1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
|
/*
* This file is part of PowerDNS or dnsdist.
* Copyright -- PowerDNS.COM B.V. and its contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* In addition, for the avoidance of any doubt, permission is granted to
* link this program with OpenSSL and to (re)distribute the binaries
* produced as the result of such linking.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <cmath>
#include <stdexcept>
#ifdef HAVE_LIBSODIUM
#include <sodium.h>
#endif
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
#include <openssl/evp.h>
#include <openssl/kdf.h>
#include <openssl/opensslv.h>
#include <openssl/rand.h>
#endif
#include <fcntl.h>
#include <sys/stat.h>
#include <unistd.h>
#include "base64.hh"
#include "credentials.hh"
#include "misc.hh"
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
static size_t const pwhash_max_size = 128U; /* maximum size of the output */
static size_t const pwhash_output_size = 32U; /* size of the hashed output (before base64 encoding) */
static unsigned int const pwhash_salt_size = 16U; /* size of the salt (before base64 encoding */
static uint64_t const pwhash_max_work_factor = 32768U; /* max N for interactive login purposes */
/* PHC string format, storing N as log2(N) as done by passlib.
for now we only support one algo but we might have to change that later */
static std::string const pwhash_prefix = "$scrypt$";
static size_t const pwhash_prefix_size = pwhash_prefix.size();
#endif
uint64_t const CredentialsHolder::s_defaultWorkFactor{1024U}; /* N */
uint64_t const CredentialsHolder::s_defaultParallelFactor{1U}; /* p */
uint64_t const CredentialsHolder::s_defaultBlockSize{8U}; /* r */
SensitiveData::SensitiveData(std::string&& data) :
d_data(std::move(data))
{
#ifdef HAVE_LIBSODIUM
sodium_mlock(d_data.data(), d_data.size());
#endif
}
SensitiveData& SensitiveData::operator=(SensitiveData&& rhs)
{
d_data = std::move(rhs.d_data);
return *this;
}
SensitiveData::SensitiveData(size_t bytes)
{
d_data.resize(bytes);
#ifdef HAVE_LIBSODIUM
sodium_mlock(d_data.data(), d_data.size());
#endif
}
SensitiveData::~SensitiveData()
{
clear();
}
void SensitiveData::clear()
{
#ifdef HAVE_LIBSODIUM
sodium_munlock(d_data.data(), d_data.size());
#endif
d_data.clear();
}
static std::string hashPasswordInternal(const std::string& password, const std::string& salt, uint64_t workFactor, uint64_t parallelFactor, uint64_t blockSize)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
auto pctx = std::unique_ptr<EVP_PKEY_CTX, void (*)(EVP_PKEY_CTX*)>(EVP_PKEY_CTX_new_id(EVP_PKEY_SCRYPT, nullptr), EVP_PKEY_CTX_free);
if (!pctx) {
throw std::runtime_error("Error getting a scrypt context to hash the supplied password");
}
if (EVP_PKEY_derive_init(pctx.get()) <= 0) {
throw std::runtime_error("Error intializing the scrypt context to hash the supplied password");
}
// OpenSSL 3.0 changed the string arg to const unsigned char*, other versions use const char *
#if OPENSSL_VERSION_MAJOR >= 3
auto passwordData = reinterpret_cast<const char*>(password.data());
#else
auto passwordData = reinterpret_cast<const unsigned char*>(password.data());
#endif
if (EVP_PKEY_CTX_set1_pbe_pass(pctx.get(), passwordData, password.size()) <= 0) {
throw std::runtime_error("Error adding the password to the scrypt context to hash the supplied password");
}
if (EVP_PKEY_CTX_set1_scrypt_salt(pctx.get(), reinterpret_cast<const unsigned char*>(salt.data()), salt.size()) <= 0) {
throw std::runtime_error("Error adding the salt to the scrypt context to hash the supplied password");
}
