summaryrefslogtreecommitdiffstats
path: root/src/strconv/extfloat.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/strconv/extfloat.go
parentInitial commit. (diff)
downloadgolang-1.16-upstream.tar.xz
golang-1.16-upstream.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/strconv/extfloat.go')
-rw-r--r--src/strconv/extfloat.go517
1 files changed, 517 insertions, 0 deletions
diff --git a/src/strconv/extfloat.go b/src/strconv/extfloat.go
new file mode 100644
index 0000000..e7bfe51
--- /dev/null
+++ b/src/strconv/extfloat.go
@@ -0,0 +1,517 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package strconv
+
+import (
+ "math/bits"
+)
+
+// An extFloat represents an extended floating-point number, with more
+// precision than a float64. It does not try to save bits: the
+// number represented by the structure is mant*(2^exp), with a negative
+// sign if neg is true.
+type extFloat struct {
+ mant uint64
+ exp int
+ neg bool
+}
+
+// Powers of ten taken from double-conversion library.
+// https://code.google.com/p/double-conversion/
+const (
+ firstPowerOfTen = -348
+ stepPowerOfTen = 8
+)
+
+var smallPowersOfTen = [...]extFloat{
+ {1 << 63, -63, false}, // 1
+ {0xa << 60, -60, false}, // 1e1
+ {0x64 << 57, -57, false}, // 1e2
+ {0x3e8 << 54, -54, false}, // 1e3
+ {0x2710 << 50, -50, false}, // 1e4
+ {0x186a0 << 47, -47, false}, // 1e5
+ {0xf4240 << 44, -44, false}, // 1e6
+ {0x989680 << 40, -40, false}, // 1e7
+}
+
+var powersOfTen = [...]extFloat{
+ {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
+ {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
+ {0x8b16fb203055ac76, -1166, false}, // 10^-332
+ {0xcf42894a5dce35ea, -1140, false}, // 10^-324
+ {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
+ {0xe61acf033d1a45df, -1087, false}, // 10^-308
+ {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
+ {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
+ {0xbe5691ef416bd60c, -1007, false}, // 10^-284
+ {0x8dd01fad907ffc3c, -980, false}, // 10^-276
+ {0xd3515c2831559a83, -954, false}, // 10^-268
+ {0x9d71ac8fada6c9b5, -927, false}, // 10^-260
+ {0xea9c227723ee8bcb, -901, false}, // 10^-252
+ {0xaecc49914078536d, -874, false}, // 10^-244
+ {0x823c12795db6ce57, -847, false}, // 10^-236
+ {0xc21094364dfb5637, -821, false}, // 10^-228
+ {0x9096ea6f3848984f, -794, false}, // 10^-220
+ {0xd77485cb25823ac7, -768, false}, // 10^-212
+ {0xa086cfcd97bf97f4, -741, false}, // 10^-204
+ {0xef340a98172aace5, -715, false}, // 10^-196
+ {0xb23867fb2a35b28e, -688, false}, // 10^-188
+ {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
+ {0xc5dd44271ad3cdba, -635, false}, // 10^-172
+ {0x936b9fcebb25c996, -608, false}, // 10^-164
+ {0xdbac6c247d62a584, -582, false}, // 10^-156
+ {0xa3ab66580d5fdaf6, -555, false}, // 10^-148
+ {0xf3e2f893dec3f126, -529, false}, // 10^-140
+ {0xb5b5ada8aaff80b8, -502, false}, // 10^-132
+ {0x87625f056c7c4a8b, -475, false}, // 10^-124
