summaryrefslogtreecommitdiffstats
path: root/src/VBox/Runtime/r0drv/solaris/memobj-r0drv-solaris.c
blob: 84813208bba17ec7cba598f8d367202fb1a2b739 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
/* $Id: memobj-r0drv-solaris.c $ */
/** @file
 * IPRT - Ring-0 Memory Objects, Solaris.
 */

/*
 * Copyright (C) 2006-2019 Oracle Corporation
 *
 * This file is part of VirtualBox Open Source Edition (OSE), as
 * available from http://www.virtualbox.org. This file is free software;
 * you can redistribute it and/or modify it under the terms of the GNU
 * General Public License (GPL) as published by the Free Software
 * Foundation, in version 2 as it comes in the "COPYING" file of the
 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
 *
 * The contents of this file may alternatively be used under the terms
 * of the Common Development and Distribution License Version 1.0
 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
 * VirtualBox OSE distribution, in which case the provisions of the
 * CDDL are applicable instead of those of the GPL.
 *
 * You may elect to license modified versions of this file under the
 * terms and conditions of either the GPL or the CDDL or both.
 */


/*********************************************************************************************************************************
*   Header Files                                                                                                                 *
*********************************************************************************************************************************/
#include "the-solaris-kernel.h"
#include "internal/iprt.h"
#include <iprt/memobj.h>

#include <iprt/asm.h>
#include <iprt/assert.h>
#include <iprt/err.h>
#include <iprt/log.h>
#include <iprt/mem.h>
#include <iprt/param.h>
#include <iprt/process.h>
#include "internal/memobj.h"
#include "memobj-r0drv-solaris.h"


/*********************************************************************************************************************************
*   Defined Constants And Macros                                                                                                 *
*********************************************************************************************************************************/
#define SOL_IS_KRNL_ADDR(vx)    ((uintptr_t)(vx) >= kernelbase)


/*********************************************************************************************************************************
*   Structures and Typedefs                                                                                                      *
*********************************************************************************************************************************/
/**
 * The Solaris version of the memory object structure.
 */
typedef struct RTR0MEMOBJSOL
{
    /** The core structure. */
    RTR0MEMOBJINTERNAL  Core;
    /** Pointer to kernel memory cookie. */
    ddi_umem_cookie_t   Cookie;
    /** Shadow locked pages. */
    void               *pvHandle;
    /** Access during locking. */
    int                 fAccess;
    /** Set if large pages are involved in an RTR0MEMOBJTYPE_PHYS
     *  allocation. */
    bool                fLargePage;
    /** Whether we have individual pages or a kernel-mapped virtual memory block in
     *  an RTR0MEMOBJTYPE_PHYS_NC allocation. */
    bool                fIndivPages;
} RTR0MEMOBJSOL, *PRTR0MEMOBJSOL;


/*********************************************************************************************************************************
*   Global Variables                                                                                                             *
*********************************************************************************************************************************/
static vnode_t                  g_PageVnode;
static kmutex_t                 g_OffsetMtx;
static u_offset_t               g_offPage;

static vnode_t                  g_LargePageVnode;
static kmutex_t                 g_LargePageOffsetMtx;
static u_offset_t               g_offLargePage;
static bool                     g_fLargePageNoReloc;


/**
 * Returns the physical address for a virtual address.
 *
 * @param pv        The virtual address.
 *
 * @returns The physical address corresponding to @a pv.
 */
static uint64_t rtR0MemObjSolVirtToPhys(void *pv)
{
    struct hat *pHat         = NULL;
    pfn_t       PageFrameNum = 0;
    uintptr_t   uVirtAddr    = (uintptr_t)pv;

    if (SOL_IS_KRNL_ADDR(pv))
        pHat = kas.a_hat;
    else
    {
        proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
        AssertRelease(pProcess);
        pHat = pProcess->p_as->a_hat;
    }

    PageFrameNum = hat_getpfnum(pHat, (caddr_t)(uVirtAddr & PAGEMASK));
    AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolVirtToPhys failed. pv=%p\n", pv));
    return (((uint64_t)PageFrameNum << PAGE_SHIFT) | (uVirtAddr & PAGE_OFFSET_MASK));
}


/**
 * Returns the physical address for a page.
 *
 * @param    pPage      Pointer to the page.
 *
 * @returns The physical address for a page.
 */
static inline uint64_t rtR0MemObjSolPagePhys(page_t *pPage)
{
    AssertPtr(pPage);
    pfn_t PageFrameNum = page_pptonum(pPage);
    AssertReleaseMsg(PageFrameNum != PFN_INVALID, ("rtR0MemObjSolPagePhys failed pPage=%p\n"));
    return (uint64_t)PageFrameNum << PAGE_SHIFT;
}


/**
 * Allocates one page.
 *
 * @param virtAddr       The virtual address to which this page maybe mapped in
 *                       the future.
 *
 * @returns Pointer to the allocated page, NULL on failure.
 */
static page_t *rtR0MemObjSolPageAlloc(caddr_t virtAddr)
{
    u_offset_t      offPage;
    seg_t           KernelSeg;

