diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
commit | 73df946d56c74384511a194dd01dbe099584fd1a (patch) | |
tree | fd0bcea490dd81327ddfbb31e215439672c9a068 /src/runtime/complex.go | |
parent | Initial commit. (diff) | |
download | golang-1.16-upstream.tar.xz golang-1.16-upstream.zip |
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/runtime/complex.go')
-rw-r--r-- | src/runtime/complex.go | 61 |
1 files changed, 61 insertions, 0 deletions
diff --git a/src/runtime/complex.go b/src/runtime/complex.go new file mode 100644 index 0000000..07c596f --- /dev/null +++ b/src/runtime/complex.go @@ -0,0 +1,61 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package runtime + +// inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise. +// The sign of the result is the sign of f. +func inf2one(f float64) float64 { + g := 0.0 + if isInf(f) { + g = 1.0 + } + return copysign(g, f) +} + +func complex128div(n complex128, m complex128) complex128 { + var e, f float64 // complex(e, f) = n/m + + // Algorithm for robust complex division as described in + // Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962). + if abs(real(m)) >= abs(imag(m)) { + ratio := imag(m) / real(m) + denom := real(m) + ratio*imag(m) + e = (real(n) + imag(n)*ratio) / denom + f = (imag(n) - real(n)*ratio) / denom + } else { + ratio := real(m) / imag(m) + denom := imag(m) + ratio*real(m) + e = (real(n)*ratio + imag(n)) / denom + f = (imag(n)*ratio - real(n)) / denom + } + + if isNaN(e) && isNaN(f) { + // Correct final result to infinities and zeros if applicable. + // Matches C99: ISO/IEC 9899:1999 - G.5.1 Multiplicative operators. + + a, b := real(n), imag(n) + c, d := real(m), imag(m) + + switch { + case m == 0 && (!isNaN(a) || !isNaN(b)): + e = copysign(inf, c) * a + f = copysign(inf, c) * b + + case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d): + a = inf2one(a) + b = inf2one(b) + e = inf * (a*c + b*d) + f = inf * (b*c - a*d) + + case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b): + c = inf2one(c) + d = inf2one(d) + e = 0 * (a*c + b*d) + f = 0 * (b*c - a*d) + } + } + + return complex(e, f) +} |