+ {0xc9bcff6034c13053, -449, false}, // 10^-116
+ {0x964e858c91ba2655, -422, false}, // 10^-108
+ {0xdff9772470297ebd, -396, false}, // 10^-100
+ {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
+ {0xf8a95fcf88747d94, -343, false}, // 10^-84
+ {0xb94470938fa89bcf, -316, false}, // 10^-76
+ {0x8a08f0f8bf0f156b, -289, false}, // 10^-68
+ {0xcdb02555653131b6, -263, false}, // 10^-60
+ {0x993fe2c6d07b7fac, -236, false}, // 10^-52
+ {0xe45c10c42a2b3b06, -210, false}, // 10^-44
+ {0xaa242499697392d3, -183, false}, // 10^-36
+ {0xfd87b5f28300ca0e, -157, false}, // 10^-28
+ {0xbce5086492111aeb, -130, false}, // 10^-20
+ {0x8cbccc096f5088cc, -103, false}, // 10^-12
+ {0xd1b71758e219652c, -77, false}, // 10^-4
+ {0x9c40000000000000, -50, false}, // 10^4
+ {0xe8d4a51000000000, -24, false}, // 10^12
+ {0xad78ebc5ac620000, 3, false}, // 10^20
+ {0x813f3978f8940984, 30, false}, // 10^28
+ {0xc097ce7bc90715b3, 56, false}, // 10^36
+ {0x8f7e32ce7bea5c70, 83, false}, // 10^44
+ {0xd5d238a4abe98068, 109, false}, // 10^52
+ {0x9f4f2726179a2245, 136, false}, // 10^60
+ {0xed63a231d4c4fb27, 162, false}, // 10^68
+ {0xb0de65388cc8ada8, 189, false}, // 10^76
+ {0x83c7088e1aab65db, 216, false}, // 10^84
+ {0xc45d1df942711d9a, 242, false}, // 10^92
+ {0x924d692ca61be758, 269, false}, // 10^100
+ {0xda01ee641a708dea, 295, false}, // 10^108
+ {0xa26da3999aef774a, 322, false}, // 10^116
+ {0xf209787bb47d6b85, 348, false}, // 10^124
+ {0xb454e4a179dd1877, 375, false}, // 10^132
+ {0x865b86925b9bc5c2, 402, false}, // 10^140
+ {0xc83553c5c8965d3d, 428, false}, // 10^148
+ {0x952ab45cfa97a0b3, 455, false}, // 10^156
+ {0xde469fbd99a05fe3, 481, false}, // 10^164
+ {0xa59bc234db398c25, 508, false}, // 10^172
+ {0xf6c69a72a3989f5c, 534, false}, // 10^180
+ {0xb7dcbf5354e9bece, 561, false}, // 10^188
+ {0x88fcf317f22241e2, 588, false}, // 10^196
+ {0xcc20ce9bd35c78a5, 614, false}, // 10^204
+ {0x98165af37b2153df, 641, false}, // 10^212
+ {0xe2a0b5dc971f303a, 667, false}, // 10^220
+ {0xa8d9d1535ce3b396, 694, false}, // 10^228
+ {0xfb9b7cd9a4a7443c, 720, false}, // 10^236
+ {0xbb764c4ca7a44410, 747, false}, // 10^244
+ {0x8bab8eefb6409c1a, 774, false}, // 10^252
+ {0xd01fef10a657842c, 800, false}, // 10^260
+ {0x9b10a4e5e9913129, 827, false}, // 10^268
+ {0xe7109bfba19c0c9d, 853, false}, // 10^276
+ {0xac2820d9623bf429, 880, false}, // 10^284
+ {0x80444b5e7aa7cf85, 907, false}, // 10^292
+ {0xbf21e44003acdd2d, 933, false}, // 10^300
+ {0x8e679c2f5e44ff8f, 960, false}, // 10^308
+ {0xd433179d9c8cb841, 986, false}, // 10^316
+ {0x9e19db92b4e31ba9, 1013, false}, // 10^324
+ {0xeb96bf6ebadf77d9, 1039, false}, // 10^332
+ {0xaf87023b9bf0ee6b, 1066, false}, // 10^340
+}
+
+// AssignComputeBounds sets f to the floating point value
+// defined by mant, exp and precision given by flt. It returns
+// lower, upper such that any number in the closed interval
+// [lower, upper] is converted back to the same floating point number.