if (EVP_PKEY_CTX_set_scrypt_N(pctx.get(), workFactor) <= 0) {
throw std::runtime_error("Error setting the work factor to the scrypt context to hash the supplied password");
}
if (EVP_PKEY_CTX_set_scrypt_r(pctx.get(), blockSize) <= 0) {
throw std::runtime_error("Error setting the block size to the scrypt context to hash the supplied password");
}
if (EVP_PKEY_CTX_set_scrypt_p(pctx.get(), parallelFactor) <= 0) {
throw std::runtime_error("Error setting the parallel factor to the scrypt context to hash the supplied password");
}
std::string out;
out.resize(pwhash_output_size);
size_t outlen = out.size();
if (EVP_PKEY_derive(pctx.get(), reinterpret_cast<unsigned char*>(out.data()), &outlen) <= 0 || outlen != pwhash_output_size) {
throw std::runtime_error("Error deriving the output from the scrypt context to hash the supplied password");
}
return out;
#else
throw std::runtime_error("Hashing support is not available");
#endif
}
static std::string generateRandomSalt()
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
/* generate a random salt */
std::string salt;
salt.resize(pwhash_salt_size);
if (RAND_bytes(reinterpret_cast<unsigned char*>(salt.data()), salt.size()) != 1) {
throw std::runtime_error("Error while generating a salt to hash the supplied password");
}
return salt;
#else
throw std::runtime_error("Generating a salted password requires scrypt support in OpenSSL, and it is not available");
#endif
}
std::string hashPassword(const std::string& password, uint64_t workFactor, uint64_t parallelFactor, uint64_t blockSize)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
std::string result;
result.reserve(pwhash_max_size);
result.append(pwhash_prefix);
result.append("ln=");
result.append(std::to_string(static_cast<uint64_t>(std::log2(workFactor))));
result.append(",p=");
result.append(std::to_string(parallelFactor));
result.append(",r=");
result.append(std::to_string(blockSize));
result.append("$");
auto salt = generateRandomSalt();
result.append(Base64Encode(salt));
result.append("$");
auto out = hashPasswordInternal(password, salt, workFactor, parallelFactor, blockSize);
result.append(Base64Encode(out));
return result;
#else
throw std::runtime_error("Hashing a password requires scrypt support in OpenSSL, and it is not available");
#endif
}
std::string hashPassword(const std::string& password)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
return hashPassword(password, CredentialsHolder::s_defaultWorkFactor, CredentialsHolder::s_defaultParallelFactor, CredentialsHolder::s_defaultBlockSize);
#else
throw std::runtime_error("Hashing a password requires scrypt support in OpenSSL, and it is not available");
#endif
}
bool verifyPassword(const std::string& binaryHash, const std::string& salt, uint64_t workFactor, uint64_t parallelFactor, uint64_t blockSize, const std::string& binaryPassword)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
auto expected = hashPasswordInternal(binaryPassword, salt, workFactor, parallelFactor, blockSize);
return constantTimeStringEquals(expected, binaryHash);
#else
throw std::runtime_error("Hashing a password requires scrypt support in OpenSSL, and it is not available");
#endif
}
/* parse a hashed password in PHC string format */
static void parseHashed(const std::string& hash, std::string& salt, std::string& hashedPassword, uint64_t& workFactor, uint64_t& parallelFactor, uint64_t& blockSize)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
auto parametersEnd = hash.find('$', pwhash_prefix.size());
if (parametersEnd == std::string::npos || parametersEnd == hash.size()) {
