1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
/*
* Copyright (c) 2021-2022, ProvenRun S.A.S. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*******************************************************************************
* This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
* plug-in component to the Secure Monitor, registered as a runtime service. The
* SPD is expected to be a functional extension of the Secure Payload (SP) that
* executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
* the Trusted OS/Applications range to the dispatcher. The SPD will either
* handle the request locally or delegate it to the Secure Payload. It is also
* responsible for initialising and maintaining communication with the SP.
******************************************************************************/
#include <assert.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <bl31/interrupt_mgmt.h>
#include <bl_common.h>
#include <common/debug.h>
#include <common/ep_info.h>
#include <drivers/arm/gic_common.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/spinlock.h>
#include <plat/common/platform.h>
#include <pnc.h>
#include "pncd_private.h"
#include <runtime_svc.h>
#include <tools_share/uuid.h>
/*******************************************************************************
* Structure to keep track of ProvenCore state
******************************************************************************/
static pnc_context_t pncd_sp_context;
static bool ree_info;
static uint64_t ree_base_addr;
static uint64_t ree_length;
static uint64_t ree_tag;
static bool pnc_initialized;
static spinlock_t smc_handler_lock;
static int pncd_init(void);
static void context_save(unsigned long security_state)
{
assert(sec_state_is_valid(security_state));
cm_el1_sysregs_context_save((uint32_t) security_state);
#if CTX_INCLUDE_FPREGS
fpregs_context_save(get_fpregs_ctx(cm_get_context(security_state)));
#endif
}
static void *context_restore(unsigned long security_state)
{
void *handle;
assert(sec_state_is_valid(security_state));
/* Get a reference to the next context */
handle = cm_get_context((uint32_t) security_state);
assert(handle);
/* Restore state */
cm_el1_sysregs_context_restore((uint32_t) security_state);
#if CTX_INCLUDE_FPREGS
fpregs_context_restore(get_fpregs_ctx(cm_get_context(security_state)));
#endif
cm_set_next_eret_context((uint32_t) security_state);
return handle;
}
static uint64_t pncd_sel1_interrupt_handler(uint32_t id,
uint32_t flags, void *handle, void *cookie);
/*******************************************************************************
* Switch context to the specified security state and return the targeted
* handle. Note that the context may remain unchanged if the switch is not
* allowed.
******************************************************************************/
void *pncd_context_switch_to(unsigned long security_state)
{
unsigned long sec_state_from =
security_state == SECURE ? NON_SECURE : SECURE;
assert(sec_state_is_valid(security_state));
/* Check if this is the first world switch */
if (!pnc_initialized) {
int rc;
uint32_t flags;
assert(sec_state_from == SECURE);
INFO("PnC initialization done\n");
/*
* Register an interrupt handler for S-EL1 interrupts
* when generated during code executing in the
* non-secure state.
*/
flags = 0U;
set_interrupt_rm_flag(flags, NON_SECURE);
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
pncd_sel1_interrupt_handler,
flags);
if (rc != 0) {
ERROR("Failed to register S-EL1 interrupt handler (%d)\n",
rc);
panic();
}
context_save(SECURE);
pnc_initialized = true;
/*
* Release the lock before restoring the EL3 context to
* bl31_main.
*/
spin_unlock(&smc_handler_lock);
/*
* SP reports completion. The SPD must have initiated
* the original request through a synchronous entry
* into the SP. Jump back to the original C runtime
* context.
*/
pncd_synchronous_sp_exit(&pncd_sp_context, (uint64_t) 0x0);
/* Unreachable */
ERROR("Returned from pncd_synchronous_sp_exit... Should not happen\n");
panic();
}
/* Check that the world switch is allowed */
if (read_mpidr() != pncd_sp_context.mpidr) {
if (sec_state_from == SECURE) {
/*
* Secure -> Non-Secure world switch initiated on a CPU where there
* should be no Trusted OS running
*/
WARN("Secure to Non-Secure switch requested on CPU where ProvenCore is not supposed to be running...\n");
}
/*
* Secure or Non-Secure world wants to switch world but there is no Secure
* software on this core
*/
return cm_get_context((uint32_t) sec_state_from);
}
context_save(sec_state_from);
return context_restore(security_state);
}
/*******************************************************************************
* This function is the handler registered for S-EL1 interrupts by the PNCD. It
* validates the interrupt and upon success arranges entry into the PNC at
* 'pnc_sel1_intr_entry()' for handling the interrupt.
