diff options
Diffstat (limited to 'plat/st/common/stm32mp_crypto_lib.c')
-rw-r--r-- | plat/st/common/stm32mp_crypto_lib.c | 661 |
1 files changed, 661 insertions, 0 deletions
diff --git a/plat/st/common/stm32mp_crypto_lib.c b/plat/st/common/stm32mp_crypto_lib.c new file mode 100644 index 0000000..d644242 --- /dev/null +++ b/plat/st/common/stm32mp_crypto_lib.c @@ -0,0 +1,661 @@ +/* + * Copyright (c) 2022, STMicroelectronics - All Rights Reserved + * + * SPDX-License-Identifier: BSD-3-Clause + */ + +#include <assert.h> +#include <endian.h> +#include <errno.h> + +#include <common/debug.h> +#include <drivers/auth/crypto_mod.h> +#include <drivers/io/io_storage.h> +#include <drivers/st/bsec.h> +#include <drivers/st/stm32_hash.h> +#include <drivers/st/stm32_pka.h> +#include <drivers/st/stm32_rng.h> +#include <drivers/st/stm32_saes.h> +#include <lib/xlat_tables/xlat_tables_v2.h> +#include <mbedtls/asn1.h> +#include <mbedtls/md.h> +#include <mbedtls/oid.h> +#include <mbedtls/platform.h> +#include <mbedtls/x509.h> +#include <plat/common/platform.h> +#include <tools_share/firmware_encrypted.h> + +#include <platform_def.h> + +#define CRYPTO_HASH_MAX_SIZE 32U +#define CRYPTO_SIGN_MAX_SIZE 64U +#define CRYPTO_PUBKEY_MAX_SIZE 64U +#define CRYPTO_MAX_TAG_SIZE 16U + +/* brainpoolP256t1 OID is not defined in mbedTLS */ +#define OID_EC_GRP_BP256T1 MBEDTLS_OID_EC_BRAINPOOL_V1 "\x08" + +#if STM32MP_CRYPTO_ROM_LIB +struct stm32mp_auth_ops { + uint32_t (*verify_signature)(uint8_t *hash_in, uint8_t *pubkey_in, + uint8_t *signature, uint32_t ecc_algo); +}; + +static struct stm32mp_auth_ops auth_ops; +#endif + +static void crypto_lib_init(void) +{ + boot_api_context_t *boot_context __maybe_unused; + int ret; + + NOTICE("TRUSTED_BOARD_BOOT support enabled\n"); + + ret = stm32_hash_register(); + if (ret != 0) { + ERROR("HASH init (%d)\n", ret); + panic(); + } + + if (stm32mp_is_closed_device() || stm32mp_is_auth_supported()) { +#if STM32MP_CRYPTO_ROM_LIB + boot_context = (boot_api_context_t *)stm32mp_get_boot_ctx_address(); + auth_ops.verify_signature = boot_context->bootrom_ecdsa_verify_signature; +#else + /* Use hardware peripherals */ + if (stm32_rng_init() != 0) { + panic(); + } + + if (stm32_saes_driver_init() != 0) { + panic(); + } + + if (stm32_pka_init() != 0) { + panic(); + } +#endif + } +} + +int get_plain_pk_from_asn1(void *pk_ptr, unsigned int pk_len, void **plain_pk, + unsigned int *len, int *pk_alg) +{ + int ret; + mbedtls_pk_context mbedtls_pk = {0}; + unsigned char *p, *end; + mbedtls_asn1_buf alg_params = {0}; + mbedtls_asn1_buf alg_oid = {0}; + + *plain_pk = NULL; + *len = 0U; + + /* Parse the public key */ + mbedtls_pk_init(&mbedtls_pk); + p = (unsigned char *)pk_ptr; + end = (unsigned char *)(p + pk_len); + + ret = mbedtls_asn1_get_tag(&p, end, len, + MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE); + if (ret != 0) { + return -EINVAL; + } + + end = p + *len; + ret = mbedtls_asn1_get_alg(&p, end, &alg_oid, &alg_params); + if (ret != 0) { + VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret); + return -EINVAL; + } + + if (pk_alg != NULL) { + if ((strlen(MBEDTLS_OID_EC_GRP_SECP256R1) == alg_params.len) && + (memcmp(MBEDTLS_OID_EC_GRP_SECP256R1, alg_params.p, alg_params.len) == 0)) { + *pk_alg = BOOT_API_ECDSA_ALGO_TYPE_P256NIST; + } else if ((strlen(OID_EC_GRP_BP256T1) == alg_params.len) && + (memcmp(OID_EC_GRP_BP256T1, alg_params.p, alg_params.len) == 0)) { + *pk_alg = BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256; + } else { + ERROR("%s: Algorithm is not supported\n", __func__); + return -EINVAL; + } + } + + ret = mbedtls_asn1_get_bitstring_null(&p, end, len); + if (ret != 0) { + VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret); + return -EINVAL; + } + + /* We remove the ident (0x04) first byte. */ + if ((*len < 1U) || (p[0] != MBEDTLS_ASN1_OCTET_STRING)) { + VERBOSE("%s: not expected len or tag\n", __func__); + return -EINVAL; + } + + *len = *len - 1U; + *plain_pk = p + 1U; + + return 0; +} + +#if STM32MP_CRYPTO_ROM_LIB +uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in, + uint8_t *signature, uint32_t ecc_algo) +{ + int ret; + + ret = mmap_add_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_BASE, + STM32MP_ROM_SIZE_2MB_ALIGNED, MT_CODE | MT_SECURE); + if (ret != 0) { + VERBOSE("%s: mmap_add_dynamic_region (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + ret = auth_ops.verify_signature(hash_in, pubkey_in, signature, ecc_algo); + + if (ret != BOOT_API_RETURN_OK) { + VERBOSE("%s: auth_ops.verify_sign (%d)\n", __func__, ret); + ret = CRYPTO_ERR_SIGNATURE; + } else { + ret = 0; + } + + mmap_remove_dynamic_region(STM32MP_ROM_BASE, STM32MP_ROM_SIZE_2MB_ALIGNED); + + return ret; +} + +int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len, + void **hashed_pk_ptr, unsigned int *hashed_pk_len) +{ + return get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, hashed_pk_ptr, hashed_pk_len, NULL); +} +#else /* STM32MP_CRYPTO_ROM_LIB*/ +static uint32_t verify_signature(uint8_t *hash_in, uint8_t *pubkey_in, + uint8_t *signature, uint32_t ecc_algo) +{ + int ret = -1; + enum stm32_pka_ecdsa_curve_id cid; + + switch (ecc_algo) { + case BOOT_API_ECDSA_ALGO_TYPE_P256NIST: +#if PKA_USE_NIST_P256 + cid = PKA_NIST_P256; + ret = 0; +#else + WARN("%s nist_p256 requested but not included\n", __func__); +#endif + break; + case BOOT_API_ECDSA_ALGO_TYPE_BRAINPOOL256: +#if PKA_USE_BRAINPOOL_P256T1 + cid = PKA_BRAINPOOL_P256T1; + ret = 0; +#else + WARN("%s brainpool_p256t1 requested but not included\n", __func__); +#endif + break; + default: + WARN("%s unexpected ecc_algo(%u)\n", __func__, ecc_algo); + break; + } + + if (ret < 0) { + return CRYPTO_ERR_SIGNATURE; + } + + ret = stm32_pka_ecdsa_verif(hash_in, + BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES, + signature, BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, + signature + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, + BOOT_API_ECDSA_SIGNATURE_LEN_IN_BYTES / 2U, + pubkey_in, BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, + pubkey_in + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, + BOOT_API_ECDSA_PUB_KEY_LEN_IN_BYTES / 2U, cid); + if (ret < 0) { + return CRYPTO_ERR_SIGNATURE; + } + + return 0; +} + +int plat_convert_pk(void *full_pk_ptr, unsigned int full_pk_len, + void **hashed_pk_ptr, unsigned int *hashed_pk_len) +{ + static uint8_t st_pk[CRYPTO_PUBKEY_MAX_SIZE + sizeof(uint32_t)]; + int ret; + void *plain_pk; + unsigned int len; + int curve_id; + uint32_t cid; + + ret = get_plain_pk_from_asn1(full_pk_ptr, full_pk_len, &plain_pk, &len, &curve_id); + if ((ret != 0) || (len > CRYPTO_PUBKEY_MAX_SIZE)) { + return -EINVAL; + } + + cid = curve_id; /* we want value of curve_id (1 or 2) in a uint32_t */ + + memcpy(st_pk, &cid, sizeof(cid)); + memcpy(st_pk + sizeof(cid), plain_pk, len); + + *hashed_pk_ptr = st_pk; + *hashed_pk_len = len + sizeof(cid); + + return 0; +} +#endif /* STM32MP_CRYPTO_ROM_LIB */ + +static int get_plain_digest_from_asn1(void *digest_ptr, unsigned int digest_len, + uint8_t **out, size_t *out_len, mbedtls_md_type_t *md_alg) +{ + int ret; + mbedtls_asn1_buf hash_oid, params; + size_t len; + unsigned char *p, *end; + + *out = NULL; + *out_len = 0U; + + /* Digest info should be an MBEDTLS_ASN1_SEQUENCE */ + p = (unsigned char *)digest_ptr; + end = p + digest_len; + ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED | + MBEDTLS_ASN1_SEQUENCE); + if (ret != 0) { + return ret; + } + + /* Get the hash algorithm */ + ret = mbedtls_asn1_get_alg(&p, end, &hash_oid, ¶ms); + if (ret != 0) { + return ret; + } + + ret = mbedtls_oid_get_md_alg(&hash_oid, md_alg); + if (ret != 0) { + return ret; + } + + ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING); + if (ret != 0) { + return ret; + } + + /* Length of hash must match the algorithm's size */ + if (len != BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES) { + return -1; + } + + *out = p; + *out_len = len; + + return 0; +} + +static int crypto_verify_signature(void *data_ptr, unsigned int data_len, + void *sig_ptr, unsigned int sig_len, + void *sig_alg, unsigned int sig_alg_len, + void *pk_ptr, unsigned int pk_len) +{ + uint8_t image_hash[CRYPTO_HASH_MAX_SIZE] = {0}; + uint8_t sig[CRYPTO_SIGN_MAX_SIZE]; + uint8_t my_pk[CRYPTO_PUBKEY_MAX_SIZE]; + int ret; + size_t len; + mbedtls_asn1_sequence seq; + mbedtls_asn1_sequence *cur; + unsigned char *p, *end; + int curve_id; + mbedtls_asn1_buf sig_oid, sig_params; + mbedtls_md_type_t md_alg; + mbedtls_pk_type_t pk_alg; + size_t bignum_len = sizeof(sig) / 2U; + unsigned int seq_num = 0U; + + if (!stm32mp_is_closed_device() && !stm32mp_is_auth_supported()) { + return CRYPTO_SUCCESS; + } + + /* Get pointers to signature OID and parameters */ + p = (unsigned char *)sig_alg; + end = (unsigned char *)(p + sig_alg_len); + ret = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params); + if (ret != 0) { + VERBOSE("%s: mbedtls_asn1_get_alg (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + /* Get the actual signature algorithm (MD + PK) */ + ret = mbedtls_oid_get_sig_alg(&sig_oid, &md_alg, &pk_alg); + if (ret != 0) { + VERBOSE("%s: mbedtls_oid_get_sig_alg (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + if ((md_alg != MBEDTLS_MD_SHA256) || (pk_alg != MBEDTLS_PK_ECDSA)) { + VERBOSE("%s: md_alg=%u pk_alg=%u\n", __func__, md_alg, pk_alg); + return CRYPTO_ERR_SIGNATURE; + } + + ret = get_plain_pk_from_asn1(pk_ptr, pk_len, &pk_ptr, &pk_len, &curve_id); + if (ret != 0) { + VERBOSE("%s: get_plain_pk_from_asn1 (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + /* We expect a known pk_len */ + if (pk_len != sizeof(my_pk)) { + VERBOSE("%s: pk_len=%u sizeof(my_pk)=%zu)\n", __func__, pk_len, sizeof(my_pk)); + return CRYPTO_ERR_SIGNATURE; + } + + /* Need to copy as auth_ops.verify_signature + * expects aligned public key. + */ + memcpy(my_pk, pk_ptr, sizeof(my_pk)); + + /* Get the signature (bitstring) */ + p = (unsigned char *)sig_ptr; + end = (unsigned char *)(p + sig_len); + ret = mbedtls_asn1_get_bitstring_null(&p, end, &len); + if (ret != 0) { + VERBOSE("%s: mbedtls_asn1_get_bitstring_null (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + /* Get r and s from sequence */ + ret = mbedtls_asn1_get_sequence_of(&p, end, &seq, MBEDTLS_ASN1_INTEGER); + if (ret != 0) { + VERBOSE("%s: mbedtls_asn1_get_sequence_of (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + /* We expect only 2 integers (r