summaryrefslogtreecommitdiffstats
path: root/src/syscall/exec_linux.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /src/syscall/exec_linux.go
parentInitial commit. (diff)
downloadgolang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.tar.xz
golang-1.16-73df946d56c74384511a194dd01dbe099584fd1a.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/syscall/exec_linux.go')
-rw-r--r--src/syscall/exec_linux.go648
1 files changed, 648 insertions, 0 deletions
diff --git a/src/syscall/exec_linux.go b/src/syscall/exec_linux.go
new file mode 100644
index 0000000..b6acad9
--- /dev/null
+++ b/src/syscall/exec_linux.go
@@ -0,0 +1,648 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// +build linux
+
+package syscall
+
+import (
+ "runtime"
+ "unsafe"
+)
+
+// SysProcIDMap holds Container ID to Host ID mappings used for User Namespaces in Linux.
+// See user_namespaces(7).
+type SysProcIDMap struct {
+ ContainerID int // Container ID.
+ HostID int // Host ID.
+ Size int // Size.
+}
+
+type SysProcAttr struct {
+ Chroot string // Chroot.
+ Credential *Credential // Credential.
+ // Ptrace tells the child to call ptrace(PTRACE_TRACEME).
+ // Call runtime.LockOSThread before starting a process with this set,
+ // and don't call UnlockOSThread until done with PtraceSyscall calls.
+ Ptrace bool
+ Setsid bool // Create session.
+ // Setpgid sets the process group ID of the child to Pgid,
+ // or, if Pgid == 0, to the new child's process ID.
+ Setpgid bool
+ // Setctty sets the controlling terminal of the child to
+ // file descriptor Ctty. Ctty must be a descriptor number
+ // in the child process: an index into ProcAttr.Files.
+ // This is only meaningful if Setsid is true.
+ Setctty bool
+ Noctty bool // Detach fd 0 from controlling terminal
+ Ctty int // Controlling TTY fd
+ // Foreground places the child process group in the foreground.
+ // This implies Setpgid. The Ctty field must be set to
+ // the descriptor of the controlling TTY.
+ // Unlike Setctty, in this case Ctty must be a descriptor
+ // number in the parent process.
+ Foreground bool
+ Pgid int // Child's process group ID if Setpgid.
+ Pdeathsig Signal // Signal that the process will get when its parent dies (Linux only)
+ Cloneflags uintptr // Flags for clone calls (Linux only)
+ Unshareflags uintptr // Flags for unshare calls (Linux only)
+ UidMappings []SysProcIDMap // User ID mappings for user namespaces.
+ GidMappings []SysProcIDMap // Group ID mappings for user namespaces.
+ // GidMappingsEnableSetgroups enabling setgroups syscall.
+ // If false, then setgroups syscall will be disabled for the child process.
+ // This parameter is no-op if GidMappings == nil. Otherwise for unprivileged
+ // users this should be set to false for mappings work.
+ GidMappingsEnableSetgroups bool
+ AmbientCaps []uintptr // Ambient capabilities (Linux only)
+}
+
+var (
+ none = [...]byte{'n', 'o', 'n', 'e', 0}
+ slash = [...]byte{'/', 0}
+)
+
+// Implemented in runtime package.
+func runtime_BeforeFork()
+func runtime_AfterFork()
+func runtime_AfterForkInChild()
+
+// Fork, dup fd onto 0..len(fd), and exec(argv0, argvv, envv) in child.
+// If a dup or exec fails, write the errno error to pipe.
+// (Pipe is close-on-exec so if exec succeeds, it will be closed.)
+// In the child, this function must not acquire any locks, because
+// they might have been locked at the time of the fork. This means
+// no rescheduling, no malloc calls, and no new stack segments.
+// For the same reason compiler does not race instrument it.
+// The calls to RawSyscall are okay because they are assembly
+// functions that do not grow the stack.
+//go:norace
+func forkAndExecInChild(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (pid int, err Errno) {
+ // Set up and fork. This returns immediately in the parent or
+ // if there's an error.
+ r1, err1, p, locked := forkAndExecInChild1(argv0, argv, envv, chroot, dir, attr, sys, pipe)
+ if locked {
+ runtime_AfterFork()
+ }
+ if err1 != 0 {
+ return 0, err1
+ }
+
+ // parent; return PID
+ pid = int(r1)
+
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ Close(p[0])
+ var err2 Errno
+ // uid/gid mappings will be written after fork and unshare(2) for user
+ // namespaces.