+func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
+ f.mant = mant
+ f.exp = exp - int(flt.mantbits)
+ f.neg = neg
+ if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
+ // An exact integer
+ f.mant >>= uint(-f.exp)
+ f.exp = 0
+ return *f, *f
+ }
+ expBiased := exp - flt.bias
+
+ upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
+ if mant != 1<<flt.mantbits || expBiased == 1 {
+ lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
+ } else {
+ lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
+ }
+ return
+}
+
+// Normalize normalizes f so that the highest bit of the mantissa is
+// set, and returns the number by which the mantissa was left-shifted.
+func (f *extFloat) Normalize() uint {
+ // bits.LeadingZeros64 would return 64
+ if f.mant == 0 {
+ return 0
+ }
+ shift := bits.LeadingZeros64(f.mant)
+ f.mant <<= uint(shift)
+ f.exp -= shift
+ return uint(shift)
+}
+
+// Multiply sets f to the product f*g: the result is correctly rounded,
+// but not normalized.
+func (f *extFloat) Multiply(g extFloat) {
+ hi, lo := bits.Mul64(f.mant, g.mant)
+ // Round up.
+ f.mant = hi + (lo >> 63)
+ f.exp = f.exp + g.exp + 64
+}
+
+var uint64pow10 = [...]uint64{
+ 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+}
+
+// Frexp10 is an analogue of math.Frexp for decimal powers. It scales
+// f by an approximate power of ten 10^-exp, and returns exp10, so
+// that f*10^exp10 has the same value as the old f, up to an ulp,
+// as well as the index of 10^-exp in the powersOfTen table.
+func (f *extFloat) frexp10() (exp10, index int) {
+ // The constants expMin and expMax constrain the final value of the
+ // binary exponent of f. We want a small integral part in the result
+ // because finding digits of an integer requires divisions, whereas
+ // digits of the fractional part can be found by repeatedly multiplying
+ // by 10.
+ const expMin = -60
+ const expMax = -32
+ // Find power of ten such that x * 10^n has a binary exponent
+ // between expMin and expMax.
+ approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
+ i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
+Loop:
+ for {
+ exp := f.exp + powersOfTen[i].exp + 64
+ switch {
+ case exp < expMin:
+ i++
+ case exp > expMax:
+ i--
+ default:
+ break Loop
+ }
+ }
+ // Apply the desired decimal shift on f. It will have exponent
+ // in the desired range. This is multiplication by 10^-exp10.
+ f.Multiply(powersOfTen[i])
+
+ return -(firstPowerOfTen + i*stepPowerOfTen), i
+}
+
+// frexp10Many applies a common shift by a power of ten to a, b, c.
+func frexp10Many(a, b, c *extFloat) (exp10 int) {
+ exp10, i := c.frexp10()
+ a.Multiply(powersOfTen[i])
+ b.Multiply(powersOfTen[i])
+ return
+}
+
+// FixedDecimal stores in d the first n significant digits
+// of the decimal representation of f. It returns false
+// if it cannot be sure of the answer.
+func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
+ if f.mant == 0 {
+ d.nd = 0
+ d.dp = 0
+ d.neg = f.neg
+ return true
+ }
+ if n == 0 {
+ panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
+ }
+ // Multiply by an appropriate power of ten to have a reasonable
+ // number to process.
+ f.Normalize()
+ exp10, _ := f.frexp10()
+
+ shift := uint(-f.exp)
+ integer := uint32(f.mant >> shift)
+ fraction := f.mant - (uint64(integer) << shift)
+ ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
+
+ // Write exactly n digits to d.
+ needed := n // how many digits are left to write.
+ integerDigits := 0 // the number of decimal digits of integer.
+ pow10 := uint64(1) // the power of ten by which f was scaled.
+ for i, pow := 0, uint64(1); i < 20; i++ {
+ if pow > uint64(integer) {
+ integerDigits = i
+ break
+ }
+ pow *= 10
+ }
+ rest := integer
+ if integerDigits > needed {
+ // the integral part is already large, trim the last digits.
