summaryrefslogtreecommitdiffstats
path: root/src/math/cmplx/asin.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/math/cmplx/asin.go
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/cmplx/asin.go')
-rw-r--r--src/math/cmplx/asin.go221
1 files changed, 221 insertions, 0 deletions
diff --git a/src/math/cmplx/asin.go b/src/math/cmplx/asin.go
new file mode 100644
index 0000000..30d019e
--- /dev/null
+++ b/src/math/cmplx/asin.go
@@ -0,0 +1,221 @@
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package cmplx
+
+import "math"
+
+// The original C code, the long comment, and the constants
+// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
+// The go code is a simplified version of the original C.
+//
+// Cephes Math Library Release 2.8: June, 2000
+// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
+//
+// The readme file at http://netlib.sandia.gov/cephes/ says:
+// Some software in this archive may be from the book _Methods and
+// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
+// International, 1989) or from the Cephes Mathematical Library, a
+// commercial product. In either event, it is copyrighted by the author.
+// What you see here may be used freely but it comes with no support or
+// guarantee.
+//
+// The two known misprints in the book are repaired here in the
+// source listings for the gamma function and the incomplete beta
+// integral.
+//
+// Stephen L. Moshier
+// moshier@na-net.ornl.gov
+
+// Complex circular arc sine
+//
+// DESCRIPTION:
+//
+// Inverse complex sine:
+// 2
+// w = -i clog( iz + csqrt( 1 - z ) ).
+//
+// casin(z) = -i casinh(iz)
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 10100 2.1e-15 3.4e-16
+// IEEE -10,+10 30000 2.2e-14 2.7e-15
+// Larger relative error can be observed for z near zero.
+// Also tested by csin(casin(z)) = z.
+
+// Asin returns the inverse sine of x.
+func Asin(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case im == 0 && math.Abs(re) <= 1:
+ return complex(math.Asin(re), im)
+ case re == 0 && math.Abs(im) <= 1:
+ return complex(re, math.Asinh(im))
+ case math.IsNaN(im):
+ switch {
+ case re == 0:
+ return complex(re, math.NaN())
+ case math.IsInf(re, 0):
+ return complex(math.NaN(), re)
+ default:
+ return NaN()
+ }
+ case math.IsInf(im, 0):
+ switch {
+ case math.IsNaN(re):
+ return x
+ case math.IsInf(re, 0):
+ return complex(math.Copysign(math.Pi/4, re), im)
+ default:
+ return complex(math.Copysign(0, re), im)
+ }
+ case math.IsInf(re, 0):
+ return complex(math.Copysign(math.Pi/2, re), math.Copysign(re, im))
+ }
+ ct := complex(-imag(x), real(x)) // i * x
+ xx := x * x
+ x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
+ x2 := Sqrt(x1) // x2 = sqrt(1 - x*x)
+ w := Log(ct + x2)
+ return complex(imag(w), -real(w)) // -i * w
+}
+
+// Asinh returns the inverse hyperbolic sine of x.
+func Asinh(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case im == 0 && math.Abs(re) <= 1:
+ return complex(math.Asinh(re), im)
+ case re == 0 && math.Abs(im) <= 1:
+ return complex(re, math.Asin(im))
+ case math.IsInf(re, 0):
+ switch {
+ case math.IsInf(im, 0):
+ return complex(re, math.Copysign(math.Pi/4, im))
+ case math.IsNaN(im):
+ return x
+ default:
+ return complex(re, math.Copysign(0.0, im))
+ }
+ case math.IsNaN(re):
+ switch {
+ case im == 0:
+ return x
+ case math.IsInf(im, 0):
+ return complex(im, re)
+ default:
+ return NaN()
+ }
+ case math.IsInf(im, 0):
+ return complex(math.Copysign(im, re), math.Copysign(math.Pi/2, im))
+ }
+ xx := x * x
+ x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
+ return Log(x + Sqrt(x1)) // log(x + sqrt(1 + x*x))
+}
+
+// Complex circular arc cosine
+//
+// DESCRIPTION:
+//
+// w = arccos z = PI/2 - arcsin z.
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 5200 1.6e-15 2.8e-16
+// IEEE -10,+10 30000 1.8e-14 2.2e-15
+
+// Acos returns the inverse cosine of x.
+func Acos(x complex128) complex128 {
+ w := Asin(x)
+ return complex(math.Pi/2-real(w), -imag(w))
+}
+
+// Acosh returns the inverse hyperbolic cosine of x.
+func Acosh(x complex128) complex128 {
+ if x == 0 {
+ return complex(0, math.Copysign(math.Pi/2, imag(x)))
+ }
+ w := Acos(x)
+ if imag(w) <= 0 {
+ return complex(-imag(w), real(w)) // i * w
+ }
+ return complex(imag(w), -real(w)) // -i * w
+}
+
+// Complex circular arc tangent
+//
+// DESCRIPTION:
+//
+// If
+// z = x + iy,
+//
+// then
+// 1 ( 2x )
+// Re w = - arctan(-----------) + k PI
+// 2 ( 2 2)
+// (1 - x - y )
+//
+// ( 2 2)
+// 1 (x + (y+1) )
+// Im w = - log(------------)
+// 4 ( 2 2)
+// (x + (y-1) )
+//
+// Where k is an arbitrary integer.
+//
+// catan(z) = -i catanh(iz).
+//
+// ACCURACY:
+//
+// Relative error:
+// arithmetic domain # trials peak rms
+// DEC -10,+10 5900 1.3e-16 7.8e-18
+// IEEE -10,+10 30000 2.3e-15 8.5e-17
+// The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
+// had peak relative error 1.5e-16, rms relative error
+// 2.9e-17. See also clog().
+
+// Atan returns the inverse tangent of x.
+func Atan(x complex128) complex128 {
+ switch re, im := real(x), imag(x); {
+ case im == 0:
+ return complex(math.Atan(re), im)
+ case re == 0 && math.Abs(im) <= 1:
+ return complex(re, math.Atanh(im))
+ case math.IsInf(im, 0) || math.IsInf(re, 0):
+ if math.IsNaN(re) {
+ return complex(math.NaN(), math.Copysign(0, im))
+ }
+ return complex(math.Copysign(math.Pi/2, re), math.Copysign(0, im))
+ case math.IsNaN(re) || math.IsNaN(im):
+ return NaN()
+ }
+ x2 := real(x) * real(x)
+ a := 1 - x2 - imag(x)*imag(x)
+ if a == 0 {
+ return NaN()
+ }
+ t := 0.5 * math.Atan2(2*real(x), a)
+ w := reducePi(t)
+
+ t = imag(x) - 1
+ b := x2 + t*t
+ if b == 0 {
+ return NaN()
+ }
+ t = imag(x) + 1
+ c := (x2 + t*t) / b
+ return complex(w, 0.25*math.Log(c))
+}
+
+// Atanh returns the inverse hyperbolic tangent of x.
+func Atanh(x complex128) complex128 {
+ z := complex(-imag(x), real(x)) // z = i * x
+ z = Atan(z)
+ return complex(imag(z), -real(z)) // z = -i * z
+}