diff options
Diffstat (limited to 'drivers/st/ddr/stm32mp1_ddr.c')
-rw-r--r-- | drivers/st/ddr/stm32mp1_ddr.c | 764 |
1 files changed, 764 insertions, 0 deletions
diff --git a/drivers/st/ddr/stm32mp1_ddr.c b/drivers/st/ddr/stm32mp1_ddr.c new file mode 100644 index 0000000..4719e1e --- /dev/null +++ b/drivers/st/ddr/stm32mp1_ddr.c @@ -0,0 +1,764 @@ +/* + * Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause + */ + +#include <errno.h> +#include <stddef.h> + +#include <arch.h> +#include <arch_helpers.h> +#include <common/debug.h> +#include <drivers/clk.h> +#include <drivers/delay_timer.h> +#include <drivers/st/stm32mp1_ddr.h> +#include <drivers/st/stm32mp1_ddr_regs.h> +#include <drivers/st/stm32mp1_pwr.h> +#include <drivers/st/stm32mp1_ram.h> +#include <drivers/st/stm32mp_ddr.h> +#include <lib/mmio.h> +#include <plat/common/platform.h> + +#include <platform_def.h> + +#define DDRCTL_REG(x, y) \ + { \ + .name = #x, \ + .offset = offsetof(struct stm32mp_ddrctl, x), \ + .par_offset = offsetof(struct y, x) \ + } + +#define DDRPHY_REG(x, y) \ + { \ + .name = #x, \ + .offset = offsetof(struct stm32mp_ddrphy, x), \ + .par_offset = offsetof(struct y, x) \ + } + +/* + * PARAMETERS: value get from device tree : + * size / order need to be aligned with binding + * modification NOT ALLOWED !!! + */ +#define DDRCTL_REG_REG_SIZE 25 /* st,ctl-reg */ +#define DDRCTL_REG_TIMING_SIZE 12 /* st,ctl-timing */ +#define DDRCTL_REG_MAP_SIZE 9 /* st,ctl-map */ +#if STM32MP_DDR_DUAL_AXI_PORT +#define DDRCTL_REG_PERF_SIZE 17 /* st,ctl-perf */ +#else +#define DDRCTL_REG_PERF_SIZE 11 /* st,ctl-perf */ +#endif + +#if STM32MP_DDR_32BIT_INTERFACE +#define DDRPHY_REG_REG_SIZE 11 /* st,phy-reg */ +#else +#define DDRPHY_REG_REG_SIZE 9 /* st,phy-reg */ +#endif +#define DDRPHY_REG_TIMING_SIZE 10 /* st,phy-timing */ + +#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg) +static const struct stm32mp_ddr_reg_desc ddr_reg[DDRCTL_REG_REG_SIZE] = { + DDRCTL_REG_REG(mstr), + DDRCTL_REG_REG(mrctrl0), + DDRCTL_REG_REG(mrctrl1), + DDRCTL_REG_REG(derateen), + DDRCTL_REG_REG(derateint), + DDRCTL_REG_REG(pwrctl), + DDRCTL_REG_REG(pwrtmg), + DDRCTL_REG_REG(hwlpctl), + DDRCTL_REG_REG(rfshctl0), + DDRCTL_REG_REG(rfshctl3), + DDRCTL_REG_REG(crcparctl0), + DDRCTL_REG_REG(zqctl0), + DDRCTL_REG_REG(dfitmg0), + DDRCTL_REG_REG(dfitmg1), + DDRCTL_REG_REG(dfilpcfg0), + DDRCTL_REG_REG(dfiupd0), + DDRCTL_REG_REG(dfiupd1), + DDRCTL_REG_REG(dfiupd2), + DDRCTL_REG_REG(dfiphymstr), + DDRCTL_REG_REG(odtmap), + DDRCTL_REG_REG(dbg0), + DDRCTL_REG_REG(dbg1), + DDRCTL_REG_REG(dbgcmd), + DDRCTL_REG_REG(poisoncfg), + DDRCTL_REG_REG(pccfg), +}; + +#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing) +static const struct stm32mp_ddr_reg_desc ddr_timing[DDRCTL_REG_TIMING_SIZE] = { + DDRCTL_REG_TIMING(rfshtmg), + DDRCTL_REG_TIMING(dramtmg0), + DDRCTL_REG_TIMING(dramtmg1), + DDRCTL_REG_TIMING(dramtmg2), + DDRCTL_REG_TIMING(dramtmg3), + DDRCTL_REG_TIMING(dramtmg4), + DDRCTL_REG_TIMING(dramtmg5), + DDRCTL_REG_TIMING(dramtmg6), + DDRCTL_REG_TIMING(dramtmg7), + DDRCTL_REG_TIMING(dramtmg8), + DDRCTL_REG_TIMING(dramtmg14), + DDRCTL_REG_TIMING(odtcfg), +}; + +#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map) +static const struct stm32mp_ddr_reg_desc