+ pow10 = uint64pow10[integerDigits-needed]
+ integer /= uint32(pow10)
+ rest -= integer * uint32(pow10)
+ } else {
+ rest = 0
+ }
+
+ // Write the digits of integer: the digits of rest are omitted.
+ var buf [32]byte
+ pos := len(buf)
+ for v := integer; v > 0; {
+ v1 := v / 10
+ v -= 10 * v1
+ pos--
+ buf[pos] = byte(v + '0')
+ v = v1
+ }
+ for i := pos; i < len(buf); i++ {
+ d.d[i-pos] = buf[i]
+ }
+ nd := len(buf) - pos
+ d.nd = nd
+ d.dp = integerDigits + exp10
+ needed -= nd
+
+ if needed > 0 {
+ if rest != 0 || pow10 != 1 {
+ panic("strconv: internal error, rest != 0 but needed > 0")
+ }
+ // Emit digits for the fractional part. Each time, 10*fraction
+ // fits in a uint64 without overflow.
+ for needed > 0 {
+ fraction *= 10
+ ε *= 10 // the uncertainty scales as we multiply by ten.
+ if 2*ε > 1<<shift {
+ // the error is so large it could modify which digit to write, abort.
+ return false
+ }
+ digit := fraction >> shift
+ d.d[nd] = byte(digit + '0')
+ fraction -= digit << shift
+ nd++
+ needed--
+ }
+ d.nd = nd
+ }
+
+ // We have written a truncation of f (a numerator / 10^d.dp). The remaining part
+ // can be interpreted as a small number (< 1) to be added to the last digit of the
+ // numerator.
+ //
+ // If rest > 0, the amount is:
+ // (rest<<shift | fraction) / (pow10 << shift)
+ // fraction being known with a ±ε uncertainty.
+ // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
+ //
+ // If rest = 0, pow10 == 1 and the amount is
+ // fraction / (1 << shift)
+ // fraction being known with a ±ε uncertainty.
+ //
+ // We pass this information to the rounding routine for adjustment.
+
+ ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
+ if !ok {
+ return false
+ }
+ // Trim trailing zeros.
+ for i := d.nd - 1; i >= 0; i-- {
+ if d.d[i] != '0' {
+ d.nd = i + 1
+ break
+ }
+ }
+ return true
+}
+
+// adjustLastDigitFixed assumes d contains the representation of the integral part
+// of some number, whose fractional part is num / (den << shift). The numerator
+// num is only known up to an uncertainty of size ε, assumed to be less than
+// (den << shift)/2.
+//
+// It will increase the last digit by one to account for correct rounding, typically
+// when the fractional part is greater than 1/2, and will return false if ε is such
+// that no correct answer can be given.
+func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
+ if num > den<<shift {
+ panic("strconv: num > den<<shift in adjustLastDigitFixed")
+ }
+ if 2*ε > den<<shift {
+ panic("strconv: ε > (den<<shift)/2")
+ }
+ if 2*(num+ε) < den<<shift {
+ return true
+ }
+ if 2*(num-ε) > den<<shift {
+ // increment d by 1.
+ i := d.nd - 1
+ for ; i >= 0; i-- {
+ if d.d[i] == '9' {
+ d.nd--
+ } else {
+ break
+ }
+ }
+ if i < 0 {
+ d.d[0] = '1'
+ d.nd = 1
+ d.dp++
+ } else {
+ d.d[i]++
+ }
+ return true
+ }
+ return false
+}
+
+// ShortestDecimal stores in d the shortest decimal representation of f
+// which belongs to the open interval (lower, upper), where f is supposed
+// to lie. It returns false whenever the result is unsure. The implementation
+// uses the Grisu3 algorithm.
+func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
+ if f.mant == 0 {
+ d.nd = 0
+ d.dp = 0
+ d.neg = f.neg
+ return true
+ }
+ if f.exp == 0 && *lower == *f && *lower == *upper {
+ // an exact integer.