throw std::runtime_error("Invalid hashed password format, no parameters");
}
auto parametersStr = hash.substr(pwhash_prefix.size(), parametersEnd);
std::vector<std::string> parameters;
parameters.reserve(3);
stringtok(parameters, parametersStr, ",");
if (parameters.size() != 3) {
throw std::runtime_error("Invalid hashed password format, expecting 3 parameters, got " + std::to_string(parameters.size()));
}
if (!boost::starts_with(parameters.at(0), "ln=")) {
throw std::runtime_error("Invalid hashed password format, ln= parameter not found");
}
if (!boost::starts_with(parameters.at(1), "p=")) {
throw std::runtime_error("Invalid hashed password format, p= parameter not found");
}
if (!boost::starts_with(parameters.at(2), "r=")) {
throw std::runtime_error("Invalid hashed password format, r= parameter not found");
}
auto saltPos = parametersEnd + 1;
auto saltEnd = hash.find('$', saltPos);
if (saltEnd == std::string::npos || saltEnd == hash.size()) {
throw std::runtime_error("Invalid hashed password format");
}
try {
workFactor = pdns_stou(parameters.at(0).substr(3));
workFactor = static_cast<uint64_t>(1) << workFactor;
if (workFactor > pwhash_max_work_factor) {
throw std::runtime_error("Invalid work factor of " + std::to_string(workFactor) + " in hashed password string, maximum is " + std::to_string(pwhash_max_work_factor));
}
parallelFactor = pdns_stou(parameters.at(1).substr(2));
blockSize = pdns_stou(parameters.at(2).substr(2));
auto b64Salt = hash.substr(saltPos, saltEnd - saltPos);
salt.reserve(pwhash_salt_size);
B64Decode(b64Salt, salt);
if (salt.size() != pwhash_salt_size) {
throw std::runtime_error("Invalid salt in hashed password string");
}
hashedPassword.reserve(pwhash_output_size);
B64Decode(hash.substr(saltEnd + 1), hashedPassword);
if (hashedPassword.size() != pwhash_output_size) {
throw std::runtime_error("Invalid hash in hashed password string");
}
}
catch (const std::exception& e) {
throw std::runtime_error("Invalid hashed password format, unable to parse parameters");
}
#endif
}
bool verifyPassword(const std::string& hash, const std::string& password)
{
if (!isPasswordHashed(hash)) {
return false;
}
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
std::string salt;
std::string hashedPassword;
uint64_t workFactor = 0;
uint64_t parallelFactor = 0;
uint64_t blockSize = 0;
parseHashed(hash, salt, hashedPassword, workFactor, parallelFactor, blockSize);
auto expected = hashPasswordInternal(password, salt, workFactor, parallelFactor, blockSize);
return constantTimeStringEquals(expected, hashedPassword);
#else
throw std::runtime_error("Verifying a hashed password requires scrypt support in OpenSSL, and it is not available");
#endif
}
bool isPasswordHashed(const std::string& password)
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
if (password.size() < pwhash_prefix_size || password.size() > pwhash_max_size) {
return false;
}
if (!boost::starts_with(password, pwhash_prefix)) {
return false;
}
auto parametersEnd = password.find('$', pwhash_prefix.size());
if (parametersEnd == std::string::npos || parametersEnd == password.size()) {
return false;
}
size_t parametersSize = parametersEnd - pwhash_prefix.size();
/* ln=X,p=Y,r=Z */
if (parametersSize < 12) {
return false;
}
auto saltEnd = password.find('$', parametersEnd + 1);
if (saltEnd == std::string::npos || saltEnd == password.size()) {
return false;
}
/* the salt is base64 encoded so it has to be larger than that */
if ((saltEnd - parametersEnd - 1) < pwhash_salt_size) {
return false;
}
/* the hash base64 encoded so it has to be larger than that */