    /*
     * 16777215 terabytes of total memory for all VMs or
     * restart 8000 1GB VMs 2147483 times until wraparound!
     */
    mutex_enter(&g_OffsetMtx);
    AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR);
    g_offPage = RT_ALIGN_64(g_offPage, PAGE_SIZE) + PAGE_SIZE;
    offPage   = g_offPage;
    mutex_exit(&g_OffsetMtx);

    KernelSeg.s_as = &kas;
    page_t *pPage = page_create_va(&g_PageVnode, offPage, PAGE_SIZE, PG_WAIT | PG_NORELOC, &KernelSeg, virtAddr);
    if (RT_LIKELY(pPage))
    {
        /*
         * Lock this page into memory "long term" to prevent this page from being paged out
         * when we drop the page lock temporarily (during free). Downgrade to a shared lock
         * to prevent page relocation.
         */
        page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */);
        page_io_unlock(pPage);
        page_downgrade(pPage);
        Assert(PAGE_LOCKED_SE(pPage, SE_SHARED));
    }

    return pPage;
}


/**
 * Destroys an allocated page.
 *
 * @param pPage         Pointer to the page to be destroyed.
 * @remarks This function expects page in @c pPage to be shared locked.
 */
static void rtR0MemObjSolPageDestroy(page_t *pPage)
{
    /*
     * We need to exclusive lock the pages before freeing them, if upgrading the shared lock to exclusive fails,
     * drop the page lock and look it up from the hash. Record the page offset before we drop the page lock as
     * we cannot touch any page_t members once the lock is dropped.
     */
    AssertPtr(pPage);
    Assert(PAGE_LOCKED_SE(pPage, SE_SHARED));

    u_offset_t offPage = pPage->p_offset;
    int rc = page_tryupgrade(pPage);
    if (!rc)
    {
        page_unlock(pPage);
        page_t *pFoundPage = page_lookup(&g_PageVnode, offPage, SE_EXCL);

        /*
         * Since we allocated the pages as PG_NORELOC we should only get back the exact page always.
         */
        AssertReleaseMsg(pFoundPage == pPage, ("Page lookup failed %p:%llx returned %p, expected %p\n",
                                               &g_PageVnode, offPage, pFoundPage, pPage));
    }
    Assert(PAGE_LOCKED_SE(pPage, SE_EXCL));
    page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */);
    page_destroy(pPage, 0 /* move it to the free list */);
}


/* Currently not used on 32-bits, define it to shut up gcc. */
#if HC_ARCH_BITS == 64
/**
 * Allocates physical, non-contiguous memory of pages.
 *
 * @param puPhys    Where to store the physical address of first page. Optional,
 *                  can be NULL.
 * @param cb        The size of the allocation.
 *
 * @return Array of allocated pages, NULL on failure.
 */
static page_t **rtR0MemObjSolPagesAlloc(uint64_t *puPhys, size_t cb)
{
    /*
     * VM1:
     * The page freelist and cachelist both hold pages that are not mapped into any address space.
     * The cachelist is not really free pages but when memory is exhausted they'll be moved to the
     * free lists, it's the total of the free+cache list that we see on the 'free' column in vmstat.
     *
     * VM2:
     * @todo Document what happens behind the scenes in VM2 regarding the free and cachelist.
     */

    /*
     * Non-pageable memory reservation request for _4K pages, don't sleep.
     */
    size_t cPages = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
    int rc = page_resv(cPages, KM_NOSLEEP);
    if (rc)
    {
        size_t   cbPages = cPages * sizeof(page_t *);
        page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP);
        if (RT_LIKELY(ppPages))
        {
            /*
             * Get pages from kseg, the 'virtAddr' here is only for colouring but unfortunately
             * we don't yet have the 'virtAddr' to which this memory may be mapped.
             */
            caddr_t virtAddr = 0;
            for (size_t i = 0; i < cPages; i++, virtAddr += PAGE_SIZE)
            {
                /*
                 * Get a page from the free list locked exclusively. The page will be named (hashed in)
                 * and we rely on it during free. The page we get will be shared locked to prevent the page
                 * from being relocated.
                 */
                page_t *pPage = rtR0MemObjSolPageAlloc(virtAddr);
                if (RT_UNLIKELY(!pPage))
                {
                    /*
                     * No page found, release whatever pages we grabbed so far.
                     */
                    for (size_t k = 0; k < i; k++)
                        rtR0MemObjSolPageDestroy(ppPages[k]);
                    kmem_free(ppPages, cbPages);
                    page_unresv(cPages);
                    return NULL;
                }

                ppPages[i] = pPage;
            }

            if (puPhys)
                *puPhys = rtR0MemObjSolPagePhys(ppPages[0]);
            return ppPages;
        }

        page_unresv(cPages);
    }

    return NULL;
}
#endif  /* HC_ARCH_BITS == 64 */


/**
 * Frees the allocates pages.
 *
 * @param ppPages       Pointer to the page list.
 * @param cbPages       Size of the allocation.
 */
static void rtR0MemObjSolPagesFree(page_t **ppPages, size_t cb)
{
    size_t cPages  = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;
    size_t cbPages = cPages * sizeof(page_t *);
    for (size_t iPage = 0; iPage < cPages; iPage++)
        rtR0MemObjSolPageDestroy(ppPages[iPage]);

