diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-28 13:14:23 +0000 |
commit | 73df946d56c74384511a194dd01dbe099584fd1a (patch) | |
tree | fd0bcea490dd81327ddfbb31e215439672c9a068 /src/strconv/extfloat.go | |
parent | Initial commit. (diff) | |
download | golang-1.16-upstream.tar.xz golang-1.16-upstream.zip |
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/strconv/extfloat.go')
-rw-r--r-- | src/strconv/extfloat.go | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/src/strconv/extfloat.go b/src/strconv/extfloat.go new file mode 100644 index 0000000..e7bfe51 --- /dev/null +++ b/src/strconv/extfloat.go @@ -0,0 +1,517 @@ +// Copyright 2011 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package strconv + +import ( + "math/bits" +) + +// An extFloat represents an extended floating-point number, with more +// precision than a float64. It does not try to save bits: the +// number represented by the structure is mant*(2^exp), with a negative +// sign if neg is true. +type extFloat struct { + mant uint64 + exp int + neg bool +} + +// Powers of ten taken from double-conversion library. +// https://code.google.com/p/double-conversion/ +const ( + firstPowerOfTen = -348 + stepPowerOfTen = 8 +) + +var smallPowersOfTen = [...]extFloat{ + {1 << 63, -63, false}, // 1 + {0xa << 60, -60, false}, // 1e1 + {0x64 << 57, -57, false}, // 1e2 + {0x3e8 << 54, -54, false}, // 1e3 + {0x2710 << 50, -50, false}, // 1e4 + {0x186a0 << 47, -47, false}, // 1e5 + {0xf4240 << 44, -44, false}, // 1e6 + {0x989680 << 40, -40, false}, // 1e7 +} + +var powersOfTen = [...]extFloat{ + {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 + {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 + {0x8b16fb203055ac76, -1166, false}, // 10^-332 + {0xcf42894a5dce35ea, -1140, false}, // 10^-324 + {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 + {0xe61acf033d1a45df, -1087, false}, // 10^-308 + {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 + {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 + {0xbe5691ef416bd60c, -1007, false}, // 10^-284 + {0x8dd01fad907ffc3c, -980, false}, // 10^-276 + {0xd3515c2831559a83, -954, false}, // 10^-268 + {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 + {0xea9c227723ee8bcb, -901, false}, // 10^-252 + {0xaecc49914078536d, -874, false}, // 10^-244 + {0x823c12795db6ce57, -847, false}, // 10^-236 + {0xc21094364dfb5637, -821, false}, // 10^-228 + {0x9096ea6f3848984f, -794, false}, // 10^-220 + {0xd77485cb25823ac7, -768, false}, // 10^-212 + {0xa086cfcd97bf97f4, -741, false}, // 10^-204 + {0xef340a98172aace5, -715, false}, // 10^-196 + {0xb23867fb2a35b28e, -688, false}, // 10^-188 + {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 + {0xc5dd44271ad3cdba, -635, false}, // 10^-172 + {0x936b9fcebb25c996, -608, false}, // 10^-164 + {0xdbac6c247d62a584, -582, false}, // 10^-156 + {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 + {0xf3e2f893dec3f126, -529, false}, // 10^-140 + {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 + {0x87625f056c7c4a8b, -475, false}, // 10^-124 + {0xc9bcff6034c13053, -449, false}, // 10^-116 + {0x964e858c91ba2655, -422, false}, // 10^-108 + {0xdff9772470297ebd, -396, false}, // 10^-100 + {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 + {0xf8a95fcf88747d94, -343, false}, // 10^-84 + {0xb94470938fa89bcf, -316, false}, // 10^-76 + {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 + {0xcdb02555653131b6, -263, false}, // 10^-60 + {0x993fe2c6d07b7fac, -236, false}, // 10^-52 + {0xe45c10c42a2b3b06, -210, false}, // 10^-44 + {0xaa242499697392d3, -183, false}, // 10^-36 + {0xfd87b5f28300ca0e, -157, false}, // 10^-28 + {0xbce5086492111aeb, -130, false}, // 10^-20 + {0x8cbccc096f5088cc, -103, false}, // 10^-12 + {0xd1b71758e219652c, -77, false}, // 10^-4 + {0x9c40000000000000, -50, false}, // 10^4 + {0xe8d4a51000000000, -24, false}, // 10^12 + {0xad78ebc5ac620000, 3, false}, // 10^20 + {0x813f3978f8940984, 30, false}, // 10^28 + {0xc097ce7bc90715b3, 56, false}, // 10^36 + {0x8f7e32ce7bea5c70, 83, false}, // 10^44 + {0xd5d238a4abe98068, 109, false}, // 10^52 + {0x9f4f2726179a2245, 136, false}, // 10^60 + {0xed63a231d4c4fb27, 162, false}, // 