ddr_map[DDRCTL_REG_MAP_SIZE] = { + DDRCTL_REG_MAP(addrmap1), + DDRCTL_REG_MAP(addrmap2), + DDRCTL_REG_MAP(addrmap3), + DDRCTL_REG_MAP(addrmap4), + DDRCTL_REG_MAP(addrmap5), + DDRCTL_REG_MAP(addrmap6), + DDRCTL_REG_MAP(addrmap9), + DDRCTL_REG_MAP(addrmap10), + DDRCTL_REG_MAP(addrmap11), +}; + +#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf) +static const struct stm32mp_ddr_reg_desc ddr_perf[DDRCTL_REG_PERF_SIZE] = { + DDRCTL_REG_PERF(sched), + DDRCTL_REG_PERF(sched1), + DDRCTL_REG_PERF(perfhpr1), + DDRCTL_REG_PERF(perflpr1), + DDRCTL_REG_PERF(perfwr1), + DDRCTL_REG_PERF(pcfgr_0), + DDRCTL_REG_PERF(pcfgw_0), + DDRCTL_REG_PERF(pcfgqos0_0), + DDRCTL_REG_PERF(pcfgqos1_0), + DDRCTL_REG_PERF(pcfgwqos0_0), + DDRCTL_REG_PERF(pcfgwqos1_0), +#if STM32MP_DDR_DUAL_AXI_PORT + DDRCTL_REG_PERF(pcfgr_1), + DDRCTL_REG_PERF(pcfgw_1), + DDRCTL_REG_PERF(pcfgqos0_1), + DDRCTL_REG_PERF(pcfgqos1_1), + DDRCTL_REG_PERF(pcfgwqos0_1), + DDRCTL_REG_PERF(pcfgwqos1_1), +#endif +}; + +#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg) +static const struct stm32mp_ddr_reg_desc ddrphy_reg[DDRPHY_REG_REG_SIZE] = { + DDRPHY_REG_REG(pgcr), + DDRPHY_REG_REG(aciocr), + DDRPHY_REG_REG(dxccr), + DDRPHY_REG_REG(dsgcr), + DDRPHY_REG_REG(dcr), + DDRPHY_REG_REG(odtcr), + DDRPHY_REG_REG(zq0cr1), + DDRPHY_REG_REG(dx0gcr), + DDRPHY_REG_REG(dx1gcr), +#if STM32MP_DDR_32BIT_INTERFACE + DDRPHY_REG_REG(dx2gcr), + DDRPHY_REG_REG(dx3gcr), +#endif +}; + +#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing) +static const struct stm32mp_ddr_reg_desc ddrphy_timing[DDRPHY_REG_TIMING_SIZE] = { + DDRPHY_REG_TIMING(ptr0), + DDRPHY_REG_TIMING(ptr1), + DDRPHY_REG_TIMING(ptr2), + DDRPHY_REG_TIMING(dtpr0), + DDRPHY_REG_TIMING(dtpr1), + DDRPHY_REG_TIMING(dtpr2), + DDRPHY_REG_TIMING(mr0), + DDRPHY_REG_TIMING(mr1), + DDRPHY_REG_TIMING(mr2), + DDRPHY_REG_TIMING(mr3), +}; + +/* + * REGISTERS ARRAY: used to parse device tree and interactive mode + */ +static const struct stm32mp_ddr_reg_info ddr_registers[REG_TYPE_NB] = { + [REG_REG] = { + .name = "static", + .desc = ddr_reg, + .size = DDRCTL_REG_REG_SIZE, + .base = DDR_BASE + }, + [REG_TIMING] = { + .name = "timing", + .desc = ddr_timing, + .size = DDRCTL_REG_TIMING_SIZE, + .base = DDR_BASE + }, + [REG_PERF] = { + .name = "perf", + .desc = ddr_perf, + .size = DDRCTL_REG_PERF_SIZE, + .base = DDR_BASE + }, + [REG_MAP] = { + .name = "map", + .desc = ddr_map, + .size = DDRCTL_REG_MAP_SIZE, + .base = DDR_BASE + }, + [REGPHY_REG] = { + .name = "static", + .desc = ddrphy_reg, + .size = DDRPHY_REG_REG_SIZE, + .base = DDRPHY_BASE + }, + [REGPHY_TIMING] = { + .name = "timing", + .desc = ddrphy_timing, + .size = DDRPHY_REG_TIMING_SIZE, + .base = DDRPHY_BASE + }, +}; + +static void stm32mp1_ddrphy_idone_wait(struct stm32mp_ddrphy *phy) +{ + uint32_t pgsr; + int error = 0; + uint64_t timeout = timeout_init_us(TIMEOUT_US_1S); + + do { + pgsr = mmio_read_32((uintptr_t)&phy->pgsr); + + VERBOSE(" > [0x%lx] pgsr = 0x%x &\n", + (uintptr_t)&phy->pgsr, pgsr); + + if (timeout_elapsed(timeout)) { + panic(); + } + + if ((pgsr & DDRPHYC_PGSR_DTERR) != 0U) { + VERBOSE("DQS Gate Trainig Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_DTIERR) != 0U) { + VERBOSE("DQS Gate Trainig Intermittent Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_DFTERR) != 