+ if sys.Unshareflags&CLONE_NEWUSER == 0 {
+ if err := writeUidGidMappings(pid, sys); err != nil {
+ err2 = err.(Errno)
+ }
+ }
+ RawSyscall(SYS_WRITE, uintptr(p[1]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
+ Close(p[1])
+ }
+
+ return pid, 0
+}
+
+const _LINUX_CAPABILITY_VERSION_3 = 0x20080522
+
+type capHeader struct {
+ version uint32
+ pid int32
+}
+
+type capData struct {
+ effective uint32
+ permitted uint32
+ inheritable uint32
+}
+type caps struct {
+ hdr capHeader
+ data [2]capData
+}
+
+// See CAP_TO_INDEX in linux/capability.h:
+func capToIndex(cap uintptr) uintptr { return cap >> 5 }
+
+// See CAP_TO_MASK in linux/capability.h:
+func capToMask(cap uintptr) uint32 { return 1 << uint(cap&31) }
+
+// forkAndExecInChild1 implements the body of forkAndExecInChild up to
+// the parent's post-fork path. This is a separate function so we can
+// separate the child's and parent's stack frames if we're using
+// vfork.
+//
+// This is go:noinline because the point is to keep the stack frames
+// of this and forkAndExecInChild separate.
+//
+//go:noinline
+//go:norace
+func forkAndExecInChild1(argv0 *byte, argv, envv []*byte, chroot, dir *byte, attr *ProcAttr, sys *SysProcAttr, pipe int) (r1 uintptr, err1 Errno, p [2]int, locked bool) {
+ // Defined in linux/prctl.h starting with Linux 4.3.
+ const (
+ PR_CAP_AMBIENT = 0x2f
+ PR_CAP_AMBIENT_RAISE = 0x2
+ )
+
+ // vfork requires that the child not touch any of the parent's
+ // active stack frames. Hence, the child does all post-fork
+ // processing in this stack frame and never returns, while the
+ // parent returns immediately from this frame and does all
+ // post-fork processing in the outer frame.
+ // Declare all variables at top in case any
+ // declarations require heap allocation (e.g., err1).
+ var (
+ err2 Errno
+ nextfd int
+ i int
+ caps caps
+ fd1 uintptr
+ puid, psetgroups, pgid []byte
+ uidmap, setgroups, gidmap []byte
+ )
+
+ if sys.UidMappings != nil {
+ puid = []byte("/proc/self/uid_map\000")
+ uidmap = formatIDMappings(sys.UidMappings)
+ }
+
+ if sys.GidMappings != nil {
+ psetgroups = []byte("/proc/self/setgroups\000")
+ pgid = []byte("/proc/self/gid_map\000")
+
+ if sys.GidMappingsEnableSetgroups {
+ setgroups = []byte("allow\000")
+ } else {
+ setgroups = []byte("deny\000")
+ }
+ gidmap = formatIDMappings(sys.GidMappings)
+ }
+
+ // Record parent PID so child can test if it has died.
+ ppid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+
+ // Guard against side effects of shuffling fds below.
+ // Make sure that nextfd is beyond any currently open files so
+ // that we can't run the risk of overwriting any of them.
+ fd := make([]int, len(attr.Files))
+ nextfd = len(attr.Files)
+ for i, ufd := range attr.Files {
+ if nextfd < int(ufd) {
+ nextfd = int(ufd)
+ }
+ fd[i] = int(ufd)
+ }
+ nextfd++
+
+ // Allocate another pipe for parent to child communication for
+ // synchronizing writing of User ID/Group ID mappings.
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ if err := forkExecPipe(p[:]); err != nil {
+ err1 = err.(Errno)
+ return
+ }
+ }
+
+ var hasRawVforkSyscall bool
+ switch runtime.GOARCH {
+ case "amd64", "arm64", "ppc64", "riscv64", "s390x":
+ hasRawVforkSyscall = true
+ }
+
+ // About to call fork.
+ // No more allocation or calls of non-assembly functions.
+ runtime_BeforeFork()
+ locked = true
+ switch {
+ case hasRawVforkSyscall && (sys.Cloneflags&CLONE_NEWUSER == 0 && sys.Unshareflags&CLONE_NEWUSER == 0):
+ r1, err1 = rawVforkSyscall(SYS_CLONE, uintptr(SIGCHLD|CLONE_VFORK|CLONE_VM)|sys.Cloneflags)
+ case runtime.GOARCH == "s390x":
+ r1, _, err1 = RawSyscall6(SYS_CLONE, 0, uintptr(SIGCHLD)|sys.Cloneflags, 0, 0, 0, 0)
+ default:
+ r1, _, err1 = RawSyscall6(SYS_CLONE, uintptr(SIGCHLD)|sys.Cloneflags, 0, 0, 0, 0, 0)
+ }
+ if err1 != 0 || r1 != 0 {
+ // If we're in the parent, we must return immediately
+ // so we're not in the same stack frame as the child.
