summaryrefslogtreecommitdiffstats
path: root/src/math/pow.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/math/pow.go
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/math/pow.go')
-rw-r--r--src/math/pow.go151
1 files changed, 151 insertions, 0 deletions
diff --git a/src/math/pow.go b/src/math/pow.go
new file mode 100644
index 0000000..2219a90
--- /dev/null
+++ b/src/math/pow.go
@@ -0,0 +1,151 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+func isOddInt(x float64) bool {
+ xi, xf := Modf(x)
+ return xf == 0 && int64(xi)&1 == 1
+}
+
+// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
+// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
+
+// Pow returns x**y, the base-x exponential of y.
+//
+// Special cases are (in order):
+// Pow(x, ±0) = 1 for any x
+// Pow(1, y) = 1 for any y
+// Pow(x, 1) = x for any x
+// Pow(NaN, y) = NaN
+// Pow(x, NaN) = NaN
+// Pow(±0, y) = ±Inf for y an odd integer < 0
+// Pow(±0, -Inf) = +Inf
+// Pow(±0, +Inf) = +0
+// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
+// Pow(±0, y) = ±0 for y an odd integer > 0
+// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
+// Pow(-1, ±Inf) = 1
+// Pow(x, +Inf) = +Inf for |x| > 1
+// Pow(x, -Inf) = +0 for |x| > 1
+// Pow(x, +Inf) = +0 for |x| < 1
+// Pow(x, -Inf) = +Inf for |x| < 1
+// Pow(+Inf, y) = +Inf for y > 0
+// Pow(+Inf, y) = +0 for y < 0
+// Pow(-Inf, y) = Pow(-0, -y)
+// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
+func Pow(x, y float64) float64
+
+func pow(x, y float64) float64 {
+ switch {
+ case y == 0 || x == 1:
+ return 1
+ case y == 1:
+ return x
+ case IsNaN(x) || IsNaN(y):
+ return NaN()
+ case x == 0:
+ switch {
+ case y < 0:
+ if isOddInt(y) {
+ return Copysign(Inf(1), x)
+ }
+ return Inf(1)
+ case y > 0:
+ if isOddInt(y) {
+ return x
+ }
+ return 0
+ }
+ case IsInf(y, 0):
+ switch {
+ case x == -1:
+ return 1
+ case (Abs(x) < 1) == IsInf(y, 1):
+ return 0
+ default:
+ return Inf(1)
+ }
+ case IsInf(x, 0):
+ if IsInf(x, -1) {
+ return Pow(1/x, -y) // Pow(-0, -y)
+ }
+ switch {
+ case y < 0:
+ return 0
+ case y > 0:
+ return Inf(1)
+ }
+ case y == 0.5:
+ return Sqrt(x)
+ case y == -0.5:
+ return 1 / Sqrt(x)
+ }
+
+ yi, yf := Modf(Abs(y))
+ if yf != 0 && x < 0 {
+ return NaN()
+ }
+ if yi >= 1<<63 {
+ // yi is a large even int that will lead to overflow (or underflow to 0)
+ // for all x except -1 (x == 1 was handled earlier)
+ switch {
+ case x == -1:
+ return 1
+ case (Abs(x) < 1) == (y > 0):
+ return 0
+ default:
+ return Inf(1)
+ }
+ }
+
+ // ans = a1 * 2**ae (= 1 for now).
+ a1 := 1.0
+ ae := 0
+
+ // ans *= x**yf
+ if yf != 0 {
+ if yf > 0.5 {
+ yf--
+ yi++
+ }
+ a1 = Exp(yf * Log(x))
+ }
+
+ // ans *= x**yi
+ // by multiplying in successive squarings
+ // of x according to bits of yi.
+ // accumulate powers of two into exp.
+ x1, xe := Frexp(x)
+ for i := int64(yi); i != 0; i >>= 1 {
+ if xe < -1<<12 || 1<<12 < xe {
+ // catch xe before it overflows the left shift below
+ // Since i !=0 it has at least one bit still set, so ae will accumulate xe
+ // on at least one more iteration, ae += xe is a lower bound on ae
+ // the lower bound on ae exceeds the size of a float64 exp
+ // so the final call to Ldexp will produce under/overflow (0/Inf)
+ ae += xe
+ break
+ }
+ if i&1 == 1 {
+ a1 *= x1
+ ae += xe
+ }
+ x1 *= x1
+ xe <<= 1
+ if x1 < .5 {
+ x1 += x1
+ xe--
+ }
+ }
+
+ // ans = a1*2**ae
+ // if y < 0 { ans = 1 / ans }
+ // but in the opposite order
+ if y < 0 {
+ a1 = 1 / a1
+ ae = -ae
+ }
+ return Ldexp(a1, ae)
+}