if ((password.size() - saltEnd - 1) < pwhash_output_size) {
return false;
}
return true;
#else
return false;
#endif
}
/* if the password is in cleartext and hashing is available,
the hashed form will be kept in memory */
CredentialsHolder::CredentialsHolder(std::string&& password, bool hashPlaintext) :
d_credentials(std::move(password))
{
if (isHashingAvailable()) {
if (!isPasswordHashed(d_credentials.getString())) {
if (hashPlaintext) {
d_salt = generateRandomSalt();
d_workFactor = s_defaultWorkFactor;
d_parallelFactor = s_defaultParallelFactor;
d_blockSize = s_defaultBlockSize;
d_credentials = SensitiveData(hashPasswordInternal(d_credentials.getString(), d_salt, d_workFactor, d_parallelFactor, d_blockSize));
d_isHashed = true;
}
}
else {
d_wasHashed = true;
d_isHashed = true;
std::string hashedPassword;
parseHashed(d_credentials.getString(), d_salt, hashedPassword, d_workFactor, d_parallelFactor, d_blockSize);
d_credentials = SensitiveData(std::move(hashedPassword));
}
}
if (!d_isHashed) {
d_fallbackHashPerturb = random();
d_fallbackHash = burtle(reinterpret_cast<const unsigned char*>(d_credentials.getString().data()), d_credentials.getString().size(), d_fallbackHashPerturb);
}
}
CredentialsHolder::~CredentialsHolder()
{
d_fallbackHashPerturb = 0;
d_fallbackHash = 0;
}
bool CredentialsHolder::matches(const std::string& password) const
{
if (d_isHashed) {
return verifyPassword(d_credentials.getString(), d_salt, d_workFactor, d_parallelFactor, d_blockSize, password);
}
else {
uint32_t fallback = burtle(reinterpret_cast<const unsigned char*>(password.data()), password.size(), d_fallbackHashPerturb);
if (fallback != d_fallbackHash) {
return false;
}
return constantTimeStringEquals(password, d_credentials.getString());
}
}
bool CredentialsHolder::isHashingAvailable()
{
#ifdef HAVE_EVP_PKEY_CTX_SET1_SCRYPT_SALT
return true;
#else
return false;
#endif
}
#include <signal.h>
#include <termios.h>
SensitiveData CredentialsHolder::readFromTerminal()
{
struct termios term;
struct termios oterm;
bool restoreTermSettings = false;
int termAction = TCSAFLUSH;
#ifdef TCSASOFT
termAction |= TCSASOFT;
#endif
FDWrapper input(open("/dev/tty", O_RDONLY));
if (int(input) != -1) {
if (tcgetattr(input, &oterm) == 0) {
memcpy(&term, &oterm, sizeof(term));
term.c_lflag &= ~(ECHO | ECHONL);
tcsetattr(input, termAction, &term);
restoreTermSettings = true;
}
}
else {
input = FDWrapper(dup(STDIN_FILENO));
restoreTermSettings = false;
}
FDWrapper output(open("/dev/tty", O_WRONLY));
if (int(output) == -1) {
output = FDWrapper(dup(STDERR_FILENO));
}
struct std::map<int, struct sigaction> signals;
struct sigaction sa;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
sa.sa_handler = [](int s) {};
sigaction(SIGALRM, &sa, &signals[SIGALRM]);
sigaction(SIGHUP, &sa, &signals[SIGHUP]);
sigaction(SIGINT, &sa, &signals[SIGINT]);
sigaction(SIGPIPE, &sa, &signals[SIGPIPE]);
sigaction(SIGQUIT, &sa, &signals[SIGQUIT]);
sigaction(SIGTERM, &sa, &signals[SIGTERM]);
sigaction(SIGTSTP, &sa, &signals[SIGTSTP]);
sigaction(SIGTTIN, &sa, &signals[SIGTTIN]);
sigaction(SIGTTOU, &sa, &signals[SIGTTOU]);
std::string buffer;
/* let's allocate a huge buffer now to prevent reallocation,
which would leave parts of the buffer around */
buffer.reserve(512);
for (;;) {
char ch = '\0';
auto got = read(input, &ch, 1);
if (got == 1 && ch != '\n' && ch != '\r') {
buffer.push_back(ch);
}
else {
break;
}
}
if (restoreTermSettings) {
tcsetattr(input, termAction, &oterm);
}
for (const auto& sig : signals) {
sigaction(sig.first, &sig.second, nullptr);
}
return SensitiveData(std::move(buffer));
}
|