    kmem_free(ppPages, cbPages);
    page_unresv(cPages);
}


/**
 * Allocates one large page.
 *
 * @param puPhys        Where to store the physical address of the allocated
 *                      page. Optional, can be NULL.
 * @param cbLargePage   Size of the large page.
 *
 * @returns Pointer to a list of pages that cover the large page, NULL on
 *        failure.
 */
static page_t **rtR0MemObjSolLargePageAlloc(uint64_t *puPhys, size_t cbLargePage)
{
    /*
     * Check PG_NORELOC support for large pages. Using this helps prevent _1G page
     * fragementation on systems that support it.
     */
    static bool fPageNoRelocChecked = false;
    if (fPageNoRelocChecked == false)
    {
        fPageNoRelocChecked = true;
        g_fLargePageNoReloc = false;
        if (   g_pfnrtR0Sol_page_noreloc_supported
            && g_pfnrtR0Sol_page_noreloc_supported(cbLargePage))
        {
            g_fLargePageNoReloc = true;
        }
    }

    /*
     * Non-pageable memory reservation request for _4K pages, don't sleep.
     */
    size_t cPages       = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT;
    size_t cbPages      = cPages * sizeof(page_t *);
    u_offset_t offPage  = 0;
    int rc = page_resv(cPages, KM_NOSLEEP);
    if (rc)
    {
        page_t **ppPages = kmem_zalloc(cbPages, KM_SLEEP);
        if (RT_LIKELY(ppPages))
        {
            mutex_enter(&g_LargePageOffsetMtx);
            AssertCompileSize(u_offset_t, sizeof(uint64_t)); NOREF(RTASSERTVAR);
            g_offLargePage = RT_ALIGN_64(g_offLargePage, cbLargePage) + cbLargePage;
            offPage        = g_offLargePage;
            mutex_exit(&g_LargePageOffsetMtx);

            seg_t KernelSeg;
            KernelSeg.s_as = &kas;
            page_t *pRootPage = page_create_va_large(&g_LargePageVnode, offPage, cbLargePage,
                                                     PG_EXCL | (g_fLargePageNoReloc ? PG_NORELOC : 0), &KernelSeg,
                                                     0 /* vaddr */,NULL /* locality group */);
            if (pRootPage)
            {
                /*
                 * Split it into sub-pages, downgrade each page to a shared lock to prevent page relocation.
                 */
                page_t *pPageList = pRootPage;
                for (size_t iPage = 0; iPage < cPages; iPage++)
                {
                    page_t *pPage = pPageList;
                    AssertPtr(pPage);
                    AssertMsg(page_pptonum(pPage) == iPage + page_pptonum(pRootPage),
                        ("%p:%lx %lx+%lx\n", pPage, page_pptonum(pPage), iPage, page_pptonum(pRootPage)));
                    AssertMsg(pPage->p_szc == pRootPage->p_szc, ("Size code mismatch %p %d %d\n", pPage,
                                                                 (int)pPage->p_szc, (int)pRootPage->p_szc));

                    /*
                     * Lock the page into memory "long term". This prevents callers of page_try_demote_pages() (such as the
                     * pageout scanner) from demoting the large page into smaller pages while we temporarily release the
                     * exclusive lock (during free). We pass "0, 1" since we've already accounted for availrmem during
                     * page_resv().
                     */
                    page_pp_lock(pPage, 0 /* COW */, 1 /* Kernel */);

                    page_sub(&pPageList, pPage);
                    page_io_unlock(pPage);
                    page_downgrade(pPage);
                    Assert(PAGE_LOCKED_SE(pPage, SE_SHARED));

                    ppPages[iPage] = pPage;
                }
                Assert(pPageList == NULL);
                Assert(ppPages[0] == pRootPage);

                uint64_t uPhys = rtR0MemObjSolPagePhys(pRootPage);
                AssertMsg(!(uPhys & (cbLargePage - 1)), ("%llx %zx\n", uPhys, cbLargePage));
                if (puPhys)
                    *puPhys = uPhys;
                return ppPages;
            }

            /*
             * Don't restore offPrev in case of failure (race condition), we have plenty of offset space.
             * The offset must be unique (for the same vnode) or we'll encounter panics on page_create_va_large().
             */
            kmem_free(ppPages, cbPages);
        }

        page_unresv(cPages);
    }
    return NULL;
}


/**
 * Frees the large page.
 *
 * @param    ppPages        Pointer to the list of small pages that cover the
 *                          large page.
 * @param    cbLargePage    Size of the allocation (i.e. size of the large
 *                          page).
 */
static void rtR0MemObjSolLargePageFree(page_t **ppPages, size_t cbLargePage)
{
    Assert(ppPages);
    Assert(cbLargePage > PAGE_SIZE);

    bool   fDemoted   = false;
    size_t cPages     = (cbLargePage + PAGE_SIZE - 1) >> PAGE_SHIFT;
    size_t cbPages    = cPages * sizeof(page_t *);
    page_t *pPageList = ppPages[0];

