1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
/* $Id: timer-generic.cpp $ */
/** @file
* IPRT - Timers, Generic.
*/
/*
* Copyright (C) 2006-2019 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/timer.h>
#include "internal/iprt.h"
#include <iprt/thread.h>
#include <iprt/err.h>
#include <iprt/assert.h>
#include <iprt/alloc.h>
#include <iprt/asm.h>
#include <iprt/semaphore.h>
#include <iprt/time.h>
#include <iprt/log.h>
#include "internal/magics.h"
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
/**
* The internal representation of a timer handle.
*/
typedef struct RTTIMER
{
/** Magic.
* This is RTTIMER_MAGIC, but changes to something else before the timer
* is destroyed to indicate clearly that thread should exit. */
uint32_t volatile u32Magic;
/** Flag indicating the timer is suspended. */
uint8_t volatile fSuspended;
/** Flag indicating that the timer has been destroyed. */
uint8_t volatile fDestroyed;
/** Callback. */
PFNRTTIMER pfnTimer;
/** User argument. */
void *pvUser;
/** The timer thread. */
RTTHREAD Thread;
/** Event semaphore on which the thread is blocked. */
RTSEMEVENT Event;
/** The timer interval. 0 if one-shot. */
uint64_t u64NanoInterval;
/** The start of the current run (ns).
* This is used to calculate when the timer ought to fire the next time. */
uint64_t volatile u64StartTS;
/** The start of the current run (ns).
* This is used to calculate when the timer ought to fire the next time. */
uint64_t volatile u64NextTS;
/** The current tick number (since u64StartTS). */
uint64_t volatile iTick;
} RTTIMER;
/*********************************************************************************************************************************
* Internal Functions *
*********************************************************************************************************************************/
static DECLCALLBACK(int) rtTimerThread(RTTHREAD Thread, void *pvUser);
RTDECL(int) RTTimerCreateEx(PRTTIMER *ppTimer, uint64_t u64NanoInterval, uint32_t fFlags, PFNRTTIMER pfnTimer, void *pvUser)
{
*ppTimer = NULL;
/*
* We don't support the fancy MP features.
*/
if (fFlags & RTTIMER_FLAGS_CPU_SPECIFIC)
return VERR_NOT_SUPPORTED;
/*
* Allocate and initialize the timer handle.
*/
PRTTIMER pTimer = (PRTTIMER)RTMemAlloc(sizeof(*pTimer));
if (!pTimer)
return VERR_NO_MEMORY;
pTimer->u32Magic = RTTIMER_MAGIC;
pTimer->fSuspended = true;
pTimer->fDestroyed = false;
pTimer->pfnTimer = pfnTimer;
pTimer->pvUser = pvUser;
pTimer->Thread = NIL_RTTHREAD;
pTimer->Event = NIL_RTSEMEVENT;
pTimer->u64NanoInterval = u64NanoInterval;
pTimer->u64StartTS = 0;
int rc = RTSemEventCreate(&pTimer->Event);
if (RT_SUCCESS(rc))
{
rc = RTThreadCreate(&pTimer->Thread, rtTimerThread, pTimer, 0, RTTHREADTYPE_TIMER, RTTHREADFLAGS_WAITABLE, "Timer");
if (RT_SUCCESS(rc))
{
*ppTimer = pTimer;
return VINF_SUCCESS;
}
pTimer->u32Magic = 0;
RTSemEventDestroy(pTimer->Event);
pTimer->Event = NIL_RTSEMEVENT;
}
RTMemFree(pTimer);
return rc;
}
RT_EXPORT_SYMBOL(RTTimerCreateEx);
/**
* Validates the timer handle.
*
* @returns true if valid, false if invalid.
* @param pTimer The handle.
*/
DECLINLINE(bool) rtTimerIsValid(PRTTIMER pTimer)
{
AssertReturn(VALID_PTR(pTimer), false);
AssertReturn(pTimer->u32Magic == RTTIMER_MAGIC, false);
AssertReturn(!pTimer->fDestroyed, false);
return true;
}
RTDECL(int) RTTimerDestroy(PRTTIMER pTimer)
{
/* It's ok to pass NULL pointer. */
if (pTimer == /*NIL_RTTIMER*/ NULL)
return VINF_SUCCESS;
if (!rtTimerIsValid(pTimer))
return VERR_INVALID_HANDLE;
/*
* If the timer is active, we stop and destruct it in one go, to avoid
* unnecessary waiting for the next tick. If it's suspended we can safely
* set the destroy flag and signal it.
*/
RTTHREAD Thread = pTimer->Thread;
if (!pTimer->fSuspended)
ASMAtomicXchgU8(&pTimer->fSuspended, true);
ASMAtomicXchgU8(&pTimer->fDestroyed, true);
int rc = RTSemEventSignal(pTimer->Event);
if (rc == VERR_ALREADY_POSTED)
rc = VINF_SUCCESS;
AssertRC(rc);
RTThreadWait(Thread, 250, NULL);
return VINF_SUCCESS;
}
RT_EXPORT_SYMBOL(RTTimerDestroy);
RTDECL(int) RTTimerStart(PRTTIMER pTimer, uint64_t u64First)
{
if (!rtTimerIsValid(pTimer))
return VERR_INVALID_HANDLE;
if (!pTimer->fSuspended)
return VERR_TIMER_ACTIVE;
/*
* Calc when it should start firing and give the thread a kick so it get going.
