1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <inttypes.h>
#include <stdint.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <lib/mmio.h>
#include <lib/xlat_tables/xlat_mmu_helpers.h>
#include <lib/xlat_tables/xlat_tables_defs.h>
#include <lib/xlat_tables/xlat_tables_v2.h>
#include <plat/common/platform.h>
#include <common/fdt_fixup.h>
#include <common/fdt_wrappers.h>
#include <libfdt.h>
#include <drivers/arm/gicv2.h>
#include <rpi_shared.h>
/*
* Fields at the beginning of armstub8.bin.
* While building the BL31 image, we put the stub magic into the binary.
* The GPU firmware detects this at boot time, clears that field as a
* confirmation and puts the kernel and DT address in the following words.
*/
extern uint32_t stub_magic;
extern uint32_t dtb_ptr32;
extern uint32_t kernel_entry32;
static const gicv2_driver_data_t rpi4_gic_data = {
.gicd_base = RPI4_GIC_GICD_BASE,
.gicc_base = RPI4_GIC_GICC_BASE,
};
/*
* To be filled by the code below. At the moment BL32 is not supported.
* In the future these might be passed down from BL2.
*/
static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info;
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for
* the security state specified. BL33 corresponds to the non-secure image type
* while BL32 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
assert(sec_state_is_valid(type) != 0);
next_image_info = (type == NON_SECURE)
? &bl33_image_ep_info : &bl32_image_ep_info;
/* None of the images can have 0x0 as the entrypoint. */
if (next_image_info->pc) {
return next_image_info;
} else {
return NULL;
}
}
uintptr_t plat_get_ns_image_entrypoint(void)
{
#ifdef PRELOADED_BL33_BASE
return PRELOADED_BL33_BASE;
#else
/* Cleared by the GPU if kernel address is valid. */
if (stub_magic == 0)
return kernel_entry32;
WARN("Stub magic failure, using default kernel address 0x80000\n");
return 0x80000;
#endif
}
static uintptr_t rpi4_get_dtb_address(void)
{
#ifdef RPI3_PRELOADED_DTB_BASE
return RPI3_PRELOADED_DTB_BASE;
#else
/* Cleared by the GPU if DTB address is valid. */
if (stub_magic == 0)
return dtb_ptr32;
WARN("Stub magic failure, DTB address unknown\n");
return 0;
#endif
}
static void ldelay(register_t delay)
{
__asm__ volatile (
"1:\tcbz %0, 2f\n\t"
"sub %0, %0, #1\n\t"
"b 1b\n"
"2:"
: "=&r" (delay) : "0" (delay)
);
}
/*******************************************************************************
* Perform any BL31 early platform setup. Here is an opportunity to copy
* parameters passed by the calling EL (S-EL1 in BL2 & EL3 in BL1) before
* they are lost (potentially). This needs to be done before the MMU is
* initialized so that the memory layout can be used while creating page
* tables. BL2 has flushed this information to memory, so we are guaranteed
* to pick up good data.
******************************************************************************/
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
u_register_t arg2, u_register_t arg3)
{
/*
* LOCAL_CONTROL:
* Bit 9 clear: Increment by 1 (vs. 2).
* Bit 8 clear: Timer source is 19.2MHz crystal (vs. APB).
*/
mmio_write_32(RPI4_LOCAL_CONTROL_BASE_ADDRESS, 0);
/* LOCAL_PRESCALER; divide-by (0x80000000 / register_val) == 1 */
mmio_write_32(RPI4_LOCAL_CONTROL_PRESCALER, 0x80000000);
/* Early GPU firmware revisions need a little break here. */
ldelay(100000);
/* Initialize the console to provide early debug support. */
rpi3_console_init();
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
bl33_image_ep_info.spsr = rpi3_get_spsr_for_bl33_entry();
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
#if RPI3_DIRECT_LINUX_BOOT
# if RPI3_BL33_IN_AARCH32
/*
* According to the file ``Documentation/arm/Booting`` of the Linux
* kernel tree, Linux expects:
* r0 = 0
* r1 = machine type number, optional in DT-only platforms (~0 if so)
* r2 = Physical address of the device tree blob
*/
VERBOSE("rpi4: Preparing to boot 32-bit Linux kernel\n");
bl33_image_ep_info.args.arg0 = 0U;
bl33_image_ep_info.args.arg1 = ~0U;
bl33_image_ep_info.args.arg2 = rpi4_get_dtb_address();
# else
/*
* According to the file ``Documentation/arm64/booting.txt`` of the
* Linux kernel tree, Linux expects the physical address of the device
* tree blob (DTB) in x0, while x1-x3 are reserved for future use and
* must be 0.