    for (size_t iPage = 0; iPage < cPages; iPage++)
    {
        /*
         * We need the pages exclusively locked, try upgrading the shared lock.
         * If it fails, drop the shared page lock (cannot access any page_t members once this is done)
         * and lookup the page from the page hash locking it exclusively.
         */
        page_t    *pPage    = ppPages[iPage];
        u_offset_t offPage  = pPage->p_offset;
        int rc = page_tryupgrade(pPage);
        if (!rc)
        {
            page_unlock(pPage);
            page_t *pFoundPage = page_lookup(&g_LargePageVnode, offPage, SE_EXCL);
            AssertRelease(pFoundPage);

            if (g_fLargePageNoReloc)
            {
                /*
                 * This can only be guaranteed if PG_NORELOC is used while allocating the pages.
                 */
                AssertReleaseMsg(pFoundPage == pPage,
                             ("lookup failed %p:%llu returned %p, expected %p\n", &g_LargePageVnode, offPage,
                              pFoundPage, pPage));
            }

            /*
             * Check for page demotion (regardless of relocation). Some places in Solaris (e.g. VM1 page_retire())
             * could possibly demote the large page to _4K pages between our call to page_unlock() and page_lookup().
             */
            if (page_get_pagecnt(pFoundPage->p_szc) == 1)   /* Base size of only _4K associated with this page. */
                fDemoted = true;
            pPage          = pFoundPage;
            ppPages[iPage] = pFoundPage;
        }
        Assert(PAGE_LOCKED_SE(pPage, SE_EXCL));
        page_pp_unlock(pPage, 0 /* COW */, 1 /* Kernel */);
    }

    if (fDemoted)
    {
        for (size_t iPage = 0; iPage < cPages; iPage++)
        {
            Assert(page_get_pagecnt(ppPages[iPage]->p_szc) == 1);
            page_destroy(ppPages[iPage], 0 /* move it to the free list */);
        }
    }
    else
    {
        /*
         * Although we shred the adjacent pages in the linked list, page_destroy_pages works on
         * adjacent pages via array increments. So this does indeed free all the pages.
         */
        AssertPtr(pPageList);
        page_destroy_pages(pPageList);
    }
    kmem_free(ppPages, cbPages);
    page_unresv(cPages);
}


/**
 * Unmaps kernel/user-space mapped memory.
 *
 * @param    pv         Pointer to the mapped memory block.
 * @param    cb         Size of the memory block.
 */
static void rtR0MemObjSolUnmap(void *pv, size_t cb)
{
    if (SOL_IS_KRNL_ADDR(pv))
    {
        hat_unload(kas.a_hat, pv, cb, HAT_UNLOAD | HAT_UNLOAD_UNLOCK);
        vmem_free(heap_arena, pv, cb);
    }
    else
    {
        struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
        AssertPtr(pAddrSpace);
        as_rangelock(pAddrSpace);
        as_unmap(pAddrSpace, pv, cb);
        as_rangeunlock(pAddrSpace);
    }
}


/**
 * Lock down memory mappings for a virtual address.
 *
 * @param    pv             Pointer to the memory to lock down.
 * @param    cb             Size of the memory block.
 * @param    fAccess        Page access rights (S_READ, S_WRITE, S_EXEC)
 *
 * @returns IPRT status code.
 */
static int rtR0MemObjSolLock(void *pv, size_t cb, int fPageAccess)
{
    /*
     * Kernel memory mappings on x86/amd64 are always locked, only handle user-space memory.
     */
    if (!SOL_IS_KRNL_ADDR(pv))
    {
        proc_t *pProc = (proc_t *)RTR0ProcHandleSelf();
        AssertPtr(pProc);
        faultcode_t rc = as_fault(pProc->p_as->a_hat, pProc->p_as, (caddr_t)pv, cb, F_SOFTLOCK, fPageAccess);
        if (rc)
        {
            LogRel(("rtR0MemObjSolLock failed for pv=%pv cb=%lx fPageAccess=%d rc=%d\n", pv, cb, fPageAccess, rc));
            return VERR_LOCK_FAILED;
        }
    }
    return VINF_SUCCESS;
}


/**
 * Unlock memory mappings for a virtual address.
 *
 * @param    pv             Pointer to the locked memory.
 * @param    cb             Size of the memory block.
 * @param    fPageAccess    Page access rights (S_READ, S_WRITE, S_EXEC).
 */
static void rtR0MemObjSolUnlock(void *pv, size_t cb, int fPageAccess)
{
    if (!SOL_IS_KRNL_ADDR(pv))
    {
        proc_t *pProcess = (proc_t *)RTR0ProcHandleSelf();
        AssertPtr(pProcess);
        as_fault(pProcess->p_as->a_hat, pProcess->p_as, (caddr_t)pv, cb, F_SOFTUNLOCK, fPageAccess);
    }
}


/**
 * Maps a list of physical pages into user address space.
 *
 * @param    pVirtAddr      Where to store the virtual address of the mapping.
 * @param    fPageAccess    Page access rights (PROT_READ, PROT_WRITE,
 *                          PROT_EXEC)
 * @param    paPhysAddrs    Array of physical addresses to pages.
 * @param    cb             Size of memory being mapped.
 *
 * @returns IPRT status code.
 */
static int rtR0MemObjSolUserMap(caddr_t *pVirtAddr, unsigned fPageAccess, uint64_t *paPhysAddrs, size_t cb, size_t cbPageSize)
{
    struct as *pAddrSpace = ((proc_t *)RTR0ProcHandleSelf())->p_as;
    int rc = VERR_INTERNAL_ERROR;
    SEGVBOX_CRARGS Args;