10^68 + {0xb0de65388cc8ada8, 189, false}, // 10^76 + {0x83c7088e1aab65db, 216, false}, // 10^84 + {0xc45d1df942711d9a, 242, false}, // 10^92 + {0x924d692ca61be758, 269, false}, // 10^100 + {0xda01ee641a708dea, 295, false}, // 10^108 + {0xa26da3999aef774a, 322, false}, // 10^116 + {0xf209787bb47d6b85, 348, false}, // 10^124 + {0xb454e4a179dd1877, 375, false}, // 10^132 + {0x865b86925b9bc5c2, 402, false}, // 10^140 + {0xc83553c5c8965d3d, 428, false}, // 10^148 + {0x952ab45cfa97a0b3, 455, false}, // 10^156 + {0xde469fbd99a05fe3, 481, false}, // 10^164 + {0xa59bc234db398c25, 508, false}, // 10^172 + {0xf6c69a72a3989f5c, 534, false}, // 10^180 + {0xb7dcbf5354e9bece, 561, false}, // 10^188 + {0x88fcf317f22241e2, 588, false}, // 10^196 + {0xcc20ce9bd35c78a5, 614, false}, // 10^204 + {0x98165af37b2153df, 641, false}, // 10^212 + {0xe2a0b5dc971f303a, 667, false}, // 10^220 + {0xa8d9d1535ce3b396, 694, false}, // 10^228 + {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 + {0xbb764c4ca7a44410, 747, false}, // 10^244 + {0x8bab8eefb6409c1a, 774, false}, // 10^252 + {0xd01fef10a657842c, 800, false}, // 10^260 + {0x9b10a4e5e9913129, 827, false}, // 10^268 + {0xe7109bfba19c0c9d, 853, false}, // 10^276 + {0xac2820d9623bf429, 880, false}, // 10^284 + {0x80444b5e7aa7cf85, 907, false}, // 10^292 + {0xbf21e44003acdd2d, 933, false}, // 10^300 + {0x8e679c2f5e44ff8f, 960, false}, // 10^308 + {0xd433179d9c8cb841, 986, false}, // 10^316 + {0x9e19db92b4e31ba9, 1013, false}, // 10^324 + {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 + {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 +} + +// AssignComputeBounds sets f to the floating point value +// defined by mant, exp and precision given by flt. It returns +// lower, upper such that any number in the closed interval +// [lower, upper] is converted back to the same floating point number. +func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { + f.mant = mant + f.exp = exp - int(flt.mantbits) + f.neg = neg + if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { + // An exact integer + f.mant >>= uint(-f.exp) + f.exp = 0 + return *f, *f + } + expBiased := exp - flt.bias + + upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} + if mant != 1<<flt.mantbits || expBiased == 1 { + lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} + } else { + lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} + } + return +} + +// Normalize normalizes f so that the highest bit of the mantissa is +// set, and returns the number by which the mantissa was left-shifted. +func (f *extFloat) Normalize() uint { + // bits.LeadingZeros64 would return 64 + if f.mant == 0 { + return 0 + } + shift := bits.LeadingZeros64(f.mant) + f.mant <<= uint(shift) + f.exp -= shift + return uint(shift) +} + +// Multiply sets f to the product f*g: the result is correctly rounded, +// but not normalized. +func (f *extFloat) Multiply(g extFloat) { + hi, lo := bits.Mul64(f.mant, g.mant) + // Round up. + f.mant = hi + (lo >> 63) + f.exp = f.exp + g.exp + 64 +} + +var uint64pow10 = [...]uint64{ + 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, +} + +// Frexp10 is an analogue of math.Frexp for decimal powers. It scales +// f by an approximate power of ten 10^-exp, and returns exp10, so +// that f*10^exp10 has the same value as the old f, up to an ulp, +// as well as the index of 10^-exp in the powersOfTen table. +func (f *extFloat) frexp10() (exp10, index int) { + // The constants expMin and expMax constrain the final value of the + // binary exponent of f. We want a small integral part in the result + // because finding digits of an integer requires divisions, whereas + // digits of the fractional part can be found by repeatedly multiplying + // by 10. + const expMin = -60 + const expMax = -32 + // Find power of ten such that x * 10^n has a binary exponent + // between expMin and expMax. + approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. + i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen +Loop: + for { + exp := f.exp + powersOfTen[i].exp + 64 + switch { + case exp < expMin: + i++ + case exp > expMax: + i-- + default: + break Loop + } + } + // Apply the desired decimal