******************************************************************************/
static uint64_t pncd_sel1_interrupt_handler(uint32_t id,
uint32_t flags,
void *handle,
void *cookie)
{
/* Check the security state when the exception was generated */
assert(get_interrupt_src_ss(flags) == NON_SECURE);
/* Sanity check the pointer to this cpu's context */
assert(handle == cm_get_context(NON_SECURE));
/* switch to PnC */
handle = pncd_context_switch_to(SECURE);
assert(handle != NULL);
SMC_RET0(handle);
}
#pragma weak plat_pncd_setup
int plat_pncd_setup(void)
{
return 0;
}
/*******************************************************************************
* Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
* (aarch32/aarch64) if not already known and initialises the context for entry
* into the SP for its initialisation.
******************************************************************************/
static int pncd_setup(void)
{
entry_point_info_t *pnc_ep_info;
/*
* Get information about the Secure Payload (BL32) image. Its
* absence is a critical failure.
*
* TODO: Add support to conditionally include the SPD service
*/
pnc_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
if (!pnc_ep_info) {
WARN("No PNC provided by BL2 boot loader, Booting device without PNC initialization. SMC`s destined for PNC will return SMC_UNK\n");
return 1;
}
/*
* If there's no valid entry point for SP, we return a non-zero value
* signalling failure initializing the service. We bail out without
* registering any handlers
*/
if (!pnc_ep_info->pc) {
return 1;
}
pncd_init_pnc_ep_state(pnc_ep_info,
pnc_ep_info->pc,
&pncd_sp_context);
/*
* All PNCD initialization done. Now register our init function with
* BL31 for deferred invocation
*/
bl31_register_bl32_init(&pncd_init);
bl31_set_next_image_type(NON_SECURE);
return plat_pncd_setup();
}
/*******************************************************************************
* This function passes control to the Secure Payload image (BL32) for the first
* time on the primary cpu after a cold boot. It assumes that a valid secure
* context has already been created by pncd_setup() which can be directly used.
* It also assumes that a valid non-secure context has been initialised by PSCI
* so it does not need to save and restore any non-secure state. This function
* performs a synchronous entry into the Secure payload. The SP passes control
* back to this routine through a SMC.
******************************************************************************/
static int32_t pncd_init(void)
{
entry_point_info_t *pnc_entry_point;
uint64_t rc = 0;
/*
* Get information about the Secure Payload (BL32) image. Its
* absence is a critical failure.
*/
pnc_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
assert(pnc_entry_point);
cm_init_my_context(pnc_entry_point);
/*
* Arrange for an entry into the test secure payload. It will be
* returned via PNC_ENTRY_DONE case
*/
rc = pncd_synchronous_sp_entry(&pncd_sp_context);
/*
* If everything went well at this point, the return value should be 0.
*/
return rc == 0;
}
#pragma weak plat_pncd_smc_handler
/*******************************************************************************
* This function is responsible for handling the platform-specific SMCs in the
* Trusted OS/App range as defined in the SMC Calling Convention Document.
******************************************************************************/
uintptr_t plat_pncd_smc_handler(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
(void) smc_fid;
(void) x1;
(void) x2;
(void) x3;
(void) x4;
(void) cookie;
(void) flags;
SMC_RET1(handle, SMC_UNK);
}
/*******************************************************************************
* This function is responsible for handling all SMCs in the Trusted OS/App
* range as defined in the SMC Calling Convention Document. It is also
* responsible for communicating with the Secure payload to delegate work and
* return results back to the non-secure state. Lastly it will also return any
* information that the secure payload needs to do the work assigned to it.
*
* It should only be called with the smc_handler_lock held.