    Args.paPhysAddrs = paPhysAddrs;
    Args.fPageAccess = fPageAccess;
    Args.cbPageSize  = cbPageSize;

    as_rangelock(pAddrSpace);
    map_addr(pVirtAddr, cb, 0 /* offset */, 0 /* vacalign */, MAP_SHARED);
    if (*pVirtAddr != NULL)
        rc = as_map(pAddrSpace, *pVirtAddr, cb, rtR0SegVBoxSolCreate, &Args);
    else
        rc = ENOMEM;
    as_rangeunlock(pAddrSpace);

    return RTErrConvertFromErrno(rc);
}


DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
{
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;

    switch (pMemSolaris->Core.enmType)
    {
        case RTR0MEMOBJTYPE_LOW:
            rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
            break;

        case RTR0MEMOBJTYPE_PHYS:
            if (pMemSolaris->Core.u.Phys.fAllocated)
            {
                if (pMemSolaris->fLargePage)
                    rtR0MemObjSolLargePageFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
                else
                    rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
            }
            break;

        case RTR0MEMOBJTYPE_PHYS_NC:
            if (pMemSolaris->fIndivPages)
                rtR0MemObjSolPagesFree(pMemSolaris->pvHandle, pMemSolaris->Core.cb);
            else
                rtR0SolMemFree(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
            break;

        case RTR0MEMOBJTYPE_PAGE:
            ddi_umem_free(pMemSolaris->Cookie);
            break;

        case RTR0MEMOBJTYPE_LOCK:
            rtR0MemObjSolUnlock(pMemSolaris->Core.pv, pMemSolaris->Core.cb, pMemSolaris->fAccess);
            break;

        case RTR0MEMOBJTYPE_MAPPING:
            rtR0MemObjSolUnmap(pMemSolaris->Core.pv, pMemSolaris->Core.cb);
            break;

        case RTR0MEMOBJTYPE_RES_VIRT:
        {
            if (pMemSolaris->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
                vmem_xfree(heap_arena, pMemSolaris->Core.pv, pMemSolaris->Core.cb);
            else
                AssertFailed();
            break;
        }

        case RTR0MEMOBJTYPE_CONT: /* we don't use this type here. */
        default:
            AssertMsgFailed(("enmType=%d\n", pMemSolaris->Core.enmType));
            return VERR_INTERNAL_ERROR;
    }

    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    /* Create the object. */
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PAGE, NULL, cb);
    if (RT_UNLIKELY(!pMemSolaris))
        return VERR_NO_MEMORY;

    void *pvMem = ddi_umem_alloc(cb, DDI_UMEM_SLEEP, &pMemSolaris->Cookie);
    if (RT_UNLIKELY(!pvMem))
    {
        rtR0MemObjDelete(&pMemSolaris->Core);
        return VERR_NO_PAGE_MEMORY;
    }

    pMemSolaris->Core.pv  = pvMem;
    pMemSolaris->pvHandle = NULL;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    NOREF(fExecutable);

    /* Create the object */
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOW, NULL, cb);
    if (!pMemSolaris)
        return VERR_NO_MEMORY;

    /* Allocate physically low page-aligned memory. */
    uint64_t uPhysHi = _4G - 1;
    void *pvMem = rtR0SolMemAlloc(uPhysHi, NULL /* puPhys */, cb, PAGE_SIZE, false /* fContig */);
    if (RT_UNLIKELY(!pvMem))
    {
        rtR0MemObjDelete(&pMemSolaris->Core);
        return VERR_NO_LOW_MEMORY;
    }
    pMemSolaris->Core.pv = pvMem;
    pMemSolaris->pvHandle = NULL;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
{
    NOREF(fExecutable);
    return rtR0MemObjNativeAllocPhys(ppMem, cb, _4G - 1, PAGE_SIZE /* alignment */);
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
{
#if HC_ARCH_BITS == 64
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
    if (RT_UNLIKELY(!pMemSolaris))
        return VERR_NO_MEMORY;

    if (PhysHighest == NIL_RTHCPHYS)
    {
        uint64_t PhysAddr = UINT64_MAX;
        void *pvPages = rtR0MemObjSolPagesAlloc(&PhysAddr, cb);
        if (!pvPages)
        {
            LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0MemObjSolPagesAlloc failed for cb=%u.\n", cb));
            rtR0MemObjDelete(&pMemSolaris->Core);
            return VERR_NO_MEMORY;
        }
        Assert(PhysAddr != UINT64_MAX);
        Assert(!(PhysAddr & PAGE_OFFSET_MASK));