*/
VERBOSE("rpi4: Preparing to boot 64-bit Linux kernel\n");
bl33_image_ep_info.args.arg0 = rpi4_get_dtb_address();
bl33_image_ep_info.args.arg1 = 0ULL;
bl33_image_ep_info.args.arg2 = 0ULL;
bl33_image_ep_info.args.arg3 = 0ULL;
# endif /* RPI3_BL33_IN_AARCH32 */
#endif /* RPI3_DIRECT_LINUX_BOOT */
}
void bl31_plat_arch_setup(void)
{
/*
* Is the dtb_ptr32 pointer valid? If yes, map the DTB region.
* We map the 2MB region the DTB start address lives in, plus
* the next 2MB, to have enough room for expansion.
*/
if (stub_magic == 0) {
unsigned long long dtb_region = dtb_ptr32;
dtb_region &= ~0x1fffff; /* Align to 2 MB. */
mmap_add_region(dtb_region, dtb_region, 4U << 20,
MT_MEMORY | MT_RW | MT_NS);
}
/*
* Add the first page of memory, which holds the stub magic,
* the kernel and the DT address.
* This also holds the secondary CPU's entrypoints and mailboxes.
*/
mmap_add_region(0, 0, 4096, MT_NON_CACHEABLE | MT_RW | MT_SECURE);
rpi3_setup_page_tables(BL31_BASE, BL31_END - BL31_BASE,
BL_CODE_BASE, BL_CODE_END,
BL_RO_DATA_BASE, BL_RO_DATA_END
#if USE_COHERENT_MEM
, BL_COHERENT_RAM_BASE, BL_COHERENT_RAM_END
#endif
);
enable_mmu_el3(0);
}
/*
* Remove the FDT /memreserve/ entry that covers the region at the very
* beginning of memory (if that exists). This is where the secondaries
* originally spin, but we pull them out there.
* Having overlapping /reserved-memory and /memreserve/ regions confuses
* the Linux kernel, so we need to get rid of this one.
*/
static void remove_spintable_memreserve(void *dtb)
{
uint64_t addr, size;
int regions = fdt_num_mem_rsv(dtb);
int i;
for (i = 0; i < regions; i++) {
if (fdt_get_mem_rsv(dtb, i, &addr, &size) != 0) {
return;
}
if (size == 0U) {
return;
}
/* We only look for the region at the beginning of DRAM. */
if (addr != 0U) {
continue;
}
/*
* Currently the region in the existing DTs is exactly 4K
* in size. Should this value ever change, there is probably
* a reason for that, so inform the user about this.
*/
if (size == 4096U) {
fdt_del_mem_rsv(dtb, i);
return;
}
WARN("Keeping unknown /memreserve/ region at 0, size: %" PRId64 "\n",
size);
}
}
static void rpi4_prepare_dtb(void)
{
void *dtb = (void *)rpi4_get_dtb_address();
uint32_t gic_int_prop[3];
int ret, offs;
/* Return if no device tree is detected */
if (fdt_check_header(dtb) != 0)
return;
ret = fdt_open_into(dtb, dtb, 0x100000);
if (ret < 0) {
ERROR("Invalid Device Tree at %p: error %d\n", dtb, ret);
return;
}
if (dt_add_psci_node(dtb)) {
ERROR("Failed to add PSCI Device Tree node\n");
return;
}
if (dt_add_psci_cpu_enable_methods(dtb)) {
ERROR("Failed to add PSCI cpu enable methods in Device Tree\n");
return;
}
/*
* Remove the original reserved region (used for the spintable), and
* replace it with a region describing the whole of Trusted Firmware.
*/
remove_spintable_memreserve(dtb);
if (fdt_add_reserved_memory(dtb, "atf@0", 0, 0x80000))
WARN("Failed to add reserved memory nodes to DT.\n");
offs = fdt_node_offset_by_compatible(dtb, 0, "arm,gic-400");
gic_int_prop[0] = cpu_to_fdt32(1); // PPI
gic_int_prop[1] = cpu_to_fdt32(9); // PPI #9
gic_int_prop[2] = cpu_to_fdt32(0x0f04); // all cores, level high
fdt_setprop(dtb, offs, "interrupts", gic_int_prop, 12);
offs = fdt_path_offset(dtb, "/chosen");
fdt_setprop_string(dtb, offs, "stdout-path", "serial0");
ret = fdt_pack(dtb);
if (ret < 0)
ERROR("Failed to pack Device Tree at %p: error %d\n", dtb, ret);
clean_dcache_range((uintptr_t)dtb, fdt_blob_size(dtb));
INFO("Changed device tree to advertise PSCI.\n");
}
void bl31_platform_setup(void)
{
rpi4_prepare_dtb();
/* Configure the interrupt controller */
gicv2_driver_init(&rpi4_gic_data);
gicv2_distif_init();
gicv2_pcpu_distif_init();
gicv2_cpuif_enable();
}
|