1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
/**
* $Id$
*
* @note license is LGPL, but largely derived from a public domain source.
*
* @file md5.c
* @brief md5 digest functions.
*/
RCSID("$Id$")
#include <freeradius-devel/libradius.h>
/*
* FORCE MD5 TO USE OUR MD5 HEADER FILE!
* If we don't do this, it might pick up the systems broken MD5.
*/
#include <freeradius-devel/md5.h>
/** Calculate the MD5 hash of the contents of a buffer
*
* @param[out] out Where to write the MD5 digest. Must be a minimum of MD5_DIGEST_LENGTH.
* @param[in] in Data to hash.
* @param[in] inlen Length of the data.
*/
void fr_md5_calc(uint8_t *out, uint8_t const *in, size_t inlen)
{
FR_MD5_CTX ctx;
fr_md5_init(&ctx);
fr_md5_update(&ctx, in, inlen);
fr_md5_final(out, &ctx);
fr_md5_destroy(&ctx);
}
#ifndef HAVE_OPENSSL_MD5_H
/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to fr_md5_init, call fr_md5_update as
* needed on buffers full of bytes, and then call fr_md5_final, which
* will fill a supplied 16-byte array with the digest.
*/
#define PUT_64BIT_LE(cp, value) do {\
(cp)[7] = (value)[1] >> 24;\
(cp)[6] = (value)[1] >> 16;\
(cp)[5] = (value)[1] >> 8;\
(cp)[4] = (value)[1];\
(cp)[3] = (value)[0] >> 24;\
(cp)[2] = (value)[0] >> 16;\
(cp)[1] = (value)[0] >> 8;\
(cp)[0] = (value)[0];\
} while (0)
#define PUT_32BIT_LE(cp, value) do {\
(cp)[3] = (value) >> 24;\
(cp)[2] = (value) >> 16;\
(cp)[1] = (value) >> 8;\
(cp)[0] = (value);\
} while (0)
static const uint8_t PADDING[MD5_BLOCK_LENGTH] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/** Initialise a new MD5 context
*
* Set bit count to 0 and buffer to mysterious initialization constants.
*
* @param[out] ctx to initialise.
*/
void fr_md5_init(FR_MD5_CTX *ctx)
{
ctx->count[0] = 0;
ctx->count[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/** Feed additional data into the MD5 hashing function
*
* @param[in,out] ctx to update.
* @param[in] in Data to hash.
* @param[in] inlen Length of the data.
*/
void fr_md5_update(FR_MD5_CTX *ctx, uint8_t const *in, size_t inlen)
{
size_t have, need;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
need = MD5_BLOCK_LENGTH - have;
/* Update bitcount */
/* ctx->count += (uint64_t)inlen << 3;*/
if ((ctx->count[0] += ((uint32_t)inlen << 3)) < (uint32_t)inlen) {
/* Overflowed ctx->count[0] */
ctx->count[1]++;
}
ctx->count[1] += ((uint32_t)inlen >> 29);
if (inlen >= need) {
if (have != 0) {
memcpy(ctx->buffer + have, in, need);
fr_md5_transform(ctx->state, ctx->buffer);
in += need;
inlen -= need;
have = 0;
}
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
while (inlen >= MD5_BLOCK_LENGTH) {
fr_md5_transform(ctx->state, in);
in += MD5_BLOCK_LENGTH;
inlen -= MD5_BLOCK_LENGTH;
}
}
/* Handle any remaining bytes of data. */
if (inlen != 0) memcpy(ctx->buffer + have, in, inlen);
}
/** Finalise the MD5 context and write out the hash
*
* Final wrapup - pad to 64-byte boundary with the bit pattern 1 0*
* (64-bit count of bits processed, MSB-first).
*
* @param[out] out Where to write the MD5 digest. Minimum length of MD5_DIGEST_LENGTH.
* @param[in,out] ctx to finalise.
*/
void fr_md5_final(uint8_t out[MD5_DIGEST_LENGTH], FR_MD5_CTX *ctx)
{
uint8_t count[8];
size_t padlen;
int i;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD5_BLOCK_LENGTH -
((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
padlen += MD5_BLOCK_LENGTH;
fr_md5_update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
fr_md5_update(ctx, count, 8);
if (out != NULL) {
for (i = 0; i < 4; i++)
PUT_32BIT_LE(out + i * 4, ctx->state[i]);
}
memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
/** The core of the MD5 algorithm
*
* This alters an existing MD5 hash to reflect the addition of 16
* longwords of new data. fr_md5_update blocks the data and converts bytes
* into longwords for this routine.
*
* @param[in] state 16 bytes of data to feed into the hashing function.
* @param[in,out] block MD5 digest block to update.
*/
void fr_md5_transform(uint32_t state[4], uint8_t const block[MD5_BLOCK_LENGTH])
{
uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
in[a] = (uint32_t)(
(uint32_t)(block[a * 4 + 0]) |
(uint32_t)(block[a * 4 + 1]) << 8 |
(uint32_t)(block[a * 4 + 2]) << 16 |
(uint32_t)(block[a * 4 + 3]) << 24);
}
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
#endif
|