0U) { + VERBOSE("DQS Drift Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_RVERR) != 0U) { + VERBOSE("Read Valid Training Error\n"); + error++; + } + + if ((pgsr & DDRPHYC_PGSR_RVEIRR) != 0U) { + VERBOSE("Read Valid Training Intermittent Error\n"); + error++; + } + } while (((pgsr & DDRPHYC_PGSR_IDONE) == 0U) && (error == 0)); + VERBOSE("\n[0x%lx] pgsr = 0x%x\n", + (uintptr_t)&phy->pgsr, pgsr); +} + +static void stm32mp1_ddrphy_init(struct stm32mp_ddrphy *phy, uint32_t pir) +{ + uint32_t pir_init = pir | DDRPHYC_PIR_INIT; + + mmio_write_32((uintptr_t)&phy->pir, pir_init); + VERBOSE("[0x%lx] pir = 0x%x -> 0x%x\n", + (uintptr_t)&phy->pir, pir_init, + mmio_read_32((uintptr_t)&phy->pir)); + + /* Need to wait 10 configuration clock before start polling */ + udelay(10); + + /* Wait DRAM initialization and Gate Training Evaluation complete */ + stm32mp1_ddrphy_idone_wait(phy); +} + +/* Wait quasi dynamic register update */ +static void stm32mp1_wait_operating_mode(struct stm32mp_ddr_priv *priv, uint32_t mode) +{ + uint64_t timeout; + uint32_t stat; + int break_loop = 0; + + timeout = timeout_init_us(TIMEOUT_US_1S); + for ( ; ; ) { + uint32_t operating_mode; + uint32_t selref_type; + + stat = mmio_read_32((uintptr_t)&priv->ctl->stat); + operating_mode = stat & DDRCTRL_STAT_OPERATING_MODE_MASK; + selref_type = stat & DDRCTRL_STAT_SELFREF_TYPE_MASK; + VERBOSE("[0x%lx] stat = 0x%x\n", + (uintptr_t)&priv->ctl->stat, stat); + if (timeout_elapsed(timeout)) { + panic(); + } + + if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) { + /* + * Self-refresh due to software + * => checking also STAT.selfref_type. + */ + if ((operating_mode == + DDRCTRL_STAT_OPERATING_MODE_SR) && + (selref_type == DDRCTRL_STAT_SELFREF_TYPE_SR)) { + break_loop = 1; + } + } else if (operating_mode == mode) { + break_loop = 1; + } else if ((mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) && + (operating_mode == DDRCTRL_STAT_OPERATING_MODE_SR) && + (selref_type == DDRCTRL_STAT_SELFREF_TYPE_ASR)) { + /* Normal mode: handle also automatic self refresh */ + break_loop = 1; + } + + if (break_loop == 1) { + break; + } + } + + VERBOSE("[0x%lx] stat = 0x%x\n", + (uintptr_t)&priv->ctl->stat, stat); +} + +/* Mode Register Writes (MRW or MRS) */ +static void stm32mp1_mode_register_write(struct stm32mp_ddr_priv *priv, uint8_t addr, + uint32_t data) +{ + uint32_t mrctrl0; + + VERBOSE("MRS: %d = %x\n", addr, data); + + /* + * 1. Poll MRSTAT.mr_wr_busy until it is '0'. + * This checks that there is no outstanding MR transaction. + * No write should be performed to MRCTRL0 and MRCTRL1 + * if MRSTAT.mr_wr_busy = 1. + */ + while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & + DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { + ; + } + + /* + * 2. Write the MRCTRL0.mr_type, MRCTRL0.mr_addr, MRCTRL0.mr_rank + * and (for MRWs) MRCTRL1.mr_data to define the MR transaction. + */ + mrctrl0 = DDRCTRL_MRCTRL0_MR_TYPE_WRITE | + DDRCTRL_MRCTRL0_MR_RANK_ALL | + (((uint32_t)addr << DDRCTRL_MRCTRL0_MR_ADDR_SHIFT) & + DDRCTRL_MRCTRL0_MR_ADDR_MASK); + mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); + VERBOSE("[0x%lx] mrctrl0 = 0x%x (0x%x)\n", + (uintptr_t)&priv->ctl->mrctrl0, + mmio_read_32((uintptr_t)&priv->ctl->mrctrl0), mrctrl0); + mmio_write_32((uintptr_t)&priv->ctl->mrctrl1, data); + VERBOSE("[0x%lx] mrctrl1 = 0x%x\n", + (uintptr_t)&priv->ctl->mrctrl1, + mmio_read_32((uintptr_t)&priv->ctl->mrctrl1)); + + /* + * 3. In a separate APB transaction, write the MRCTRL0.mr_wr to 1. This + * bit is self-clearing, and triggers the MR transaction. + * The uMCTL2 then asserts the MRSTAT.mr_wr_busy while it performs + * the MR transaction to SDRAM, and no further access can be + * initiated until it is deasserted. + */ + mrctrl0 |= DDRCTRL_MRCTRL0_MR_WR; + mmio_write_32((uintptr_t)&priv->ctl->mrctrl0, mrctrl0); + + while ((mmio_read_32((uintptr_t)&priv->ctl->mrstat) & + DDRCTRL_MRSTAT_MR_WR_BUSY) != 0U) { + ; + } + + VERBOSE("[0x%lx] mrctrl0 = 0x%x\n", + (uintptr_t)&priv->ctl->mrctrl0, mrctrl0); +} + +/* Switch DDR3 from DLL-on to DLL-off */ +static void stm32mp1_ddr3_dll_off(struct stm32mp_ddr_priv *priv) +{ + uint32_t mr1 = mmio_read_32((uintptr_t)&priv->phy->mr1); + uint32_t mr2 = mmio_read_32((uintptr_t)&priv->phy->mr2); + uint32_t dbgcam; + + VERBOSE("mr1: 0x%x\n", mr1); + VERBOSE("mr2: 0x%x\n", mr2); + + /* + * 1. Set the DBG1.dis_hif = 1. + * This prevents further reads/writes being received on the HIF. + */ + mmio_setbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); + VERBOSE("[0x%lx] dbg1 = 0x%x\n", + (uintptr_t)&priv->ctl->dbg1, + mmio_read_32((uintptr_t)&priv->ctl->dbg1)); + + /* + * 2. Ensure all commands have been flushed from the uMCTL2 by polling + * DBGCAM.wr_data_pipeline_empty = 1, + * DBGCAM.rd_data_pipeline_empty = 1, + * DBGCAM.dbg_wr_q_depth = 0 , + * DBGCAM.dbg_lpr_q_depth = 0, and + * DBGCAM.dbg_hpr_q_depth = 0. + */ + do { + dbgcam = mmio_read_32((uintptr_t)&priv->ctl->dbgcam); + VERBOSE("[0x%lx] dbgcam = 0x%x\n", + (uintptr_t)&priv->ctl->dbgcam, dbgcam); + } while ((((dbgcam & DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY) == + DDRCTRL_DBGCAM_DATA_PIPELINE_EMPTY)) && + ((dbgcam & DDRCTRL_DBGCAM_DBG_Q_DEPTH) == 0U)); + + /* + * 3. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to disable RTT_NOM: + * a. DDR3: Write to MR1[9], MR1[6] and MR1[2] + * b. DDR4: Write to MR1[10:8] + */ + mr1 &= ~(BIT(9) | BIT(6) | BIT(2)); + stm32mp1_mode_register_write(priv, 1, mr1); + + /* + * 4. For DDR4 only: Perform an MRS command + * (using MRCTRL0 and MRCTRL1 registers) to write to MR5[8:6] + * to disable RTT_PARK + */ + + /* + * 5. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to write to MR2[10:9], to disable RTT_WR + * (and therefore disable dynamic ODT). + * This applies for both DDR3 and DDR4. + */ + mr2 &= ~GENMASK(10, 9); + stm32mp1_mode_register_write(priv, 2, mr2); + + /* + * 6. Perform an MRS command (using MRCTRL0 and MRCTRL1 registers) + * to disable the DLL. The timing of this MRS is automatically + * handled by the uMCTL2. + * a. DDR3: Write to MR1[0] + * b. DDR4: Write to MR1[0] + */ + mr1 |= BIT(0); + stm32mp1_mode_register_write(priv, 1, mr1); + + /* + * 7. Put the SDRAM into self-refresh mode by setting + * PWRCTL.selfref_sw = 1, and polling STAT.operating_mode to ensure + * the DDRC has entered self-refresh. + */ + mmio_setbits_32((uintptr_t)&priv->ctl->pwrctl, + DDRCTRL_PWRCTL_SELFREF_SW); + VERBOSE("[0x%lx] pwrctl = 