+ // This can at most use the return PC, which the child
+ // will not modify, and the results of
+ // rawVforkSyscall, which must have been written after
+ // the child was replaced.
+ return
+ }
+
+ // Fork succeeded, now in child.
+
+ runtime_AfterForkInChild()
+
+ // Enable the "keep capabilities" flag to set ambient capabilities later.
+ if len(sys.AmbientCaps) > 0 {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_KEEPCAPS, 1, 0, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Wait for User ID/Group ID mappings to be written.
+ if sys.UidMappings != nil || sys.GidMappings != nil {
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(p[1]), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ r1, _, err1 = RawSyscall(SYS_READ, uintptr(p[0]), uintptr(unsafe.Pointer(&err2)), unsafe.Sizeof(err2))
+ if err1 != 0 {
+ goto childerror
+ }
+ if r1 != unsafe.Sizeof(err2) {
+ err1 = EINVAL
+ goto childerror
+ }
+ if err2 != 0 {
+ err1 = err2
+ goto childerror
+ }
+ }
+
+ // Session ID
+ if sys.Setsid {
+ _, _, err1 = RawSyscall(SYS_SETSID, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Set process group
+ if sys.Setpgid || sys.Foreground {
+ // Place child in process group.
+ _, _, err1 = RawSyscall(SYS_SETPGID, 0, uintptr(sys.Pgid), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if sys.Foreground {
+ pgrp := int32(sys.Pgid)
+ if pgrp == 0 {
+ r1, _ = rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+
+ pgrp = int32(r1)
+ }
+
+ // Place process group in foreground.
+ _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSPGRP), uintptr(unsafe.Pointer(&pgrp)))
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Unshare
+ if sys.Unshareflags != 0 {
+ _, _, err1 = RawSyscall(SYS_UNSHARE, sys.Unshareflags, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+
+ if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.GidMappings != nil {
+ dirfd := int(_AT_FDCWD)
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&psetgroups[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&setgroups[0])), uintptr(len(setgroups)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&pgid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&gidmap[0])), uintptr(len(gidmap)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if sys.Unshareflags&CLONE_NEWUSER != 0 && sys.UidMappings != nil {
+ dirfd := int(_AT_FDCWD)
+ if fd1, _, err1 = RawSyscall6(SYS_OPENAT, uintptr(dirfd), uintptr(unsafe.Pointer(&puid[0])), uintptr(O_WRONLY), 0, 0, 0); err1 != 0 {
+ goto childerror
+ }
+ r1, _, err1 = RawSyscall(SYS_WRITE, uintptr(fd1), uintptr(unsafe.Pointer(&uidmap[0])), uintptr(len(uidmap)))
+ if err1 != 0 {
+ goto childerror
+ }
+ if _, _, err1 = RawSyscall(SYS_CLOSE, uintptr(fd1), 0, 0); err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // The unshare system call in Linux doesn't unshare mount points
+ // mounted with --shared. Systemd mounts / with --shared. For a
+ // long discussion of the pros and cons of this see debian bug 739593.
+ // The Go model of unsharing is more like Plan 9, where you ask
+ // to unshare and the namespaces are unconditionally unshared.
+ // To make this model work we must further mark / as MS_PRIVATE.
+ // This is what the standard unshare command does.
+ if sys.Unshareflags&CLONE_NEWNS == CLONE_NEWNS {
+ _, _, err1 = RawSyscall6(SYS_MOUNT, uintptr(unsafe.Pointer(&none[0])), uintptr(unsafe.Pointer(&slash[0])), 0, MS_REC|MS_PRIVATE, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Chroot
+ if chroot != nil {
+ _, _, err1 = RawSyscall(SYS_CHROOT, uintptr(unsafe.Pointer(chroot)), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // User and groups
+ if cred := sys.Credential; cred != nil {
+ ngroups := uintptr(len(cred.Groups))
+ groups := uintptr(0)
+ if ngroups > 0 {
+ groups = uintptr(unsafe.Pointer(&cred.Groups[0]))
+ }
+ if !(sys.GidMappings != nil && !sys.GidMappingsEnableSetgroups && ngroups == 0) && !cred.NoSetGroups {
+ _, _, err1 = RawSyscall(_SYS_setgroups, ngroups, groups, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ _, _, err1 = RawSyscall(sys_SETGID, uintptr(cred.Gid), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ _, _, err1 = RawSyscall(sys_SETUID, uintptr(cred.Uid), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ if len(sys.AmbientCaps) != 0 {
+ // Ambient capabilities were added in the 4.3 kernel,
+ // so it is safe to always use _LINUX_CAPABILITY_VERSION_3.
