summaryrefslogtreecommitdiffstats
path: root/lib/extensions/amu/aarch64/amu.c
blob: 72566fd1b69e64383539438e21198781037b883f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*
 * Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 */

#include <assert.h>
#include <cdefs.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>

#include "../amu_private.h"
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>

#include <plat/common/platform.h>

#if ENABLE_AMU_FCONF
#	include <lib/fconf/fconf.h>
#	include <lib/fconf/fconf_amu_getter.h>
#endif

#if ENABLE_MPMM
#	include <lib/mpmm/mpmm.h>
#endif

struct amu_ctx {
	uint64_t group0_cnts[AMU_GROUP0_MAX_COUNTERS];
#if ENABLE_AMU_AUXILIARY_COUNTERS
	uint64_t group1_cnts[AMU_GROUP1_MAX_COUNTERS];
#endif

	/* Architected event counter 1 does not have an offset register */
	uint64_t group0_voffsets[AMU_GROUP0_MAX_COUNTERS - 1U];
#if ENABLE_AMU_AUXILIARY_COUNTERS
	uint64_t group1_voffsets[AMU_GROUP1_MAX_COUNTERS];
#endif

	uint16_t group0_enable;
#if ENABLE_AMU_AUXILIARY_COUNTERS
	uint16_t group1_enable;
#endif
};

static struct amu_ctx amu_ctxs_[PLATFORM_CORE_COUNT];

CASSERT((sizeof(amu_ctxs_[0].group0_enable) * CHAR_BIT) <= AMU_GROUP0_MAX_COUNTERS,
	amu_ctx_group0_enable_cannot_represent_all_group0_counters);

#if ENABLE_AMU_AUXILIARY_COUNTERS
CASSERT((sizeof(amu_ctxs_[0].group1_enable) * CHAR_BIT) <= AMU_GROUP1_MAX_COUNTERS,
	amu_ctx_group1_enable_cannot_represent_all_group1_counters);
#endif

static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void)
{
	return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) &
		ID_AA64PFR0_AMU_MASK;
}

static inline __unused uint64_t read_hcr_el2_amvoffen(void)
{
	return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
		HCR_AMVOFFEN_SHIFT;
}

static inline __unused void write_cptr_el2_tam(uint64_t value)
{
	write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
		((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
}

static inline __unused void ctx_write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam)
{
	uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3);

	value &= ~TAM_BIT;
	value |= (tam << TAM_SHIFT) & TAM_BIT;

	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value);
}

static inline __unused void ctx_write_scr_el3_amvoffen(cpu_context_t *ctx, uint64_t amvoffen)
{
	uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);

	value &= ~SCR_AMVOFFEN_BIT;
	value |= (amvoffen << SCR_AMVOFFEN_SHIFT) & SCR_AMVOFFEN_BIT;

	write_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3, value);
}

static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
{
	write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
		((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
}

static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
{
	write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
		((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
}

static inline __unused uint64_t read_amcfgr_el0_ncg(void)
{
	return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
		AMCFGR_EL0_NCG_MASK;
}

static inline __unused uint64_t read_amcgcr_el0_cg0nc(void)
{
	return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) &
		AMCGCR_EL0_CG0NC_MASK;
}

static inline __unused uint64_t read_amcg1idr_el0_voff(void)
{
	return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
		AMCG1IDR_VOFF_MASK;
}

static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
{
	return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
		AMCGCR_EL0_CG1NC_MASK;
}

static inline __unused uint64_t read_amcntenset0_el0_px(void)
{
	return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
		AMCNTENSET0_EL0_Pn_MASK;
}

static inline __unused uint64_t read_amcntenset1_el0_px(void)
{
	return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
		AMCNTENSET1_EL0_Pn_MASK;
}

static inline __unused void write_amcntenset0_el0_px(uint64_t px)
{
	uint64_t value = read_amcntenset0_el0();

	value &= ~AMCNTENSET0_EL0_Pn_MASK;
	value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;

	write_amcntenset0_el0(value);
}

static inline __unused void write_amcntenset1_el0_px(uint64_t px)
{
	uint64_t value = read_amcntenset1_el0();

	value &= ~AMCNTENSET1_EL0_Pn_MASK;
	value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;

	write_amcntenset1_el0(value);
}

static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
{
	uint64_t value = read_amcntenclr0_el0();

	value &= ~AMCNTENCLR0_EL0_Pn_MASK;
	value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;

	write_amcntenclr0_el0(value);
}

static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
{
	uint64_t value = read_amcntenclr1_el0();

	value &= ~AMCNTENCLR1_EL0_Pn_MASK;
	value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;

	write_amcntenclr1_el0(value);
}

static __unused bool amu_supported(void)
{
	return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1;
}

static __unused bool amu_v1p1_supported(void)
{
	return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1;
}

