1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/* Clzip - LZMA lossless data compressor
Copyright (C) 2010-2022 Antonio Diaz Diaz.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define _FILE_OFFSET_BITS 64
#include <errno.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "lzip.h"
#include "encoder_base.h"
Dis_slots dis_slots;
Prob_prices prob_prices;
bool Mb_read_block( struct Matchfinder_base * const mb )
{
if( !mb->at_stream_end && mb->stream_pos < mb->buffer_size )
{
const int size = mb->buffer_size - mb->stream_pos;
const int rd = readblock( mb->infd, mb->buffer + mb->stream_pos, size );
mb->stream_pos += rd;
if( rd != size && errno )
{ show_error( "Read error", errno, false ); cleanup_and_fail( 1 ); }
if( rd < size ) { mb->at_stream_end = true; mb->pos_limit = mb->buffer_size; }
}
return mb->pos < mb->stream_pos;
}
void Mb_normalize_pos( struct Matchfinder_base * const mb )
{
if( mb->pos > mb->stream_pos )
internal_error( "pos > stream_pos in Mb_normalize_pos." );
if( !mb->at_stream_end )
{
int i;
/* offset is int32_t for the min below */
const int32_t offset = mb->pos - mb->before_size - mb->dictionary_size;
const int size = mb->stream_pos - offset;
memmove( mb->buffer, mb->buffer + offset, size );
mb->partial_data_pos += offset;
mb->pos -= offset; /* pos = before_size + dictionary_size */
mb->stream_pos -= offset;
for( i = 0; i < mb->num_prev_positions; ++i )
mb->prev_positions[i] -= min( mb->prev_positions[i], offset );
for( i = 0; i < mb->pos_array_size; ++i )
mb->pos_array[i] -= min( mb->pos_array[i], offset );
Mb_read_block( mb );
}
}
bool Mb_init( struct Matchfinder_base * const mb, const int before_size,
const int dict_size, const int after_size,
const int dict_factor, const int num_prev_positions23,
const int pos_array_factor, const int ifd )
{
const int buffer_size_limit =
( dict_factor * dict_size ) + before_size + after_size;
int i;
mb->partial_data_pos = 0;
mb->before_size = before_size;
mb->pos = 0;
mb->cyclic_pos = 0;
mb->stream_pos = 0;
mb->num_prev_positions23 = num_prev_positions23;
mb->infd = ifd;
mb->at_stream_end = false;
mb->buffer_size = max( 65536, dict_size );
mb->buffer = (uint8_t *)malloc( mb->buffer_size );
if( !mb->buffer ) return false;
if( Mb_read_block( mb ) && !mb->at_stream_end &&
mb->buffer_size < buffer_size_limit )
{
uint8_t * const tmp = (uint8_t *)realloc( mb->buffer, buffer_size_limit );
if( !tmp ) { free( mb->buffer ); return false; }
mb->buffer = tmp;
mb->buffer_size = buffer_size_limit;
Mb_read_block( mb );
}
if( mb->at_stream_end && mb->stream_pos < dict_size )
mb->dictionary_size = max( min_dictionary_size, mb->stream_pos );
else
mb->dictionary_size = dict_size;
mb->pos_limit = mb->buffer_size;
if( !mb->at_stream_end ) mb->pos_limit -= after_size;
unsigned size = 1 << max( 16, real_bits( mb->dictionary_size - 1 ) - 2 );
if( mb->dictionary_size > 1 << 26 ) size >>= 1; /* 64 MiB */
mb->key4_mask = size - 1; /* increases with dictionary size */
size += num_prev_positions23;
mb->num_prev_positions = size;
mb->pos_array_size = pos_array_factor * ( mb->dictionary_size + 1 );
size += mb->pos_array_size;
if( size * sizeof mb->prev_positions[0] <= size ) mb->prev_positions = 0;
else mb->prev_positions =
(int32_t *)malloc( size * sizeof mb->prev_positions[0] );
if( !mb->prev_positions ) { free( mb->buffer ); return false; }
mb->pos_array = mb->prev_positions + mb->num_prev_positions;
for( i = 0; i < mb->num_prev_positions; ++i ) mb->prev_positions[i] = 0;
return true;
}
void Mb_reset( struct Matchfinder_base * const mb )
{
int i;
if( mb->stream_pos > mb->pos )
memmove( mb->buffer, mb->buffer + mb->pos, mb->stream_pos - mb->pos );
mb->partial_data_pos = 0;
mb->stream_pos -= mb->pos;
mb->pos = 0;
mb->cyclic_pos = 0;
Mb_read_block( mb );
if( mb->at_stream_end && mb->stream_pos < mb->dictionary_size )
{
mb->dictionary_size = max( min_dictionary_size, mb->stream_pos );
int size = 1 << max( 16, real_bits( mb->dictionary_size - 1 ) - 2 );
if( mb->dictionary_size > 1 << 26 ) size >>= 1; /* 64 MiB */
mb->key4_mask = size - 1;
size += mb->num_prev_positions23;
mb->num_prev_positions = size;
mb->pos_array = mb->prev_positions + mb->num_prev_positions;
}
for( i = 0; i < mb->num_prev_positions; ++i ) mb->prev_positions[i] = 0;
}
void Re_flush_data( struct Range_encoder * const renc )
{
if( renc->pos > 0 )
{
if( renc->outfd >= 0 &&
writeblock( renc->outfd, renc->buffer, renc->pos ) != renc->pos )
{ show_error( "Write error", errno, false ); cleanup_and_fail( 1 ); }
renc->partial_member_pos += renc->pos;
renc->pos = 0;
show_cprogress( 0, 0, 0, 0 );
}
}
/* End Of Stream marker => (dis == 0xFFFFFFFFU, len == min_match_len) */
void LZeb_full_flush( struct LZ_encoder_base * const eb, const State state )
{
const int pos_state = Mb_data_position( &eb->mb ) & pos_state_mask;
Re_encode_bit( &eb->renc, &eb->bm_match[state][pos_state], 1 );
Re_encode_bit( &eb->renc, &eb->bm_rep[state], 0 );
LZeb_encode_pair( eb, 0xFFFFFFFFU, min_match_len, pos_state );
Re_flush( &eb->renc );
Lzip_trailer trailer;
Lt_set_data_crc( trailer, LZeb_crc( eb ) );
Lt_set_data_size( trailer, Mb_data_position( &eb->mb ) );
Lt_set_member_size( trailer, Re_member_position( &eb->renc ) + Lt_size );
int i;
for( i = 0; i < Lt_size; ++i )
Re_put_byte( &eb->renc, trailer[i] );
Re_flush_data( &eb->renc );
}
void LZeb_reset( struct LZ_encoder_base * const eb )
{
Mb_reset( &eb->mb );
eb->crc = 0xFFFFFFFFU;
Bm_array_init( eb->bm_literal[0], (1 << literal_context_bits) * 0x300 );
Bm_array_init( eb->bm_match[0], states * pos_states );
Bm_array_init( eb->bm_rep, states );
Bm_array_init( eb->bm_rep0, states );
Bm_array_init( eb->bm_rep1, states );
Bm_array_init( eb->bm_rep2, states );
Bm_array_init( eb->bm_len[0], states * pos_states );
Bm_array_init( eb->bm_dis_slot[0], len_states * (1 << dis_slot_bits) );
Bm_array_init( eb->bm_dis, modeled_distances - end_dis_model + 1 );
Bm_array_init( eb->bm_align, dis_align_size );
Lm_init( &eb->match_len_model );
Lm_init( &eb->rep_len_model );
Re_reset( &eb->renc, eb->mb.dictionary_size );
}
|