shift on f. It will have exponent + // in the desired range. This is multiplication by 10^-exp10. + f.Multiply(powersOfTen[i]) + + return -(firstPowerOfTen + i*stepPowerOfTen), i +} + +// frexp10Many applies a common shift by a power of ten to a, b, c. +func frexp10Many(a, b, c *extFloat) (exp10 int) { + exp10, i := c.frexp10() + a.Multiply(powersOfTen[i]) + b.Multiply(powersOfTen[i]) + return +} + +// FixedDecimal stores in d the first n significant digits +// of the decimal representation of f. It returns false +// if it cannot be sure of the answer. +func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { + if f.mant == 0 { + d.nd = 0 + d.dp = 0 + d.neg = f.neg + return true + } + if n == 0 { + panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") + } + // Multiply by an appropriate power of ten to have a reasonable + // number to process. + f.Normalize() + exp10, _ := f.frexp10() + + shift := uint(-f.exp) + integer := uint32(f.mant >> shift) + fraction := f.mant - (uint64(integer) << shift) + ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. + + // Write exactly n digits to d. + needed := n // how many digits are left to write. + integerDigits := 0 // the number of decimal digits of integer. + pow10 := uint64(1) // the power of ten by which f was scaled. + for i, pow := 0, uint64(1); i < 20; i++ { + if pow > uint64(integer) { + integerDigits = i + break + } + pow *= 10 + } + rest := integer + if integerDigits > needed { + // the integral part is already large, trim the last digits. + pow10 = uint64pow10[integerDigits-needed] + integer /= uint32(pow10) + rest -= integer * uint32(pow10) + } else { + rest = 0 + } + + // Write the digits of integer: the digits of rest are omitted. + var buf [32]byte + pos := len(buf) + for v := integer; v > 0; { + v1 := v / 10 + v -= 10 * v1 + pos-- + buf[pos] = byte(v + '0') + v = v1 + } + for i := pos; i < len(buf); i++ { + d.d[i-pos] = buf[i] + } + nd := len(buf) - pos + d.nd = nd + d.dp = integerDigits + exp10 + needed -= nd + + if needed > 0 { + if rest != 0 || pow10 != 1 { + panic("strconv: internal error, rest != 0 but needed > 0") + } + // Emit digits for the fractional part. Each time, 10*fraction + // fits in a uint64 without overflow. + for needed > 0 { + fraction *= 10 + ε *= 10 // the uncertainty scales as we multiply by ten. + if 2*ε > 1<<shift { + // the error is so large it could modify which digit to write, abort. + return false + } + digit := fraction >> shift + d.d[nd] = byte(digit + '0') + fraction -= digit << shift + nd++ + needed-- + } + d.nd = nd + } + + // We have written a truncation of f (a numerator / 10^d.dp). The remaining part + // can be interpreted as a small number (< 1) to be added to the last digit of the + // numerator. + // + // If rest > 0, the amount is: + // (rest<<shift | fraction) / (pow10 << shift) + // fraction being known with a ±ε uncertainty. + // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. + // + // If rest = 0, pow10 == 1 and the amount is + // fraction / (1 << shift) + // fraction being known with a ±ε uncertainty. + // + // We pass this information to the rounding routine for adjustment. + + ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) + if !ok { + return false + } + // Trim trailing zeros. + for i := d.nd - 1; i >= 0; i-- { + if d.d[i] != '0' { + d.nd = i + 1 + break + } + } + return true +} + +// adjustLastDigitFixed assumes d contains the representation of the integral part +// of some number, whose fractional part is num / (den << shift). The numerator +// num is only known up to an uncertainty of size ε, assumed to be less than +// (den << shift)/2. +// +// It will increase the last digit by one to account for correct rounding, typically +// when the fractional part is greater than 1/2, and will return false if ε is such +// that no correct answer can be given. +func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { + if num > den<<shift { + panic("strconv: num > den<<shift in adjustLastDigitFixed") + } + if 2*ε > den<<shift { + panic("strconv: ε > (den<<shift)/2") + } + if 2*(num+ε) < den<<shift { + return true + } + if 2*(num-ε) > den<<shift { + // increment d by 1. + i := d.nd - 1 + for ; i >= 0; i-- { + if d.d[i] == '9' { + d.nd-- + } else { + break + } + } + if i < 0 { + d.d[0] = '1' + d.nd = 1 + d.dp++ + } else { + d.d[i]++ + } + return true + } + return false +} + +// ShortestDecimal stores in d the shortest decimal representation of f +// which belongs to the open interval (lower, upper), where f is supposed +// to lie. It returns false whenever the result is unsure. The implementation +// uses the Grisu3 algorithm. +func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { + if f.mant == 0 { + d.nd = 0 + d.dp = 0 + d.neg = f.neg + return true + } + if f.exp == 0 && *lower == *f && *lower == *upper { + // an exact integer. + var buf [24]byte + n := len(buf) - 1 + for v := f.mant; v > 0; { + v1 := v / 10 + v -= 10 * v1 + buf[n] = byte(v + '0') + n-- + v = v1 + } + nd := len(buf) - n - 1 + for i := 0; i < nd; i++ { + d.d[i] = buf[n+1+i] + } + d.nd, d.dp = nd, nd + for d.nd > 0 && d.d[d.nd-1] == '0' { + d.nd-- + } + if d.nd == 0 { + d.dp = 0 + } + d.neg = f.neg + return true + } + upper.Normalize() + // Uniformize exponents. + if f.exp > upper.exp { + f.mant <<= uint(f.exp - upper.exp) + f.exp = upper.exp + } + if lower.exp > upper.exp { + lower.mant <<= uint(lower.exp - upper.exp) + lower.exp = upper.exp + } + + exp10 := frexp10Many(lower, f, upper) + // Take a safety margin due to rounding in frexp10Many, but we lose precision. + upper.mant++ + lower.mant-- + + // The shortest representation of f is either rounded up or down, but + // in any case, it is a truncation of upper. + shift := uint(-upper.exp) + integer := uint32(upper.mant >> shift) + fraction := upper.mant - (uint64(integer) << shift) + + // How far we can go down from upper until the result is wrong. + allowance := upper.mant - lower.mant + // How far we should go to get a very precise result. + targetDiff := upper.mant - f.mant + + // Count integral digits: there are at most 10. + var integerDigits int + for i, pow := 0, uint64(1); i < 20; i++ { + if pow > uint64(integer) { + integerDigits = i + break + } + pow *= 10 + } + for i := 0; i < integerDigits; i++ { + pow := uint64pow10[integerDigits-i-1] + digit := integer / uint32(pow) + d.d[i] = byte(digit + '0') + integer -= digit * uint32(pow) + // evaluate whether we should stop. + if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { + d.nd = i + 1 + d.dp = integerDigits + exp10 + d.neg = f.neg + // Sometimes allowance is so large the last digit might need to be + // decremented to get closer to f. + return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) + } + } + d.nd = integerDigits + d.dp = d.nd + exp10 + d.neg = f.neg + + // Compute digits of the fractional part. At each step fraction does not + // overflow. The choice of minExp implies that fraction is less than 2^60. + var digit int + multiplier := uint64(1) + for { + fraction *= 10 + multiplier *= 10 + digit = int(fraction >> shift) + d.d[d.nd] = byte(digit + '0') + d.nd++ + fraction -= uint64(digit) << shift + if fraction < allowance*multiplier { + // We are in the admissible range. Note that if allowance is about to + // overflow, that is, allowance > 2^64/10, the condition is automatically + // true due to the limited range of fraction. + return adjustLastDigit(d, + fraction, targetDiff*multiplier, allowance*multiplier, + 1<<shift, multiplier*2) + } + } +} + +// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to +// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. +// It assumes that a decimal digit is worth ulpDecimal*ε, and that +// all data is known with an error estimate of ulpBinary*ε. +func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { + if ulpDecimal < 2*ulpBinary { + // Approximation is too wide. + return false + } + for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { + d.d[d.nd-1]-- + currentDiff += ulpDecimal + } + if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { + // we have two choices, and don't know what to do. + return false + } + if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { + // we went too far + return false + } + if d.nd == 1 && d.d[0] == '0' { + // the number has actually reached zero. + d.nd = 0 + d.dp = 0 + } + return true +} |