#if ENABLE_AMU_AUXILIARY_COUNTERS
static __unused bool amu_group1_supported(void)
{
	return read_amcfgr_el0_ncg() > 0U;
}
#endif

/*
 * Enable counters. This function is meant to be invoked by the context
 * management library before exiting from EL3.
 */
void amu_enable(bool el2_unused, cpu_context_t *ctx)
{
	uint64_t id_aa64pfr0_el1_amu;		/* AMU version */

	uint64_t amcfgr_el0_ncg;		/* Number of counter groups */
	uint64_t amcgcr_el0_cg0nc;		/* Number of group 0 counters */

	uint64_t amcntenset0_el0_px = 0x0;	/* Group 0 enable mask */
	uint64_t amcntenset1_el0_px = 0x0;	/* Group 1 enable mask */

	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
		/*
		 * If the AMU is unsupported, nothing needs to be done.
		 */

		return;
	}

	if (el2_unused) {
		/*
		 * CPTR_EL2.TAM: Set to zero so any accesses to the Activity
		 * Monitor registers do not trap to EL2.
		 */
		write_cptr_el2_tam(0U);
	}

	/*
	 * Retrieve and update the CPTR_EL3 value from the context mentioned
	 * in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to
	 * the Activity Monitor registers do not trap to EL3.
	 */
	ctx_write_cptr_el3_tam(ctx, 0U);

	/*
	 * Retrieve the number of architected counters. All of these counters
	 * are enabled by default.
	 */

	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
	amcntenset0_el0_px = (UINT64_C(1) << (amcgcr_el0_cg0nc)) - 1U;

	assert(amcgcr_el0_cg0nc <= AMU_AMCGCR_CG0NC_MAX);

	/*
	 * The platform may opt to enable specific auxiliary counters. This can
	 * be done via the common FCONF getter, or via the platform-implemented
	 * function.
	 */

#if ENABLE_AMU_AUXILIARY_COUNTERS
	const struct amu_topology *topology;

#if ENABLE_AMU_FCONF
	topology = FCONF_GET_PROPERTY(amu, config, topology);
#else
	topology = plat_amu_topology();
#endif /* ENABLE_AMU_FCONF */

	if (topology != NULL) {
		unsigned int core_pos = plat_my_core_pos();

		amcntenset1_el0_px = topology->cores[core_pos].enable;
	} else {
		ERROR("AMU: failed to generate AMU topology\n");
	}
#endif /* ENABLE_AMU_AUXILIARY_COUNTERS */

	/*
	 * Enable the requested counters.
	 */

	write_amcntenset0_el0_px(amcntenset0_el0_px);

	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
	if (amcfgr_el0_ncg > 0U) {
		write_amcntenset1_el0_px(amcntenset1_el0_px);

#if !ENABLE_AMU_AUXILIARY_COUNTERS
		VERBOSE("AMU: auxiliary counters detected but support is disabled\n");
#endif
	}

	/* Initialize FEAT_AMUv1p1 features if present. */
	if (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) {
		if (el2_unused) {
			/*
			 * Make sure virtual offsets are disabled if EL2 not
			 * used.
			 */
			write_hcr_el2_amvoffen(0U);
		} else {
			/*
			 * Virtual offset registers are only accessible from EL3
			 * and EL2, when clear, this bit traps accesses from EL2
			 * so we set it to 1 when EL2 is present.
			 */
			ctx_write_scr_el3_amvoffen(ctx, 1U);
		}

#if AMU_RESTRICT_COUNTERS
		/*
		 * FEAT_AMUv1p1 adds a register field to restrict access to
		 * group 1 counters at all but the highest implemented EL. This
		 * is controlled with the `AMU_RESTRICT_COUNTERS` compile time
		 * flag, when set, system register reads at lower ELs return
		 * zero. Reads from the memory mapped view are unaffected.
		 */
		VERBOSE("AMU group 1 counter access restricted.\n");
		write_amcr_el0_cg1rz(1U);
#else
		write_amcr_el0_cg1rz(0U);
#endif
	}