+ var buf [24]byte
+ n := len(buf) - 1
+ for v := f.mant; v > 0; {
+ v1 := v / 10
+ v -= 10 * v1
+ buf[n] = byte(v + '0')
+ n--
+ v = v1
+ }
+ nd := len(buf) - n - 1
+ for i := 0; i < nd; i++ {
+ d.d[i] = buf[n+1+i]
+ }
+ d.nd, d.dp = nd, nd
+ for d.nd > 0 && d.d[d.nd-1] == '0' {
+ d.nd--
+ }
+ if d.nd == 0 {
+ d.dp = 0
+ }
+ d.neg = f.neg
+ return true
+ }
+ upper.Normalize()
+ // Uniformize exponents.
+ if f.exp > upper.exp {
+ f.mant <<= uint(f.exp - upper.exp)
+ f.exp = upper.exp
+ }
+ if lower.exp > upper.exp {
+ lower.mant <<= uint(lower.exp - upper.exp)
+ lower.exp = upper.exp
+ }
+
+ exp10 := frexp10Many(lower, f, upper)
+ // Take a safety margin due to rounding in frexp10Many, but we lose precision.
+ upper.mant++
+ lower.mant--
+
+ // The shortest representation of f is either rounded up or down, but
+ // in any case, it is a truncation of upper.
+ shift := uint(-upper.exp)
+ integer := uint32(upper.mant >> shift)
+ fraction := upper.mant - (uint64(integer) << shift)
+
+ // How far we can go down from upper until the result is wrong.
+ allowance := upper.mant - lower.mant
+ // How far we should go to get a very precise result.
+ targetDiff := upper.mant - f.mant
+
+ // Count integral digits: there are at most 10.
+ var integerDigits int
+ for i, pow := 0, uint64(1); i < 20; i++ {
+ if pow > uint64(integer) {
+ integerDigits = i
+ break
+ }
+ pow *= 10
+ }
+ for i := 0; i < integerDigits; i++ {
+ pow := uint64pow10[integerDigits-i-1]
+ digit := integer / uint32(pow)
+ d.d[i] = byte(digit + '0')
+ integer -= digit * uint32(pow)
+ // evaluate whether we should stop.
+ if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
+ d.nd = i + 1
+ d.dp = integerDigits + exp10
+ d.neg = f.neg
+ // Sometimes allowance is so large the last digit might need to be
+ // decremented to get closer to f.
+ return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
+ }
+ }
+ d.nd = integerDigits
+ d.dp = d.nd + exp10
+ d.neg = f.neg
+
+ // Compute digits of the fractional part. At each step fraction does not
+ // overflow. The choice of minExp implies that fraction is less than 2^60.
+ var digit int
+ multiplier := uint64(1)
+ for {
+ fraction *= 10
+ multiplier *= 10
+ digit = int(fraction >> shift)
+ d.d[d.nd] = byte(digit + '0')
+ d.nd++
+ fraction -= uint64(digit) << shift
+ if fraction < allowance*multiplier {
+ // We are in the admissible range. Note that if allowance is about to
+ // overflow, that is, allowance > 2^64/10, the condition is automatically
+ // true due to the limited range of fraction.
+ return adjustLastDigit(d,
+ fraction, targetDiff*multiplier, allowance*multiplier,
+ 1<<shift, multiplier*2)
+ }
+ }
+}
+
+// adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
+// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
+// It assumes that a decimal digit is worth ulpDecimal*ε, and that
+// all data is known with an error estimate of ulpBinary*ε.
+func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
+ if ulpDecimal < 2*ulpBinary {
+ // Approximation is too wide.
+ return false
+ }
+ for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
+ d.d[d.nd-1]--
+ currentDiff += ulpDecimal
+ }
+ if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
+ // we have two choices, and don't know what to do.
+ return false
+ }
+ if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
+ // we went too far
+ return false
+ }
+ if d.nd == 1 && d.d[0] == '0' {
+ // the number has actually reached zero.
+ d.nd = 0
+ d.dp = 0
+ }
+ return true
+}