1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
|
/*
* Copyright (C) 2011-2016 Free Software Foundation, Inc.
* Copyright (C) 2016-2018 Red Hat, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GnuTLS.
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>
*
*/
/*
* The following code is an implementation of the AES-128-CBC cipher
* using aarch64 instruction set.
*/
#include "errors.h"
#include "gnutls_int.h"
#include <gnutls/crypto.h>
#include "errors.h"
#include <aes-aarch64.h>
#include <aarch64-common.h>
struct aes_ctx {
AES_KEY expanded_key;
uint8_t iv[16];
int enc;
};
static int
aes_cipher_init(gnutls_cipher_algorithm_t algorithm, void **_ctx, int enc)
{
/* we use key size to distinguish */
if (algorithm != GNUTLS_CIPHER_AES_128_CBC
&& algorithm != GNUTLS_CIPHER_AES_192_CBC
&& algorithm != GNUTLS_CIPHER_AES_256_CBC)
return GNUTLS_E_INVALID_REQUEST;
*_ctx = gnutls_calloc(1, sizeof(struct aes_ctx));
if (*_ctx == NULL) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
((struct aes_ctx *) (*_ctx))->enc = enc;
return 0;
}
static int
aes_aarch64_cipher_setkey(void *_ctx, const void *userkey, size_t keysize)
{
struct aes_ctx *ctx = _ctx;
int ret;
CHECK_AES_KEYSIZE(keysize);
if (ctx->enc)
ret =
aes_v8_set_encrypt_key(userkey, keysize * 8,
ALIGN16(&ctx->expanded_key));
else
ret =
aes_v8_set_decrypt_key(userkey, keysize * 8,
ALIGN16(&ctx->expanded_key));
if (ret != 0)
return gnutls_assert_val(GNUTLS_E_ENCRYPTION_FAILED);
return 0;
}
static int
aes_aarch64_encrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t dst_size)
{
struct aes_ctx *ctx = _ctx;
if (unlikely(src_size % 16 != 0))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (unlikely(dst_size < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
aes_v8_cbc_encrypt(src, dst, src_size, ALIGN16(&ctx->expanded_key),
ctx->iv, 1);
return 0;
}
static int
aes_aarch64_decrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t dst_size)
{
struct aes_ctx *ctx = _ctx;
if (unlikely(src_size % 16 != 0))
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
if (unlikely(dst_size < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
aes_v8_cbc_encrypt(src, dst, src_size, ALIGN16(&ctx->expanded_key),
ctx->iv, 0);
return 0;
}
static int aes_setiv(void *_ctx, const void *iv, size_t iv_size)
{
struct aes_ctx *ctx = _ctx;
if (iv_size != 16)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
memcpy(ctx->iv, iv, 16);
return 0;
}
static void aes_deinit(void *_ctx)
{
struct aes_ctx *ctx = _ctx;
zeroize_temp_key(ctx, sizeof(*ctx));
gnutls_free(ctx);
}
const gnutls_crypto_cipher_st _gnutls_aes_cbc_aarch64 = {
.init = aes_cipher_init,
.setkey = aes_aarch64_cipher_setkey,
.setiv = aes_setiv,
.encrypt = aes_aarch64_encrypt,
.decrypt = aes_aarch64_decrypt,
.deinit = aes_deinit,
};
|