#if ENABLE_MPMM
	mpmm_enable();
#endif
}

/* Read the group 0 counter identified by the given `idx`. */
static uint64_t amu_group0_cnt_read(unsigned int idx)
{
	assert(amu_supported());
	assert(idx < read_amcgcr_el0_cg0nc());

	return amu_group0_cnt_read_internal(idx);
}

/* Write the group 0 counter identified by the given `idx` with `val` */
static void amu_group0_cnt_write(unsigned  int idx, uint64_t val)
{
	assert(amu_supported());
	assert(idx < read_amcgcr_el0_cg0nc());

	amu_group0_cnt_write_internal(idx, val);
	isb();
}

/*
 * Unlike with auxiliary counters, we cannot detect at runtime whether an
 * architected counter supports a virtual offset. These are instead fixed
 * according to FEAT_AMUv1p1, but this switch will need to be updated if later
 * revisions of FEAT_AMU add additional architected counters.
 */
static bool amu_group0_voffset_supported(uint64_t idx)
{
	switch (idx) {
	case 0U:
	case 2U:
	case 3U:
		return true;

	case 1U:
		return false;

	default:
		ERROR("AMU: can't set up virtual offset for unknown "
		      "architected counter %" PRIu64 "!\n", idx);

		panic();
	}
}

/*
 * Read the group 0 offset register for a given index. Index must be 0, 2,
 * or 3, the register for 1 does not exist.
 *
 * Using this function requires FEAT_AMUv1p1 support.
 */
static uint64_t amu_group0_voffset_read(unsigned int idx)
{
	assert(amu_v1p1_supported());
	assert(idx < read_amcgcr_el0_cg0nc());
	assert(idx != 1U);

	return amu_group0_voffset_read_internal(idx);
}

/*
 * Write the group 0 offset register for a given index. Index must be 0, 2, or
 * 3, the register for 1 does not exist.
 *
 * Using this function requires FEAT_AMUv1p1 support.
 */
static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
{
	assert(amu_v1p1_supported());
	assert(idx < read_amcgcr_el0_cg0nc());
	assert(idx != 1U);

	amu_group0_voffset_write_internal(idx, val);
	isb();
}

#if ENABLE_AMU_AUXILIARY_COUNTERS
/* Read the group 1 counter identified by the given `idx` */
static uint64_t amu_group1_cnt_read(unsigned int idx)
{
	assert(amu_supported());
	assert(amu_group1_supported());
	assert(idx < read_amcgcr_el0_cg1nc());

	return amu_group1_cnt_read_internal(idx);
}

/* Write the group 1 counter identified by the given `idx` with `val` */
static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
{
	assert(amu_supported());
	assert(amu_group1_supported());
	assert(idx < read_amcgcr_el0_cg1nc());

	amu_group1_cnt_write_internal(idx, val);
	isb();
}

/*
 * Read the group 1 offset register for a given index.
 *
 * Using this function requires FEAT_AMUv1p1 support.
 */
static uint64_t amu_group1_voffset_read(unsigned int idx)
{
	assert(amu_v1p1_supported());
	assert(amu_group1_supported());
	assert(idx < read_amcgcr_el0_cg1nc());
	assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);

	return amu_group1_voffset_read_internal(idx);
}

/*
 * Write the group 1 offset register for a given index.
 *
 * Using this function requires FEAT_AMUv1p1 support.
 */
static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
{
	assert(amu_v1p1_supported());
	assert(amu_group1_supported());
	assert(idx < read_amcgcr_el0_cg1nc());
	assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);

	amu_group1_voffset_write_internal(idx, val);
	isb();
}
#endif

static void *amu_context_save(const void *arg)
{
	uint64_t i, j;

	unsigned int core_pos;
	struct amu_ctx *ctx;

	uint64_t id_aa64pfr0_el1_amu;	/* AMU version */
	uint64_t hcr_el2_amvoffen;	/* AMU virtual offsets enabled */
	uint64_t amcgcr_el0_cg0nc;	/* Number of group 0 counters */

#if ENABLE_AMU_AUXILIARY_COUNTERS
	uint64_t amcg1idr_el0_voff;	/* Auxiliary counters with virtual offsets */
	uint64_t amcfgr_el0_ncg;	/* Number of counter groups */
	uint64_t amcgcr_el0_cg1nc;	/* Number of group 1 counters */
#endif

	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
		return (void *)0;
	}

	core_pos = plat_my_core_pos();
	ctx = &amu_ctxs_[core_pos];

	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
	hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
		read_hcr_el2_amvoffen() : 0U;

#if ENABLE_AMU_AUXILIARY_COUNTERS
	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
	amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
	amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
#endif