0x%x\n", + (uintptr_t)&priv->ctl->pwrctl, + mmio_read_32((uintptr_t)&priv->ctl->pwrctl)); + + /* + * 8. Wait until STAT.operating_mode[1:0]==11 indicating that the + * DWC_ddr_umctl2 core is in self-refresh mode. + * Ensure transition to self-refresh was due to software + * by checking that STAT.selfref_type[1:0]=2. + */ + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_SR); + + /* + * 9. Set the MSTR.dll_off_mode = 1. + * warning: MSTR.dll_off_mode is a quasi-dynamic type 2 field + */ + stm32mp_ddr_start_sw_done(priv->ctl); + + mmio_setbits_32((uintptr_t)&priv->ctl->mstr, DDRCTRL_MSTR_DLL_OFF_MODE); + VERBOSE("[0x%lx] mstr = 0x%x\n", + (uintptr_t)&priv->ctl->mstr, + mmio_read_32((uintptr_t)&priv->ctl->mstr)); + + stm32mp_ddr_wait_sw_done_ack(priv->ctl); + + /* 10. Change the clock frequency to the desired value. */ + + /* + * 11. Update any registers which may be required to change for the new + * frequency. This includes static and dynamic registers. + * This includes both uMCTL2 registers and PHY registers. + */ + + /* Change Bypass Mode Frequency Range */ + if (clk_get_rate(DDRPHYC) < 100000000U) { + mmio_clrbits_32((uintptr_t)&priv->phy->dllgcr, + DDRPHYC_DLLGCR_BPS200); + } else { + mmio_setbits_32((uintptr_t)&priv->phy->dllgcr, + DDRPHYC_DLLGCR_BPS200); + } + + mmio_setbits_32((uintptr_t)&priv->phy->acdllcr, DDRPHYC_ACDLLCR_DLLDIS); + + mmio_setbits_32((uintptr_t)&priv->phy->dx0dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); + mmio_setbits_32((uintptr_t)&priv->phy->dx1dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); +#if STM32MP_DDR_32BIT_INTERFACE + mmio_setbits_32((uintptr_t)&priv->phy->dx2dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); + mmio_setbits_32((uintptr_t)&priv->phy->dx3dllcr, + DDRPHYC_DXNDLLCR_DLLDIS); +#endif + + /* 12. Exit the self-refresh state by setting PWRCTL.selfref_sw = 0. */ + mmio_clrbits_32((uintptr_t)&priv->ctl->pwrctl, + DDRCTRL_PWRCTL_SELFREF_SW); + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); + + /* + * 13. If ZQCTL0.dis_srx_zqcl = 0, the uMCTL2 performs a ZQCL command + * at this point. + */ + + /* + * 14. Perform MRS commands as required to re-program timing registers + * in the SDRAM for the new frequency + * (in particular, CL, CWL and WR may need to be changed). + */ + + /* 15. Write DBG1.dis_hif = 0 to re-enable reads and writes. */ + mmio_clrbits_32((uintptr_t)&priv->ctl->dbg1, DDRCTRL_DBG1_DIS_HIF); + VERBOSE("[0x%lx] dbg1 = 0x%x\n", + (uintptr_t)&priv->ctl->dbg1, + mmio_read_32((uintptr_t)&priv->ctl->dbg1)); +} + +static void stm32mp1_refresh_disable(struct stm32mp_ddrctl *ctl) +{ + stm32mp_ddr_start_sw_done(ctl); + /* Quasi-dynamic register update*/ + mmio_setbits_32((uintptr_t)&ctl->rfshctl3, + DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); + mmio_clrbits_32((uintptr_t)&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN); + mmio_clrbits_32((uintptr_t)&ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + stm32mp_ddr_wait_sw_done_ack(ctl); +} + +static void stm32mp1_refresh_restore(struct stm32mp_ddrctl *ctl, + uint32_t rfshctl3, uint32_t pwrctl) +{ + stm32mp_ddr_start_sw_done(ctl); + if ((rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH) == 0U) { + mmio_clrbits_32((uintptr_t)&ctl->rfshctl3, + DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH); + } + if ((pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN) != 0U) { + mmio_setbits_32((uintptr_t)&ctl->pwrctl, + DDRCTRL_PWRCTL_POWERDOWN_EN); + } + mmio_setbits_32((uintptr_t)&ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + stm32mp_ddr_wait_sw_done_ack(ctl); +} + +void stm32mp1_ddr_init(struct stm32mp_ddr_priv *priv, + struct stm32mp_ddr_config *config) +{ + uint32_t pir; + int ret = -EINVAL; + + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_DDR3); + } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR2) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR2); + } else if ((config->c_reg.mstr & DDRCTRL_MSTR_LPDDR3) != 0U) { + ret = stm32mp_board_ddr_power_init(STM32MP_LPDDR3); + } else { + ERROR("DDR type not supported\n"); + } + + if (ret != 0) { + panic(); + } + + VERBOSE("name = %s\n", config->info.name); + VERBOSE("speed = %u kHz\n", config->info.speed); + VERBOSE("size = 0x%x\n", config->info.size); + + /* DDR INIT SEQUENCE */ + + /* + * 1. Program the DWC_ddr_umctl2 registers + * nota: check DFIMISC.dfi_init_complete = 0 + */ + + /* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn */ + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); + mmio_setbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); + + /* 1.2. start CLOCK */ + if (stm32mp1_ddr_clk_enable(priv, config->info.speed) != 0) { + panic(); + } + + /* 1.3. deassert reset */ + /* De-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST. */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST); + /* + * De-assert presetn once the clocks are active + * and stable via DDRCAPBRST bit. + */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST); + + /* 1.4. wait 128 cycles to permit initialization of end logic */ + udelay(2); + /* For PCLK = 133MHz => 1 us is enough, 2 to allow lower frequency */ + + /* 1.5. initialize registers ddr_umctl2 */ + /* Stop uMCTL2 before PHY is ready */ + mmio_clrbits_32((uintptr_t)&priv->ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + VERBOSE("[0x%lx] dfimisc = 0x%x\n", + (uintptr_t)&priv->ctl->dfimisc, + mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); + + stm32mp_ddr_set_reg(priv, REG_REG, &config->c_reg, ddr_registers); + + /* DDR3 = don't set DLLOFF for init mode */ + if ((config->c_reg.mstr & + (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) + == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { + VERBOSE("deactivate DLL OFF in mstr\n"); + mmio_clrbits_32((uintptr_t)&priv->ctl->mstr, + DDRCTRL_MSTR_DLL_OFF_MODE); + VERBOSE("[0x%lx] mstr = 0x%x\n", + (uintptr_t)&priv->ctl->mstr, + mmio_read_32((uintptr_t)&priv->ctl->mstr)); + } + + stm32mp_ddr_set_reg(priv, REG_TIMING, &config->c_timing, ddr_registers); + stm32mp_ddr_set_reg(priv, REG_MAP, &config->c_map, ddr_registers); + + /* Skip CTRL init, SDRAM init is done by PHY PUBL */ + mmio_clrsetbits_32((uintptr_t)&priv->ctl->init0, + DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK, + DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL); + VERBOSE("[0x%lx] init0 = 0x%x\n", + (uintptr_t)&priv->ctl->init0, + mmio_read_32((uintptr_t)&priv->ctl->init0)); + + stm32mp_ddr_set_reg(priv, REG_PERF, &config->c_perf, ddr_registers); + + /* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */ + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST); + mmio_clrbits_32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST); + + /* + * 3. start PHY init by accessing relevant PUBL registers + * (DXGCR, DCR, PTR*, MR*, DTPR*) + */ + stm32mp_ddr_set_reg(priv, REGPHY_REG, &config->p_reg, ddr_registers); + stm32mp_ddr_set_reg(priv, REGPHY_TIMING, &config->p_timing, ddr_registers); + + /* DDR3 = don't set DLLOFF for init mode */ + if ((config->c_reg.mstr & + (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) + == (DDRCTRL_MSTR_DDR3 | DDRCTRL_MSTR_DLL_OFF_MODE)) { + VERBOSE("deactivate DLL OFF in mr1\n"); + mmio_clrbits_32((uintptr_t)&priv->phy->mr1, BIT(0)); + VERBOSE("[0x%lx] mr1 = 0x%x\n", + (uintptr_t)&priv->phy->mr1, + mmio_read_32((uintptr_t)&priv->phy->mr1)); + } + + /* + * 4. Monitor PHY init status by polling PUBL register PGSR.IDONE + * Perform DDR PHY DRAM initialization and Gate Training Evaluation + */ + stm32mp1_ddrphy_idone_wait(priv->phy); + + /* + * 5. Indicate to PUBL that controller performs SDRAM initialization + * by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE + * DRAM init is done by PHY, init0.skip_dram.init = 1 + */ + + pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL | + DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC; + + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) != 0U) { + pir |= DDRPHYC_PIR_DRAMRST; /* Only for DDR3 */ + } + + stm32mp1_ddrphy_init(priv->phy, pir); + + /* + * 6. SET DFIMISC.dfi_init_complete_en to 1 + * Enable quasi-dynamic register programming. + */ + stm32mp_ddr_start_sw_done(priv->ctl); + + mmio_setbits_32((uintptr_t)&priv->ctl->dfimisc, + DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN); + VERBOSE("[0x%lx] dfimisc = 0x%x\n", + (uintptr_t)&priv->ctl->dfimisc, + mmio_read_32((uintptr_t)&priv->ctl->dfimisc)); + + stm32mp_ddr_wait_sw_done_ack(priv->ctl); + + /* + * 7. Wait for DWC_ddr_umctl2 to move to normal operation mode + * by monitoring STAT.operating_mode signal + */ + + /* Wait uMCTL2 ready */ + stm32mp1_wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL); + + /* Switch to DLL OFF mode */ + if ((config->c_reg.mstr & DDRCTRL_MSTR_DLL_OFF_MODE) != 0U) { + stm32mp1_ddr3_dll_off(priv); + } + + VERBOSE("DDR DQS training : "); + + /* + * 8. Disable Auto refresh and power down by setting + * - RFSHCTL3.dis_au_refresh = 1 + * - PWRCTL.powerdown_en = 0 + * - DFIMISC.dfiinit_complete_en = 0 + */ + stm32mp1_refresh_disable(priv->ctl); + + /* + * 9. Program PUBL PGCR to enable refresh during training + * and rank to train + * not done => keep the programed value in PGCR + */ + + /* + * 10. configure PUBL PIR register to specify which training step + * to run + * RVTRN is executed only on LPDDR2/LPDDR3 + */ + pir = DDRPHYC_PIR_QSTRN; + if ((config->c_reg.mstr & DDRCTRL_MSTR_DDR3) == 0U) { + pir |= DDRPHYC_PIR_RVTRN; + } + + stm32mp1_ddrphy_init(priv->phy, pir); + + /* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */ + stm32mp1_ddrphy_idone_wait(priv->phy); + + /* + * 12. set back registers in step 8 to the orginal values if desidered + */ + stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3, + config->c_reg.pwrctl); + + stm32mp_ddr_enable_axi_port(priv->ctl); +} |