******************************************************************************/
static uintptr_t pncd_smc_handler_unsafe(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
uint32_t ns;
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
assert(ns != 0 || read_mpidr() == pncd_sp_context.mpidr);
switch (smc_fid) {
case SMC_CONFIG_SHAREDMEM:
if (ree_info) {
/* Do not Yield */
SMC_RET0(handle);
}
/*
* Fetch the physical base address (x1) and size (x2) of the
* shared memory allocated by the Non-Secure world. This memory
* will be used by PNC to communicate with the Non-Secure world.
* Verifying the validity of these values is up to the Trusted
* OS.
*/
ree_base_addr = x1 | (x2 << 32);
ree_length = x3;
ree_tag = x4;
INFO("IN SMC_CONFIG_SHAREDMEM: addr=%lx, length=%lx, tag=%lx\n",
(unsigned long) ree_base_addr,
(unsigned long) ree_length,
(unsigned long) ree_tag);
if ((ree_base_addr % 0x200000) != 0) {
SMC_RET1(handle, SMC_UNK);
}
if ((ree_length % 0x200000) != 0) {
SMC_RET1(handle, SMC_UNK);
}
ree_info = true;
/* Do not Yield */
SMC_RET4(handle, 0, 0, 0, 0);
break;
case SMC_GET_SHAREDMEM:
if (ree_info) {
x1 = (1U << 16) | ree_tag;
x2 = ree_base_addr & 0xFFFFFFFF;
x3 = (ree_base_addr >> 32) & 0xFFFFFFFF;
x4 = ree_length & 0xFFFFFFFF;
SMC_RET4(handle, x1, x2, x3, x4);
} else {
SMC_RET4(handle, 0, 0, 0, 0);
}
break;
case SMC_ACTION_FROM_NS:
if (ns == 0) {
SMC_RET1(handle, SMC_UNK);
}
if (SPD_PNCD_S_IRQ < MIN_PPI_ID) {
plat_ic_raise_s_el1_sgi(SPD_PNCD_S_IRQ,
pncd_sp_context.mpidr);
} else {
plat_ic_set_interrupt_pending(SPD_PNCD_S_IRQ);
}
SMC_RET0(handle);
break;
case SMC_ACTION_FROM_S:
if (ns != 0) {
SMC_RET1(handle, SMC_UNK);
}
if (SPD_PNCD_NS_IRQ < MIN_PPI_ID) {
/*
* NS SGI is sent to the same core as the one running
* PNC
*/
plat_ic_raise_ns_sgi(SPD_PNCD_NS_IRQ, read_mpidr());
} else {
plat_ic_set_interrupt_pending(SPD_PNCD_NS_IRQ);
}
SMC_RET0(handle);
break;
case SMC_YIELD:
assert(handle == cm_get_context(ns != 0 ? NON_SECURE : SECURE));
handle = pncd_context_switch_to(ns != 0 ? SECURE : NON_SECURE);
assert(handle != NULL);
SMC_RET0(handle);
break;
default:
INFO("Unknown smc: %x\n", smc_fid);
break;
}
return plat_pncd_smc_handler(smc_fid, x1, x2, x3, x4,
cookie, handle, flags);
}
static uintptr_t pncd_smc_handler(uint32_t smc_fid,
u_register_t x1,
u_register_t x2,
u_register_t x3,
u_register_t x4,
void *cookie,
void *handle,
u_register_t flags)
{
uintptr_t ret;
/* SMC handling is serialized */
spin_lock(&smc_handler_lock);
ret = pncd_smc_handler_unsafe(smc_fid, x1, x2, x3, x4, cookie, handle,
flags);
spin_unlock(&smc_handler_lock);
return ret;
}
/* Define a SPD runtime service descriptor for fast SMC calls */
DECLARE_RT_SVC(
pncd_fast,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_FAST,
pncd_setup,
pncd_smc_handler
);
/* Define a SPD runtime service descriptor for standard SMC calls */
DECLARE_RT_SVC(
pncd_std,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_YIELD,
NULL,
pncd_smc_handler
);
|