	/*
	 * Disable all AMU counters.
	 */

	ctx->group0_enable = read_amcntenset0_el0_px();
	write_amcntenclr0_el0_px(ctx->group0_enable);

#if ENABLE_AMU_AUXILIARY_COUNTERS
	if (amcfgr_el0_ncg > 0U) {
		ctx->group1_enable = read_amcntenset1_el0_px();
		write_amcntenclr1_el0_px(ctx->group1_enable);
	}
#endif

	/*
	 * Save the counters to the local context.
	 */

	isb(); /* Ensure counters have been stopped */

	for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
		ctx->group0_cnts[i] = amu_group0_cnt_read(i);
	}

#if ENABLE_AMU_AUXILIARY_COUNTERS
	for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
		ctx->group1_cnts[i] = amu_group1_cnt_read(i);
	}
#endif

	/*
	 * Save virtual offsets for counters that offer them.
	 */

	if (hcr_el2_amvoffen != 0U) {
		for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
			if (!amu_group0_voffset_supported(i)) {
				continue; /* No virtual offset */
			}

			ctx->group0_voffsets[j++] = amu_group0_voffset_read(i);
		}

#if ENABLE_AMU_AUXILIARY_COUNTERS
		for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
			if ((amcg1idr_el0_voff >> i) & 1U) {
				continue; /* No virtual offset */
			}

			ctx->group1_voffsets[j++] = amu_group1_voffset_read(i);
		}
#endif
	}

	return (void *)0;
}

static void *amu_context_restore(const void *arg)
{
	uint64_t i, j;

	unsigned int core_pos;
	struct amu_ctx *ctx;

	uint64_t id_aa64pfr0_el1_amu;	/* AMU version */

	uint64_t hcr_el2_amvoffen;	/* AMU virtual offsets enabled */

	uint64_t amcfgr_el0_ncg;	/* Number of counter groups */
	uint64_t amcgcr_el0_cg0nc;	/* Number of group 0 counters */

#if ENABLE_AMU_AUXILIARY_COUNTERS
	uint64_t amcgcr_el0_cg1nc;	/* Number of group 1 counters */
	uint64_t amcg1idr_el0_voff;	/* Auxiliary counters with virtual offsets */
#endif

	id_aa64pfr0_el1_amu = read_id_aa64pfr0_el1_amu();
	if (id_aa64pfr0_el1_amu == ID_AA64PFR0_AMU_NOT_SUPPORTED) {
		return (void *)0;
	}

	core_pos = plat_my_core_pos();
	ctx = &amu_ctxs_[core_pos];

	amcfgr_el0_ncg = read_amcfgr_el0_ncg();
	amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();

	hcr_el2_amvoffen = (id_aa64pfr0_el1_amu >= ID_AA64PFR0_AMU_V1P1) ?
		read_hcr_el2_amvoffen() : 0U;

#if ENABLE_AMU_AUXILIARY_COUNTERS
	amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
	amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
#endif

	/*
	 * Sanity check that all counters were disabled when the context was
	 * previously saved.
	 */

	assert(read_amcntenset0_el0_px() == 0U);

	if (amcfgr_el0_ncg > 0U) {
		assert(read_amcntenset1_el0_px() == 0U);
	}

	/*
	 * Restore the counter values from the local context.
	 */

	for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
		amu_group0_cnt_write(i, ctx->group0_cnts[i]);
	}

#if ENABLE_AMU_AUXILIARY_COUNTERS
	for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
		amu_group1_cnt_write(i, ctx->group1_cnts[i]);
	}
#endif

	/*
	 * Restore virtual offsets for counters that offer them.
	 */

	if (hcr_el2_amvoffen != 0U) {
		for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
			if (!amu_group0_voffset_supported(i)) {
				continue; /* No virtual offset */
			}

			amu_group0_voffset_write(i, ctx->group0_voffsets[j++]);
		}

#if ENABLE_AMU_AUXILIARY_COUNTERS
		for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
			if ((amcg1idr_el0_voff >> i) & 1U) {
				continue; /* No virtual offset */
			}

			amu_group1_voffset_write(i, ctx->group1_voffsets[j++]);
		}
#endif
	}

	/*
	 * Re-enable counters that were disabled during context save.
	 */

	write_amcntenset0_el0_px(ctx->group0_enable);

#if ENABLE_AMU_AUXILIARY_COUNTERS
	if (amcfgr_el0_ncg > 0) {
		write_amcntenset1_el0_px(ctx->group1_enable);
	}
#endif

#if ENABLE_MPMM
	mpmm_enable();
#endif

	return (void *)0;
}

SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);