+ caps.hdr.version = _LINUX_CAPABILITY_VERSION_3
+
+ if _, _, err1 := RawSyscall(SYS_CAPGET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
+ goto childerror
+ }
+
+ for _, c := range sys.AmbientCaps {
+ // Add the c capability to the permitted and inheritable capability mask,
+ // otherwise we will not be able to add it to the ambient capability mask.
+ caps.data[capToIndex(c)].permitted |= capToMask(c)
+ caps.data[capToIndex(c)].inheritable |= capToMask(c)
+ }
+
+ if _, _, err1 := RawSyscall(SYS_CAPSET, uintptr(unsafe.Pointer(&caps.hdr)), uintptr(unsafe.Pointer(&caps.data[0])), 0); err1 != 0 {
+ goto childerror
+ }
+
+ for _, c := range sys.AmbientCaps {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_CAP_AMBIENT, uintptr(PR_CAP_AMBIENT_RAISE), c, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Chdir
+ if dir != nil {
+ _, _, err1 = RawSyscall(SYS_CHDIR, uintptr(unsafe.Pointer(dir)), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Parent death signal
+ if sys.Pdeathsig != 0 {
+ _, _, err1 = RawSyscall6(SYS_PRCTL, PR_SET_PDEATHSIG, uintptr(sys.Pdeathsig), 0, 0, 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+
+ // Signal self if parent is already dead. This might cause a
+ // duplicate signal in rare cases, but it won't matter when
+ // using SIGKILL.
+ r1, _ = rawSyscallNoError(SYS_GETPPID, 0, 0, 0)
+ if r1 != ppid {
+ pid, _ := rawSyscallNoError(SYS_GETPID, 0, 0, 0)
+ _, _, err1 := RawSyscall(SYS_KILL, pid, uintptr(sys.Pdeathsig), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+ }
+
+ // Pass 1: look for fd[i] < i and move those up above len(fd)
+ // so that pass 2 won't stomp on an fd it needs later.
+ if pipe < nextfd {
+ _, _, err1 = RawSyscall(SYS_DUP3, uintptr(pipe), uintptr(nextfd), O_CLOEXEC)
+ if _SYS_dup != SYS_DUP3 && err1 == ENOSYS {
+ _, _, err1 = RawSyscall(_SYS_dup, uintptr(pipe), uintptr(nextfd), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ RawSyscall(fcntl64Syscall, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
+ } else if err1 != 0 {
+ goto childerror
+ }
+ pipe = nextfd
+ nextfd++
+ }
+ for i = 0; i < len(fd); i++ {
+ if fd[i] >= 0 && fd[i] < int(i) {
+ if nextfd == pipe { // don't stomp on pipe
+ nextfd++
+ }
+ _, _, err1 = RawSyscall(SYS_DUP3, uintptr(fd[i]), uintptr(nextfd), O_CLOEXEC)
+ if _SYS_dup != SYS_DUP3 && err1 == ENOSYS {
+ _, _, err1 = RawSyscall(_SYS_dup, uintptr(fd[i]), uintptr(nextfd), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ RawSyscall(fcntl64Syscall, uintptr(nextfd), F_SETFD, FD_CLOEXEC)
+ } else if err1 != 0 {
+ goto childerror
+ }
+ fd[i] = nextfd
+ nextfd++
+ }
+ }
+
+ // Pass 2: dup fd[i] down onto i.
+ for i = 0; i < len(fd); i++ {
+ if fd[i] == -1 {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ continue
+ }
+ if fd[i] == int(i) {
+ // dup2(i, i) won't clear close-on-exec flag on Linux,
+ // probably not elsewhere either.
+ _, _, err1 = RawSyscall(fcntl64Syscall, uintptr(fd[i]), F_SETFD, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ continue
+ }
+ // The new fd is created NOT close-on-exec,
+ // which is exactly what we want.
+ _, _, err1 = RawSyscall(_SYS_dup, uintptr(fd[i]), uintptr(i), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // By convention, we don't close-on-exec the fds we are
+ // started with, so if len(fd) < 3, close 0, 1, 2 as needed.
+ // Programs that know they inherit fds >= 3 will need
+ // to set them close-on-exec.
