blob: 6cd64c63e436f7569933096bf5aa60d34a3edf32 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
@deftypefun {int} {gnutls_privkey_generate} (gnutls_privkey_t @var{pkey}, gnutls_pk_algorithm_t @var{algo}, unsigned int @var{bits}, unsigned int @var{flags})
@var{pkey}: An initialized private key
@var{algo}: is one of the algorithms in @code{gnutls_pk_algorithm_t} .
@var{bits}: the size of the parameters to generate
@var{flags}: Must be zero or flags from @code{gnutls_privkey_flags_t} .
This function will generate a random private key. Note that this
function must be called on an initialized private key.
The flag @code{GNUTLS_PRIVKEY_FLAG_PROVABLE}
instructs the key generation process to use algorithms like Shawe-Taylor
(from FIPS PUB186-4) which generate provable parameters out of a seed
for RSA and DSA keys. See @code{gnutls_privkey_generate2()} for more
information.
Note that when generating an elliptic curve key, the curve
can be substituted in the place of the bits parameter using the
@code{GNUTLS_CURVE_TO_BITS()} macro. The input to the macro is any curve from
@code{gnutls_ecc_curve_t} .
For DSA keys, if the subgroup size needs to be specified check
the @code{GNUTLS_SUBGROUP_TO_BITS()} macro.
It is recommended to do not set the number of @code{bits} directly, use @code{gnutls_sec_param_to_pk_bits()} instead .
See also @code{gnutls_privkey_generate2()} .
@strong{Returns:} On success, @code{GNUTLS_E_SUCCESS} (0) is returned, otherwise a
negative error value.
@strong{Since:} 3.3.0
@end deftypefun
|