and s) from the sequence */ + if (seq.next->next != NULL) { + cur = seq.next; + mbedtls_asn1_sequence *next; + + VERBOSE("%s: nb seq != 2\n", __func__); + /* Free all the sequences */ + while (cur != NULL) { + next = cur->next; + mbedtls_free(cur); + cur = next; + } + + return CRYPTO_ERR_SIGNATURE; + } + + /* + * ECDSA signatures are composed of a tuple (R,S) where R and S are between 0 and n. + * This means that the R and S can have a maximum of 32 each, but can also be smaller. + * Also seen the integer sequence may (sometime) start with 0x00 as MSB, but we can only + * manage exactly 2*32 bytes, we remove this higher byte if there are not 00, + * we will fail either. + */ + cur = &seq; + memset(sig, 0U, sizeof(sig)); + + while (cur != NULL) { + size_t skip = 0U; + size_t seek = seq_num * bignum_len; + + if (cur->buf.len > bignum_len) { + /* Remove extra 0x00 bytes */ + skip = cur->buf.len - bignum_len; + } else if (cur->buf.len < bignum_len) { + /* Add padding to match HW required size */ + seek += (bignum_len % cur->buf.len); + } + + if (seek + cur->buf.len > sizeof(sig) + skip) { + panic(); + } + + memcpy(sig + seek, cur->buf.p + skip, cur->buf.len - skip); + cur = cur->next; + seq_num++; + } + + /* Need to free allocated 'next' in mbedtls_asn1_get_sequence_of */ + mbedtls_free(seq.next); + + /* Compute hash for the data covered by the signature */ + stm32_hash_init(HASH_SHA256); + + ret = stm32_hash_final_update((uint8_t *)data_ptr, data_len, image_hash); + if (ret != 0) { + VERBOSE("%s: stm32_hash_final_update (%d)\n", __func__, ret); + return CRYPTO_ERR_SIGNATURE; + } + + return verify_signature(image_hash, my_pk, sig, curve_id); +} + +static int crypto_verify_hash(void *data_ptr, unsigned int data_len, + void *digest_info_ptr, + unsigned int digest_info_len) +{ + int ret; + uint8_t calc_hash[BOOT_API_SHA256_DIGEST_SIZE_IN_BYTES]; + unsigned char *p; + mbedtls_md_type_t md_alg; + size_t len; + + /* we receive an asn1 encapsulated digest, we flatten it */ + ret = get_plain_digest_from_asn1(digest_info_ptr, + digest_info_len, &p, &len, + &md_alg); + if ((ret != 0) || (md_alg != MBEDTLS_MD_SHA256) || (len != sizeof(calc_hash))) { + return CRYPTO_ERR_HASH; + } + + digest_info_ptr = p; + digest_info_len = len; + + stm32_hash_init(HASH_SHA256); + + ret = stm32_hash_final_update(data_ptr, data_len, calc_hash); + if (ret != 0) { + VERBOSE("%s: hash failed\n", __func__); + return CRYPTO_ERR_HASH; + } + + ret = memcmp(calc_hash, digest_info_ptr, digest_info_len); + if (ret != 0) { + VERBOSE("%s: not expected digest\n", __func__); + ret = CRYPTO_ERR_HASH; + } + + return ret; +} + +#if !defined(DECRYPTION_SUPPORT_none) +static int derive_key(uint8_t *key, size_t *key_len, size_t len, + unsigned int *flags, const uint8_t *img_id, size_t img_id_len) +{ + size_t i, j; + + assert(*key_len >= 32U); + + /* + * Not a real derivation yet + * + * But we expect a 32 bytes key, and OTP is only 16 bytes + * => duplicate. + */ + for (i = 0U, j = len; j < 32U; + i += sizeof(uint32_t), j += sizeof(uint32_t)) { + memcpy(key + j, key + i, sizeof(uint32_t)); + } + + *key_len = 32U; + /* Variable 'key' store a real key */ + *flags = 0U; + + return 0; +} + +int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status, uint8_t *key, + size_t *key_len, unsigned int *flags, + const uint8_t *img_id, size_t img_id_len) +{ + uint32_t otp_idx; + uint32_t otp_len; + size_t read_len; + size_t i; + + if (fw_enc_status == FW_ENC_WITH_BSSK) { + return -EINVAL; + } + + if (stm32_get_otp_index(ENCKEY_OTP, &otp_idx, &otp_len) != 0) { + VERBOSE("%s: get %s index error\n", __func__, ENCKEY_OTP); + return -EINVAL; + } + + if (otp_len > (*key_len * CHAR_BIT)) { + VERBOSE("%s: length Error otp_len=%u key_len=%u\n", __func__, + otp_len, *key_len * CHAR_BIT); + return -EINVAL; + } + + read_len = otp_len / CHAR_BIT; + assert(read_len % sizeof(uint32_t) == 0); + + for (i = 0U; i < read_len / sizeof(uint32_t); i++) { + uint32_t tmp; + uint32_t otp_val; + + if (stm32_get_otp_value_from_idx(otp_idx + i, &otp_val) != 0) { + zeromem(key, *key_len); + VERBOSE("%s: unable to read from otp\n", __func__); + return -EINVAL; + } + + tmp = bswap32(otp_val); + memcpy(key + i * sizeof(uint32_t), &tmp, sizeof(tmp)); + } + + /* Now we have the OTP values in key till read_len */ + + if (derive_key(key, key_len, read_len, flags, img_id, + img_id_len) != 0) { + zeromem(key, *key_len); + return -EINVAL; + } + + return 0; +} + +static enum stm32_saes_key_selection select_key(unsigned int key_flags) +{ + if ((key_flags & ENC_KEY_IS_IDENTIFIER) != 0U) { + panic(); + } + + /* Use the provided key buffer */ + return STM32_SAES_KEY_SOFT; +} + +static int stm32_decrypt_aes_gcm(void *data, size_t data_len, + const void *key, unsigned int key_len, + unsigned int key_flags, + const void *iv, unsigned int iv_len, + const void *tag, unsigned int tag_len) +{ + int ret; + struct stm32_saes_context ctx; + unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE]; + enum stm32_saes_key_selection key_mode; + unsigned int diff = 0U; + unsigned int i; + + key_mode = select_key(key_flags); + + ret = stm32_saes_init(&ctx, true, STM32_SAES_MODE_GCM, key_mode, key, + key_len, iv, iv_len); + if (ret != 0) { + return CRYPTO_ERR_INIT; + } + + ret = stm32_saes_update_assodata(&ctx, true, NULL, 0U); + if (ret != 0) { + return CRYPTO_ERR_DECRYPTION; + } + + ret = stm32_saes_update_load(&ctx, true, data, data, data_len); + if (ret != 0) { + return CRYPTO_ERR_DECRYPTION; + } + + ret = stm32_saes_final(&ctx, tag_buf, sizeof(tag_buf)); + if (ret != 0) { + return CRYPTO_ERR_DECRYPTION; + } + + /* Check tag in "constant-time" */ + for (i = 0U; i < tag_len; i++) { + diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i]; + } + + if (diff != 0U) { + return CRYPTO_ERR_DECRYPTION; + } + + return CRYPTO_SUCCESS; +} + +/* + * Authenticated decryption of an image + * + */ +static int crypto_auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr, size_t len, + const void *key, unsigned int key_len, unsigned int key_flags, + const void *iv, unsigned int iv_len, const void *tag, + unsigned int tag_len) +{ + int rc = -1; + uint32_t real_iv[4]; + + switch (dec_algo) { + case CRYPTO_GCM_DECRYPT: + /* + * GCM expect a Nonce + * The AES IV is the nonce (a uint32_t[3]) + * then a counter (a uint32_t big endian) + * The counter starts at 2. + */ + memcpy(real_iv, iv, iv_len); + real_iv[3] = htobe32(0x2U); + + rc = stm32_decrypt_aes_gcm(data_ptr, len, key, key_len, key_flags, + real_iv, sizeof(real_iv), tag, tag_len); + break; + default: + rc = CRYPTO_ERR_DECRYPTION; + break; + } + + if (rc != 0) { + return rc; + } + + return CRYPTO_SUCCESS; +} + +REGISTER_CRYPTO_LIB("stm32_crypto_lib", + crypto_lib_init, + crypto_verify_signature, + crypto_verify_hash, + crypto_auth_decrypt); + +#else /* No decryption support */ +REGISTER_CRYPTO_LIB("stm32_crypto_lib", + crypto_lib_init, + crypto_verify_signature, + crypto_verify_hash, + NULL); + +#endif |