        pMemSolaris->Core.pv     = NULL;
        pMemSolaris->pvHandle    = pvPages;
        pMemSolaris->fIndivPages = true;
        *ppMem = &pMemSolaris->Core;
        return VINF_SUCCESS;
    }
    else
    {
        /*
         * If we must satisfy an upper limit constraint, it isn't feasible to grab individual pages.
         * We fall back to using contig_alloc().
         */
        uint64_t PhysAddr = UINT64_MAX;
        void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, PAGE_SIZE, false /* fContig */);
        if (!pvMem)
        {
            LogRel(("rtR0MemObjNativeAllocPhysNC: rtR0SolMemAlloc failed for cb=%u PhysHighest=%RHp.\n", cb, PhysHighest));
            rtR0MemObjDelete(&pMemSolaris->Core);
            return VERR_NO_MEMORY;
        }
        Assert(PhysAddr != UINT64_MAX);
        Assert(!(PhysAddr & PAGE_OFFSET_MASK));

        pMemSolaris->Core.pv     = pvMem;
        pMemSolaris->pvHandle    = NULL;
        pMemSolaris->fIndivPages = false;
        *ppMem = &pMemSolaris->Core;
        return VINF_SUCCESS;
    }

#else /* 32 bit: */
    return VERR_NOT_SUPPORTED; /* see the RTR0MemObjAllocPhysNC specs */
#endif
}


DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
{
    AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_SUPPORTED);

    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
    if (RT_UNLIKELY(!pMemSolaris))
        return VERR_NO_MEMORY;

    /*
     * Allocating one large page gets special treatment.
     */
    static uint32_t s_cbLargePage = UINT32_MAX;
    if (s_cbLargePage == UINT32_MAX)
    {
        if (page_num_pagesizes() > 1)
            ASMAtomicWriteU32(&s_cbLargePage, page_get_pagesize(1)); /* Page-size code 1 maps to _2M on Solaris x86/amd64. */
        else
            ASMAtomicWriteU32(&s_cbLargePage, 0);
    }

    uint64_t PhysAddr;
    if (   cb == s_cbLargePage
        && cb == uAlignment
        && PhysHighest == NIL_RTHCPHYS)
    {
        /*
         * Allocate one large page (backed by physically contiguous memory).
         */
        void *pvPages = rtR0MemObjSolLargePageAlloc(&PhysAddr, cb);
        if (RT_LIKELY(pvPages))
        {
            AssertMsg(!(PhysAddr & (cb - 1)), ("%RHp\n", PhysAddr));
            pMemSolaris->Core.pv                = NULL;
            pMemSolaris->Core.u.Phys.PhysBase   = PhysAddr;
            pMemSolaris->Core.u.Phys.fAllocated = true;
            pMemSolaris->pvHandle               = pvPages;
            pMemSolaris->fLargePage             = true;

            *ppMem = &pMemSolaris->Core;
            return VINF_SUCCESS;
        }
    }
    else
    {
        /*
         * Allocate physically contiguous memory aligned as specified.
         */
        AssertCompile(NIL_RTHCPHYS == UINT64_MAX); NOREF(RTASSERTVAR);
        PhysAddr = PhysHighest;
        void *pvMem = rtR0SolMemAlloc(PhysHighest, &PhysAddr, cb, uAlignment, true /* fContig */);
        if (RT_LIKELY(pvMem))
        {
            Assert(!(PhysAddr & PAGE_OFFSET_MASK));
            Assert(PhysAddr < PhysHighest);
            Assert(PhysAddr + cb <= PhysHighest);

            pMemSolaris->Core.pv                = pvMem;
            pMemSolaris->Core.u.Phys.PhysBase   = PhysAddr;
            pMemSolaris->Core.u.Phys.fAllocated = true;
            pMemSolaris->pvHandle               = NULL;
            pMemSolaris->fLargePage             = false;

            *ppMem = &pMemSolaris->Core;
            return VINF_SUCCESS;
        }
    }
    rtR0MemObjDelete(&pMemSolaris->Core);
    return VERR_NO_CONT_MEMORY;
}


DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
{
    AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED);

    /* Create the object. */
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_PHYS, NULL, cb);
    if (!pMemSolaris)
        return VERR_NO_MEMORY;

    /* There is no allocation here, it needs to be mapped somewhere first. */
    pMemSolaris->Core.u.Phys.fAllocated   = false;
    pMemSolaris->Core.u.Phys.PhysBase     = Phys;
    pMemSolaris->Core.u.Phys.uCachePolicy = uCachePolicy;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess,
                                         RTR0PROCESS R0Process)
{
    AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_INVALID_PARAMETER);
    NOREF(fAccess);

    /* Create the locking object */
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
    if (!pMemSolaris)
        return VERR_NO_MEMORY;

    /* Lock down user pages. */
    int fPageAccess = S_READ;
    if (fAccess & RTMEM_PROT_WRITE)
        fPageAccess = S_WRITE;
    if (fAccess & RTMEM_PROT_EXEC)
        fPageAccess = S_EXEC;
    int rc = rtR0MemObjSolLock((void *)R3Ptr, cb, fPageAccess);
    if (RT_FAILURE(rc))
    {
        LogRel(("rtR0MemObjNativeLockUser: rtR0MemObjSolLock failed rc=%d\n", rc));
        rtR0MemObjDelete(&pMemSolaris->Core);
        return rc;
    }

    /* Fill in the object attributes and return successfully. */
    pMemSolaris->Core.u.Lock.R0Process  = R0Process;
    pMemSolaris->pvHandle               = NULL;
    pMemSolaris->fAccess                = fPageAccess;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
{
    NOREF(fAccess);

