summaryrefslogtreecommitdiffstats
path: root/test/fixedbugs/issue6866.go
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-28 13:14:23 +0000
commit73df946d56c74384511a194dd01dbe099584fd1a (patch)
treefd0bcea490dd81327ddfbb31e215439672c9a068 /test/fixedbugs/issue6866.go
parentInitial commit. (diff)
downloadgolang-1.16-upstream.tar.xz
golang-1.16-upstream.zip
Adding upstream version 1.16.10.upstream/1.16.10upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'test/fixedbugs/issue6866.go')
-rw-r--r--test/fixedbugs/issue6866.go80
1 files changed, 80 insertions, 0 deletions
diff --git a/test/fixedbugs/issue6866.go b/test/fixedbugs/issue6866.go
new file mode 100644
index 0000000..1080b27
--- /dev/null
+++ b/test/fixedbugs/issue6866.go
@@ -0,0 +1,80 @@
+// run
+
+// Copyright 2015 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// WARNING: GENERATED FILE - DO NOT MODIFY MANUALLY!
+// (To generate, in go/types directory: go test -run=Hilbert -H=2 -out="h2.src")
+
+// This program tests arbitrary precision constant arithmetic
+// by generating the constant elements of a Hilbert matrix H,
+// its inverse I, and the product P = H*I. The product should
+// be the identity matrix.
+package main
+
+func main() {
+ if !ok {
+ print()
+ return
+ }
+}
+
+// Hilbert matrix, n = 2
+const (
+ h0_0, h0_1 = 1.0 / (iota + 1), 1.0 / (iota + 2)
+ h1_0, h1_1
+)
+
+// Inverse Hilbert matrix
+const (
+ i0_0 = +1 * b2_1 * b2_1 * b0_0 * b0_0
+ i0_1 = -2 * b2_0 * b3_1 * b1_0 * b1_0
+
+ i1_0 = -2 * b3_1 * b2_0 * b1_1 * b1_1
+ i1_1 = +3 * b3_0 * b3_0 * b2_1 * b2_1
+)
+
+// Product matrix
+const (
+ p0_0 = h0_0*i0_0 + h0_1*i1_0
+ p0_1 = h0_0*i0_1 + h0_1*i1_1
+
+ p1_0 = h1_0*i0_0 + h1_1*i1_0
+ p1_1 = h1_0*i0_1 + h1_1*i1_1
+)
+
+// Verify that product is identity matrix
+const ok = p0_0 == 1 && p0_1 == 0 &&
+ p1_0 == 0 && p1_1 == 1 &&
+ true
+
+func print() {
+ println(p0_0, p0_1)
+ println(p1_0, p1_1)
+}
+
+// Binomials
+const (
+ b0_0 = f0 / (f0 * f0)
+
+ b1_0 = f1 / (f0 * f1)
+ b1_1 = f1 / (f1 * f0)
+
+ b2_0 = f2 / (f0 * f2)
+ b2_1 = f2 / (f1 * f1)
+ b2_2 = f2 / (f2 * f0)
+
+ b3_0 = f3 / (f0 * f3)
+ b3_1 = f3 / (f1 * f2)
+ b3_2 = f3 / (f2 * f1)
+ b3_3 = f3 / (f3 * f0)
+)
+
+// Factorials
+const (
+ f0 = 1
+ f1 = 1
+ f2 = f1 * 2
+ f3 = f2 * 3
+)