 0;
/* Optional fraction part. */
rc = VINF_SUCCESS;
uint32_t cchLeft = pThis->Asn1Core.cb - 14 - 1;
if (cchLeft > 0)
rc = rtAsn1Time_ConvertGeneralizedTimeFraction(pCursor, pachTime + 14, cchLeft, pThis, pszErrorTag);
/* Check the convered data and normalize the time structure. */
if (RT_SUCCESS(rc))
{
rc = rtAsn1Time_NormalizeTime(pCursor, pThis, "GeneralizedTime", pszErrorTag);
if (RT_SUCCESS(rc))
return VINF_SUCCESS;
}
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime encoding: '%.*s'",
pszErrorTag, pThis->Asn1Core.cb, pachTime);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_INVALID_GENERALIZED_TIME_ENCODING,
"%s: Bad GeneralizedTime length: %#x",
pszErrorTag, pThis->Asn1Core.cb);
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1Time_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
Assert(!(fFlags & RTASN1CURSOR_GET_F_IMPLICIT)); RT_NOREF_PV(fFlags);
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
if (pThis->Asn1Core.fClass == (ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE) )
{
if (pThis->Asn1Core.uTag == ASN1_TAG_UTC_TIME)
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
}
if (pThis->Asn1Core.uTag == ASN1_TAG_GENERALIZED_TIME)
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
}
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_MISMATCH, "%s: Not UTCTime nor GeneralizedTime: uTag=%#x",
pszErrorTag, pThis->Asn1Core.uTag);
}
else
rc = RTAsn1CursorSetInfo(pCursor, VERR_ASN1_CURSOR_TAG_FLAG_CLASS_MISMATCH,
"%s: Not UTCTime nor GeneralizedTime: fClass=%#x / uTag=%#x",
pszErrorTag, pThis->Asn1Core.fClass, pThis->Asn1Core.uTag);
}
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1UtcTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_UTC_TIME,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
fFlags, pszErrorTag, "UTC TIME");
if (RT_SUCCESS(rc))
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertUTCTime(pCursor, pThis, pszErrorTag);
}
}
RT_ZERO(*pThis);
return rc;
}
RTDECL(int) RTAsn1GeneralizedTime_DecodeAsn1(PRTASN1CURSOR pCursor, uint32_t fFlags, PRTASN1TIME pThis, const char *pszErrorTag)
{
int rc = RTAsn1CursorReadHdr(pCursor, &pThis->Asn1Core, pszErrorTag);
if (RT_SUCCESS(rc))
{
rc = RTAsn1CursorMatchTagClassFlags(pCursor, &pThis->Asn1Core, ASN1_TAG_GENERALIZED_TIME,
ASN1_TAGCLASS_UNIVERSAL | ASN1_TAGFLAG_PRIMITIVE,
fFlags, pszErrorTag, "GENERALIZED TIME");
if (RT_SUCCESS(rc))
{
RTAsn1CursorSkip(pCursor, pThis->Asn1Core.cb);
pThis->Asn1Core.pOps = &g_RTAsn1Time_Vtable;
pThis->Asn1Core.fFlags |= RTASN1CORE_F_PRIMITE_TAG_STRUCT;
return rtAsn1Time_ConvertGeneralizedTime(pCursor, pThis, pszErrorTag);
}
}
RT_ZERO(*pThis);
return rc;
}
/*
* Generate code for the associated collection types.
*/
#define RTASN1TMPL_TEMPLATE_FILE "../common/asn1/asn1-ut-time-template.h"
#include <iprt/asn1-generator-internal-header.h>
#include <iprt/asn1-generator-asn1-decoder.h>
|