    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_LOCK, pv, cb);
    if (!pMemSolaris)
        return VERR_NO_MEMORY;

    /* Lock down kernel pages. */
    int fPageAccess = S_READ;
    if (fAccess & RTMEM_PROT_WRITE)
        fPageAccess = S_WRITE;
    if (fAccess & RTMEM_PROT_EXEC)
        fPageAccess = S_EXEC;
    int rc = rtR0MemObjSolLock(pv, cb, fPageAccess);
    if (RT_FAILURE(rc))
    {
        LogRel(("rtR0MemObjNativeLockKernel: rtR0MemObjSolLock failed rc=%d\n", rc));
        rtR0MemObjDelete(&pMemSolaris->Core);
        return rc;
    }

    /* Fill in the object attributes and return successfully. */
    pMemSolaris->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
    pMemSolaris->pvHandle              = NULL;
    pMemSolaris->fAccess               = fPageAccess;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
{
    PRTR0MEMOBJSOL  pMemSolaris;

    /*
     * Use xalloc.
     */
    void *pv = vmem_xalloc(heap_arena, cb, uAlignment, 0 /* phase */, 0 /* nocross */,
                           NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP);
    if (RT_UNLIKELY(!pv))
        return VERR_NO_MEMORY;

    /* Create the object. */
    pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
    if (!pMemSolaris)
    {
        LogRel(("rtR0MemObjNativeReserveKernel failed to alloc memory object.\n"));
        vmem_xfree(heap_arena, pv, cb);
        return VERR_NO_MEMORY;
    }

    pMemSolaris->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
    *ppMem = &pMemSolaris->Core;
    return VINF_SUCCESS;
}


DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment,
                                            RTR0PROCESS R0Process)
{
    return VERR_NOT_SUPPORTED;
}


DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
                                          unsigned fProt, size_t offSub, size_t cbSub)
{
    /* Fail if requested to do something we can't. */
    AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
    if (uAlignment > PAGE_SIZE)
        return VERR_NOT_SUPPORTED;

    /*
     * Use xalloc to get address space.
     */
    if (!cbSub)
        cbSub = pMemToMap->cb;
    void *pv = vmem_xalloc(heap_arena, cbSub, uAlignment, 0 /* phase */, 0 /* nocross */,
                           NULL /* minaddr */, NULL /* maxaddr */, VM_SLEEP);
    if (RT_UNLIKELY(!pv))
        return VERR_MAP_FAILED;

    /*
     * Load the pages from the other object into it.
     */
    uint32_t fAttr  = HAT_UNORDERED_OK | HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
    if (fProt & RTMEM_PROT_READ)
        fAttr |= PROT_READ;
    if (fProt & RTMEM_PROT_EXEC)
        fAttr |= PROT_EXEC;
    if (fProt & RTMEM_PROT_WRITE)
        fAttr |= PROT_WRITE;
    fAttr |= HAT_NOSYNC;

    int    rc  = VINF_SUCCESS;
    size_t off = 0;
    while (off < cbSub)
    {
        RTHCPHYS HCPhys = RTR0MemObjGetPagePhysAddr(pMemToMap, (offSub + offSub) >> PAGE_SHIFT);
        AssertBreakStmt(HCPhys != NIL_RTHCPHYS, rc = VERR_INTERNAL_ERROR_2);
        pfn_t pfn = HCPhys >> PAGE_SHIFT;
        AssertBreakStmt(((RTHCPHYS)pfn << PAGE_SHIFT) == HCPhys, rc = VERR_INTERNAL_ERROR_3);

        hat_devload(kas.a_hat, (uint8_t *)pv + off, PAGE_SIZE, pfn, fAttr, HAT_LOAD_LOCK);

        /* Advance. */
        off += PAGE_SIZE;
    }
    if (RT_SUCCESS(rc))
    {
        /*
         * Create a memory object for the mapping.
         */
        PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cbSub);
        if (pMemSolaris)
        {
            pMemSolaris->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
            *ppMem = &pMemSolaris->Core;
            return VINF_SUCCESS;
        }

        LogRel(("rtR0MemObjNativeMapKernel failed to alloc memory object.\n"));
        rc = VERR_NO_MEMORY;
    }

    if (off)
        hat_unload(kas.a_hat, pv, off, HAT_UNLOAD | HAT_UNLOAD_UNLOCK);
    vmem_xfree(heap_arena, pv, cbSub);
    return rc;
}


DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, PRTR0MEMOBJINTERNAL pMemToMap, RTR3PTR R3PtrFixed,
                                        size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
{
    /*
     * Fend off things we cannot do.
     */
    AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
    AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
    if (uAlignment != PAGE_SIZE)
        return VERR_NOT_SUPPORTED;

    /*
     * Get parameters from the source object.
     */
    PRTR0MEMOBJSOL  pMemToMapSolaris     = (PRTR0MEMOBJSOL)pMemToMap;
    void           *pv                   = pMemToMapSolaris->Core.pv;
    size_t          cb                   = pMemToMapSolaris->Core.cb;
    size_t          cPages               = (cb + PAGE_SIZE - 1) >> PAGE_SHIFT;