+ for i = len(fd); i < 3; i++ {
+ RawSyscall(SYS_CLOSE, uintptr(i), 0, 0)
+ }
+
+ // Detach fd 0 from tty
+ if sys.Noctty {
+ _, _, err1 = RawSyscall(SYS_IOCTL, 0, uintptr(TIOCNOTTY), 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Set the controlling TTY to Ctty
+ if sys.Setctty {
+ _, _, err1 = RawSyscall(SYS_IOCTL, uintptr(sys.Ctty), uintptr(TIOCSCTTY), 1)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Enable tracing if requested.
+ // Do this right before exec so that we don't unnecessarily trace the runtime
+ // setting up after the fork. See issue #21428.
+ if sys.Ptrace {
+ _, _, err1 = RawSyscall(SYS_PTRACE, uintptr(PTRACE_TRACEME), 0, 0)
+ if err1 != 0 {
+ goto childerror
+ }
+ }
+
+ // Time to exec.
+ _, _, err1 = RawSyscall(SYS_EXECVE,
+ uintptr(unsafe.Pointer(argv0)),
+ uintptr(unsafe.Pointer(&argv[0])),
+ uintptr(unsafe.Pointer(&envv[0])))
+
+childerror:
+ // send error code on pipe
+ RawSyscall(SYS_WRITE, uintptr(pipe), uintptr(unsafe.Pointer(&err1)), unsafe.Sizeof(err1))
+ for {
+ RawSyscall(SYS_EXIT, 253, 0, 0)
+ }
+}
+
+// Try to open a pipe with O_CLOEXEC set on both file descriptors.
+func forkExecPipe(p []int) (err error) {
+ err = Pipe2(p, O_CLOEXEC)
+ // pipe2 was added in 2.6.27 and our minimum requirement is 2.6.23, so it
+ // might not be implemented.
+ if err == ENOSYS {
+ if err = Pipe(p); err != nil {
+ return
+ }
+ if _, err = fcntl(p[0], F_SETFD, FD_CLOEXEC); err != nil {
+ return
+ }
+ _, err = fcntl(p[1], F_SETFD, FD_CLOEXEC)
+ }
+ return
+}
+
+func formatIDMappings(idMap []SysProcIDMap) []byte {
+ var data []byte
+ for _, im := range idMap {
+ data = append(data, []byte(itoa(im.ContainerID)+" "+itoa(im.HostID)+" "+itoa(im.Size)+"\n")...)
+ }
+ return data
+}
+
+// writeIDMappings writes the user namespace User ID or Group ID mappings to the specified path.
+func writeIDMappings(path string, idMap []SysProcIDMap) error {
+ fd, err := Open(path, O_RDWR, 0)
+ if err != nil {
+ return err
+ }
+
+ if _, err := Write(fd, formatIDMappings(idMap)); err != nil {
+ Close(fd)
+ return err
+ }
+
+ if err := Close(fd); err != nil {
+ return err
+ }
+
+ return nil
+}
+
+// writeSetgroups writes to /proc/PID/setgroups "deny" if enable is false
+// and "allow" if enable is true.
+// This is needed since kernel 3.19, because you can't write gid_map without
+// disabling setgroups() system call.
+func writeSetgroups(pid int, enable bool) error {
+ sgf := "/proc/" + itoa(pid) + "/setgroups"
+ fd, err := Open(sgf, O_RDWR, 0)
+ if err != nil {
+ return err
+ }
+
+ var data []byte
+ if enable {
+ data = []byte("allow")
+ } else {
+ data = []byte("deny")
+ }
+
+ if _, err := Write(fd, data); err != nil {
+ Close(fd)
+ return err
+ }
+
+ return Close(fd)
+}
+
+// writeUidGidMappings writes User ID and Group ID mappings for user namespaces
+// for a process and it is called from the parent process.
+func writeUidGidMappings(pid int, sys *SysProcAttr) error {
+ if sys.UidMappings != nil {
+ uidf := "/proc/" + itoa(pid) + "/uid_map"
+ if err := writeIDMappings(uidf, sys.UidMappings); err != nil {
+ return err
+ }
+ }
+
+ if sys.GidMappings != nil {
+ // If the kernel is too old to support /proc/PID/setgroups, writeSetGroups will return ENOENT; this is OK.
+ if err := writeSetgroups(pid, sys.GidMappingsEnableSetgroups); err != nil && err != ENOENT {
+ return err
+ }
+ gidf := "/proc/" + itoa(pid) + "/gid_map"
+ if err := writeIDMappings(gidf, sys.GidMappings); err != nil {
+ return err
+ }
+ }
+
+ return nil
+}