*/
u64First += RTTimeNanoTS();
ASMAtomicXchgU64(&pTimer->iTick, 0);
ASMAtomicXchgU64(&pTimer->u64StartTS, u64First);
ASMAtomicXchgU64(&pTimer->u64NextTS, u64First);
ASMAtomicXchgU8(&pTimer->fSuspended, false);
int rc = RTSemEventSignal(pTimer->Event);
if (rc == VERR_ALREADY_POSTED)
rc = VINF_SUCCESS;
AssertRC(rc);
return rc;
}
RT_EXPORT_SYMBOL(RTTimerStart);
RTDECL(int) RTTimerStop(PRTTIMER pTimer)
{
if (!rtTimerIsValid(pTimer))
return VERR_INVALID_HANDLE;
if (pTimer->fSuspended)
return VERR_TIMER_SUSPENDED;
/*
* Mark it as suspended and kick the thread.
*/
ASMAtomicXchgU8(&pTimer->fSuspended, true);
int rc = RTSemEventSignal(pTimer->Event);
if (rc == VERR_ALREADY_POSTED)
rc = VINF_SUCCESS;
AssertRC(rc);
return rc;
}
RT_EXPORT_SYMBOL(RTTimerStop);
RTDECL(int) RTTimerChangeInterval(PRTTIMER pTimer, uint64_t u64NanoInterval)
{
if (!rtTimerIsValid(pTimer))
return VERR_INVALID_HANDLE;
NOREF(u64NanoInterval);
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerChangeInterval);
static DECLCALLBACK(int) rtTimerThread(RTTHREAD hThreadSelf, void *pvUser)
{
PRTTIMER pTimer = (PRTTIMER)pvUser;
NOREF(hThreadSelf);
/*
* The loop.
*/
while (!pTimer->fDestroyed)
{
if (pTimer->fSuspended)
{
int rc = RTSemEventWait(pTimer->Event, RT_INDEFINITE_WAIT);
if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED)
{
AssertRC(rc);
RTThreadSleep(1000); /* Don't cause trouble! */
}
}
else
{
const uint64_t u64NanoTS = RTTimeNanoTS();
if (u64NanoTS >= pTimer->u64NextTS)
{
pTimer->iTick++;
/* one shot? */
if (!pTimer->u64NanoInterval)
ASMAtomicXchgU8(&pTimer->fSuspended, true);
pTimer->pfnTimer(pTimer, pTimer->pvUser, pTimer->iTick);
/* status changed? */
if (pTimer->fSuspended || pTimer->fDestroyed)
continue;
/* calc the next time we should fire. */
pTimer->u64NextTS = pTimer->u64StartTS + pTimer->iTick * pTimer->u64NanoInterval;
if (pTimer->u64NextTS < u64NanoTS)
#ifdef IN_RING3 /* In ring-3 we'll catch up lost ticks immediately. */
pTimer->u64NextTS = u64NanoTS + 1;
#else
pTimer->u64NextTS = u64NanoTS + RTTimerGetSystemGranularity() / 2;
#endif
}
/* block. */
uint64_t cNanoSeconds = pTimer->u64NextTS - u64NanoTS;
#ifdef IN_RING3 /* In ring-3 we'll catch up lost ticks immediately. */
if (cNanoSeconds > 10)
#endif
{
int rc = RTSemEventWait(pTimer->Event, cNanoSeconds < 1000000 ? 1 : cNanoSeconds / 1000000);
if (RT_FAILURE(rc) && rc != VERR_INTERRUPTED && rc != VERR_TIMEOUT)
{
AssertRC(rc);
RTThreadSleep(1000); /* Don't cause trouble! */
}
}
}
}
/*
* Release the timer resources.
*/
ASMAtomicIncU32(&pTimer->u32Magic); /* make the handle invalid. */
int rc = RTSemEventDestroy(pTimer->Event); AssertRC(rc);
pTimer->Event = NIL_RTSEMEVENT;
pTimer->Thread = NIL_RTTHREAD;
RTMemFree(pTimer);
return VINF_SUCCESS;
}
RTDECL(uint32_t) RTTimerGetSystemGranularity(void)
{
return 10000000; /* 10ms */
}
RT_EXPORT_SYMBOL(RTTimerGetSystemGranularity);
RTDECL(int) RTTimerRequestSystemGranularity(uint32_t u32Request, uint32_t *pu32Granted)
{
NOREF(u32Request); NOREF(pu32Granted);
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerRequestSystemGranularity);
RTDECL(int) RTTimerReleaseSystemGranularity(uint32_t u32Granted)
{
NOREF(u32Granted);
return VERR_NOT_SUPPORTED;
}
RT_EXPORT_SYMBOL(RTTimerReleaseSystemGranularity);
RTDECL(bool) RTTimerCanDoHighResolution(void)
{
return false;
}
RT_EXPORT_SYMBOL(RTTimerCanDoHighResolution);
|