    /*
     * Create the mapping object
     */
    PRTR0MEMOBJSOL pMemSolaris;
    pMemSolaris = (PRTR0MEMOBJSOL)rtR0MemObjNew(sizeof(*pMemSolaris), RTR0MEMOBJTYPE_MAPPING, pv, cb);
    if (RT_UNLIKELY(!pMemSolaris))
        return VERR_NO_MEMORY;

    int rc = VINF_SUCCESS;
    uint64_t *paPhysAddrs = kmem_zalloc(sizeof(uint64_t) * cPages, KM_SLEEP);
    if (RT_LIKELY(paPhysAddrs))
    {
        /*
         * Prepare the pages for mapping according to type.
         */
        if (   pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS_NC
            && pMemToMapSolaris->fIndivPages)
        {
            page_t **ppPages = pMemToMapSolaris->pvHandle;
            AssertPtr(ppPages);
            for (size_t iPage = 0; iPage < cPages; iPage++)
                paPhysAddrs[iPage] = rtR0MemObjSolPagePhys(ppPages[iPage]);
        }
        else if (   pMemToMapSolaris->Core.enmType == RTR0MEMOBJTYPE_PHYS
                 && pMemToMapSolaris->fLargePage)
        {
            RTHCPHYS Phys = pMemToMapSolaris->Core.u.Phys.PhysBase;
            for (size_t iPage = 0; iPage < cPages; iPage++, Phys += PAGE_SIZE)
                paPhysAddrs[iPage] = Phys;
        }
        else
        {
            /*
             * Have kernel mapping, just translate virtual to physical.
             */
            AssertPtr(pv);
            rc = VINF_SUCCESS;
            for (size_t iPage = 0; iPage < cPages; iPage++)
            {
                paPhysAddrs[iPage] = rtR0MemObjSolVirtToPhys(pv);
                if (RT_UNLIKELY(paPhysAddrs[iPage] == -(uint64_t)1))
                {
                    LogRel(("rtR0MemObjNativeMapUser: no page to map.\n"));
                    rc = VERR_MAP_FAILED;
                    break;
                }
                pv = (void *)((uintptr_t)pv + PAGE_SIZE);
            }
        }
        if (RT_SUCCESS(rc))
        {
            unsigned fPageAccess = PROT_READ;
            if (fProt & RTMEM_PROT_WRITE)
                fPageAccess |= PROT_WRITE;
            if (fProt & RTMEM_PROT_EXEC)
                fPageAccess |= PROT_EXEC;

            /*
             * Perform the actual mapping.
             */
            caddr_t UserAddr = NULL;
            rc = rtR0MemObjSolUserMap(&UserAddr, fPageAccess, paPhysAddrs, cb, PAGE_SIZE);
            if (RT_SUCCESS(rc))
            {
                pMemSolaris->Core.u.Mapping.R0Process = R0Process;
                pMemSolaris->Core.pv                  = UserAddr;

                *ppMem = &pMemSolaris->Core;
                kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
                return VINF_SUCCESS;
            }

            LogRel(("rtR0MemObjNativeMapUser: rtR0MemObjSolUserMap failed rc=%d.\n", rc));
        }

        rc = VERR_MAP_FAILED;
        kmem_free(paPhysAddrs, sizeof(uint64_t) * cPages);
    }
    else
        rc = VERR_NO_MEMORY;
    rtR0MemObjDelete(&pMemSolaris->Core);
    return rc;
}


DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
{
    NOREF(pMem);
    NOREF(offSub);
    NOREF(cbSub);
    NOREF(fProt);
    return VERR_NOT_SUPPORTED;
}


DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
{
    PRTR0MEMOBJSOL pMemSolaris = (PRTR0MEMOBJSOL)pMem;

    switch (pMemSolaris->Core.enmType)
    {
        case RTR0MEMOBJTYPE_PHYS_NC:
            if (   pMemSolaris->Core.u.Phys.fAllocated
                || !pMemSolaris->fIndivPages)
            {
                uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
                return rtR0MemObjSolVirtToPhys(pb);
            }
            page_t **ppPages = pMemSolaris->pvHandle;
            return rtR0MemObjSolPagePhys(ppPages[iPage]);

        case RTR0MEMOBJTYPE_PAGE:
        case RTR0MEMOBJTYPE_LOW:
        case RTR0MEMOBJTYPE_LOCK:
        {
            uint8_t *pb = (uint8_t *)pMemSolaris->Core.pv + ((size_t)iPage << PAGE_SHIFT);
            return rtR0MemObjSolVirtToPhys(pb);
        }

        /*
         * Although mapping can be handled by rtR0MemObjSolVirtToPhys(offset) like the above case,
         * request it from the parent so that we have a clear distinction between CONT/PHYS_NC.
         */
        case RTR0MEMOBJTYPE_MAPPING:
            return rtR0MemObjNativeGetPagePhysAddr(pMemSolaris->Core.uRel.Child.pParent, iPage);

        case RTR0MEMOBJTYPE_CONT:
        case RTR0MEMOBJTYPE_PHYS:
            AssertFailed(); /* handled by the caller */
        case RTR0MEMOBJTYPE_RES_VIRT:
        default:
            return NIL_RTHCPHYS;
    }
}