1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/*
* Copyright (C) 2011-2018 Free Software Foundation, Inc.
* Copyright (C) 2018 Red Hat, Inc.
*
* Author: Nikos Mavrogiannopoulos
*
* This file is part of GnuTLS.
*
* The GnuTLS is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>
*
*/
/*
* The following code is an implementation of the AES-128-CBC cipher
* using VIA Padlock instruction set.
*/
#include "errors.h"
#include "gnutls_int.h"
#include <gnutls/crypto.h>
#include "errors.h"
#include <aes-x86.h>
#include <x86-common.h>
#include <nettle/aes.h> /* for key generation in 192 and 256 bits */
#include <sha-padlock.h>
#include <aes-padlock.h>
static int
aes_cipher_init(gnutls_cipher_algorithm_t algorithm, void **_ctx, int enc)
{
/* we use key size to distinguish */
if (algorithm != GNUTLS_CIPHER_AES_128_CBC
&& algorithm != GNUTLS_CIPHER_AES_256_CBC
&& algorithm != GNUTLS_CIPHER_AES_192_CBC)
return GNUTLS_E_INVALID_REQUEST;
*_ctx = gnutls_calloc(1, sizeof(struct padlock_ctx));
if (*_ctx == NULL) {
gnutls_assert();
return GNUTLS_E_MEMORY_ERROR;
}
((struct padlock_ctx *) (*_ctx))->enc = enc;
return 0;
}
int
padlock_aes_cipher_setkey(void *_ctx, const void *userkey, size_t keysize)
{
struct padlock_ctx *ctx = _ctx;
struct padlock_cipher_data *pce;
struct aes192_ctx nc192;
struct aes256_ctx nc256;
memset(_ctx, 0, sizeof(struct padlock_cipher_data));
pce = ALIGN16(&ctx->expanded_key);
pce->cword.b.encdec = (ctx->enc == 0);
switch (keysize) {
case 16:
pce->cword.b.ksize = 0;
pce->cword.b.rounds = 10;
memcpy(pce->ks.rd_key, userkey, 16);
pce->cword.b.keygen = 0;
break;
case 24:
pce->cword.b.ksize = 1;
pce->cword.b.rounds = 12;
if (ctx->enc)
aes192_set_encrypt_key(&nc192, userkey);
else
aes192_set_decrypt_key(&nc192, userkey);
memcpy(pce->ks.rd_key, nc192.keys, sizeof(nc192.keys));
pce->ks.rounds = _AES192_ROUNDS;
pce->cword.b.keygen = 1;
break;
case 32:
pce->cword.b.ksize = 2;
pce->cword.b.rounds = 14;
/* expand key using nettle */
if (ctx->enc)
aes256_set_encrypt_key(&nc256, userkey);
else
aes256_set_decrypt_key(&nc256, userkey);
memcpy(pce->ks.rd_key, nc256.keys, sizeof(nc256.keys));
pce->ks.rounds = _AES256_ROUNDS;
pce->cword.b.keygen = 1;
break;
default:
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
}
padlock_reload_key();
return 0;
}
static int aes_setiv(void *_ctx, const void *iv, size_t iv_size)
{
struct padlock_ctx *ctx = _ctx;
struct padlock_cipher_data *pce;
pce = ALIGN16(&ctx->expanded_key);
if (iv_size != 16)
return gnutls_assert_val(GNUTLS_E_INVALID_REQUEST);
memcpy(pce->iv, iv, 16);
return 0;
}
static int
padlock_aes_cbc_encrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t dst_size)
{
struct padlock_ctx *ctx = _ctx;
struct padlock_cipher_data *pce;
int ret = 1;
if (unlikely(dst_size < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
pce = ALIGN16(&ctx->expanded_key);
if (src_size > 0)
ret = padlock_cbc_encrypt(dst, src, pce, src_size);
return ret ? 0 : GNUTLS_E_ENCRYPTION_FAILED;
}
static int
padlock_aes_cbc_decrypt(void *_ctx, const void *src, size_t src_size,
void *dst, size_t dst_size)
{
struct padlock_ctx *ctx = _ctx;
struct padlock_cipher_data *pcd;
int ret = 1;
if (unlikely(dst_size < src_size))
return gnutls_assert_val(GNUTLS_E_SHORT_MEMORY_BUFFER);
pcd = ALIGN16(&ctx->expanded_key);
if (src_size > 0)
padlock_cbc_encrypt(dst, src, pcd, src_size);
return ret ? 0 : GNUTLS_E_ENCRYPTION_FAILED;
}
static void aes_deinit(void *_ctx)
{
struct padlock_ctx *ctx = _ctx;
zeroize_temp_key(ctx, sizeof(*ctx));
gnutls_free(ctx);
}
const gnutls_crypto_cipher_st _gnutls_aes_padlock = {
.init = aes_cipher_init,
.setkey = padlock_aes_cipher_setkey,
.setiv = aes_setiv,
.encrypt = padlock_aes_cbc_encrypt,
.decrypt = padlock_aes_cbc_decrypt,
.deinit = aes_deinit,
};
|