diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/check.go')
-rw-r--r-- | src/cmd/compile/internal/ssa/check.go | 597 |
1 files changed, 597 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/check.go b/src/cmd/compile/internal/ssa/check.go new file mode 100644 index 0000000..2dade7a --- /dev/null +++ b/src/cmd/compile/internal/ssa/check.go @@ -0,0 +1,597 @@ +// Copyright 2015 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package ssa + +import ( + "cmd/internal/obj/s390x" + "math" + "math/bits" +) + +// checkFunc checks invariants of f. +func checkFunc(f *Func) { + blockMark := make([]bool, f.NumBlocks()) + valueMark := make([]bool, f.NumValues()) + + for _, b := range f.Blocks { + if blockMark[b.ID] { + f.Fatalf("block %s appears twice in %s!", b, f.Name) + } + blockMark[b.ID] = true + if b.Func != f { + f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name) + } + + for i, e := range b.Preds { + if se := e.b.Succs[e.i]; se.b != b || se.i != i { + f.Fatalf("block pred/succ not crosslinked correctly %d:%s %d:%s", i, b, se.i, se.b) + } + } + for i, e := range b.Succs { + if pe := e.b.Preds[e.i]; pe.b != b || pe.i != i { + f.Fatalf("block succ/pred not crosslinked correctly %d:%s %d:%s", i, b, pe.i, pe.b) + } + } + + switch b.Kind { + case BlockExit: + if len(b.Succs) != 0 { + f.Fatalf("exit block %s has successors", b) + } + if b.NumControls() != 1 { + f.Fatalf("exit block %s has no control value", b) + } + if !b.Controls[0].Type.IsMemory() { + f.Fatalf("exit block %s has non-memory control value %s", b, b.Controls[0].LongString()) + } + case BlockRet: + if len(b.Succs) != 0 { + f.Fatalf("ret block %s has successors", b) + } + if b.NumControls() != 1 { + f.Fatalf("ret block %s has nil control", b) + } + if !b.Controls[0].Type.IsMemory() { + f.Fatalf("ret block %s has non-memory control value %s", b, b.Controls[0].LongString()) + } + case BlockRetJmp: + if len(b.Succs) != 0 { + f.Fatalf("retjmp block %s len(Succs)==%d, want 0", b, len(b.Succs)) + } + if b.NumControls() != 1 { + f.Fatalf("retjmp block %s has nil control", b) + } + if !b.Controls[0].Type.IsMemory() { + f.Fatalf("retjmp block %s has non-memory control value %s", b, b.Controls[0].LongString()) + } + if b.Aux == nil { + f.Fatalf("retjmp block %s has nil Aux field", b) + } + case BlockPlain: + if len(b.Succs) != 1 { + f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs)) + } + if b.NumControls() != 0 { + f.Fatalf("plain block %s has non-nil control %s", b, b.Controls[0].LongString()) + } + case BlockIf: + if len(b.Succs) != 2 { + f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs)) + } + if b.NumControls() != 1 { + f.Fatalf("if block %s has no control value", b) + } + if !b.Controls[0].Type.IsBoolean() { + f.Fatalf("if block %s has non-bool control value %s", b, b.Controls[0].LongString()) + } + case BlockDefer: + if len(b.Succs) != 2 { + f.Fatalf("defer block %s len(Succs)==%d, want 2", b, len(b.Succs)) + } + if b.NumControls() != 1 { + f.Fatalf("defer block %s has no control value", b) + } + if !b.Controls[0].Type.IsMemory() { + f.Fatalf("defer block %s has non-memory control value %s", b, b.Controls[0].LongString()) + } + case BlockFirst: + if len(b.Succs) != 2 { + f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs)) + } + if b.NumControls() != 0 { + f.Fatalf("plain/dead block %s has a control value", b) + } + } + if len(b.Succs) != 2 && b.Likely != BranchUnknown { + f.Fatalf("likeliness prediction %d for block %s with %d successors", b.Likely, b, len(b.Succs)) + } + + for _, v := range b.Values { + // Check to make sure argument count makes sense (argLen of -1 indicates + // variable length args) + nArgs := opcodeTable[v.Op].argLen + if nArgs != -1 && int32(len(v.Args)) != nArgs { + f.Fatalf("value %s has %d args, expected %d", v.LongString(), + len(v.Args), nArgs) + } + + // Check to make sure aux values make sense. + canHaveAux := false + canHaveAuxInt := false + // TODO: enforce types of Aux in this switch (like auxString does below) + switch opcodeTable[v.Op].auxType { + case auxNone: + case auxBool: + if v.AuxInt < 0 || v.AuxInt > 1 { + f.Fatalf("bad bool AuxInt value for %v", v) + } + canHaveAuxInt = true + case auxInt8: + if v.AuxInt != int64(int8(v.AuxInt)) { + f.Fatalf("bad int8 AuxInt value for %v", v) + } + canHaveAuxInt = true + case auxInt16: + if v.AuxInt != int64(int16(v.AuxInt)) { + f.Fatalf("bad int16 AuxInt value for %v", v) + } + canHaveAuxInt = true + case auxInt32: + if v.AuxInt != int64(int32(v.AuxInt)) { + f.Fatalf("bad int32 AuxInt value for %v", v) + } + canHaveAuxInt = true + case auxInt64, auxARM64BitField: + canHaveAuxInt = true + case auxInt128: + // AuxInt must be zero, so leave canHaveAuxInt set to false. + case auxUInt8: + if v.AuxInt != int64(uint8(v.AuxInt)) { + f.Fatalf("bad uint8 AuxInt value for %v", v) + } + canHaveAuxInt = true + case auxFloat32: + canHaveAuxInt = true + if math.IsNaN(v.AuxFloat()) { + f.Fatalf("value %v has an AuxInt that encodes a NaN", v) + } + if !isExactFloat32(v.AuxFloat()) { + f.Fatalf("value %v has an AuxInt value that is not an exact float32", v) + } + case auxFloat64: + canHaveAuxInt = true + if math.IsNaN(v.AuxFloat()) { + f.Fatalf("value %v has an AuxInt that encodes a NaN", v) + } + case auxString: + if _, ok := v.Aux.(string); !ok { + f.Fatalf("value %v has Aux type %T, want string", v, v.Aux) + } + canHaveAux = true + case auxCallOff: + canHaveAuxInt = true + fallthrough + case auxCall: + if ac, ok := v.Aux.(*AuxCall); ok { + if v.Op == OpStaticCall && ac.Fn == nil { + f.Fatalf("value %v has *AuxCall with nil Fn", v) + } + } else { + f.Fatalf("value %v has Aux type %T, want *AuxCall", v, v.Aux) + } + canHaveAux = true + case auxSym, auxTyp: + canHaveAux = true + case auxSymOff, auxSymValAndOff, auxTypSize: + canHaveAuxInt = true + canHaveAux = true + case auxCCop: + if opcodeTable[Op(v.AuxInt)].name == "OpInvalid" { + f.Fatalf("value %v has an AuxInt value that is a valid opcode", v) + } + canHaveAuxInt = true + case auxS390XCCMask: + if _, ok := v.Aux.(s390x.CCMask); !ok { + f.Fatalf("bad type %T for S390XCCMask in %v", v.Aux, v) + } + canHaveAux = true + case auxS390XRotateParams: + if _, ok := v.Aux.(s390x.RotateParams); !ok { + f.Fatalf("bad type %T for S390XRotateParams in %v", v.Aux, v) + } + canHaveAux = true + case auxFlagConstant: + if v.AuxInt < 0 || v.AuxInt > 15 { + f.Fatalf("bad FlagConstant AuxInt value for %v", v) + } + canHaveAuxInt = true + default: + f.Fatalf("unknown aux type for %s", v.Op) + } + if !canHaveAux && v.Aux != nil { + f.Fatalf("value %s has an Aux value %v but shouldn't", v.LongString(), v.Aux) + } + if !canHaveAuxInt && v.AuxInt != 0 { + f.Fatalf("value %s has an AuxInt value %d but shouldn't", v.LongString(), v.AuxInt) + } + + for i, arg := range v.Args { + if arg == nil { + f.Fatalf("value %s has nil arg", v.LongString()) + } + if v.Op != OpPhi { + // For non-Phi ops, memory args must be last, if present + if arg.Type.IsMemory() && i != len(v.Args)-1 { + f.Fatalf("value %s has non-final memory arg (%d < %d)", v.LongString(), i, len(v.Args)-1) + } + } + } + + if valueMark[v.ID] { + f.Fatalf("value %s appears twice!", v.LongString()) + } + valueMark[v.ID] = true + + if v.Block != b { + f.Fatalf("%s.block != %s", v, b) + } + if v.Op == OpPhi && len(v.Args) != len(b.Preds) { + f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b) + } + + if v.Op == OpAddr { + if len(v.Args) == 0 { + f.Fatalf("no args for OpAddr %s", v.LongString()) + } + if v.Args[0].Op != OpSB { + f.Fatalf("bad arg to OpAddr %v", v) + } + } + + if v.Op == OpLocalAddr { + if len(v.Args) != 2 { + f.Fatalf("wrong # of args for OpLocalAddr %s", v.LongString()) + } + if v.Args[0].Op != OpSP { + f.Fatalf("bad arg 0 to OpLocalAddr %v", v) + } + if !v.Args[1].Type.IsMemory() { + f.Fatalf("bad arg 1 to OpLocalAddr %v", v) + } + } + + if f.RegAlloc != nil && f.Config.SoftFloat && v.Type.IsFloat() { + f.Fatalf("unexpected floating-point type %v", v.LongString()) + } + + // Check types. + // TODO: more type checks? + switch c := f.Config; v.Op { + case OpSP, OpSB: + if v.Type != c.Types.Uintptr { + f.Fatalf("bad %s type: want uintptr, have %s", + v.Op, v.Type.String()) + } + case OpStringLen: + if v.Type != c.Types.Int { + f.Fatalf("bad %s type: want int, have %s", + v.Op, v.Type.String()) + } + case OpLoad: + if !v.Args[1].Type.IsMemory() { + f.Fatalf("bad arg 1 type to %s: want mem, have %s", + v.Op, v.Args[1].Type.String()) + } + case OpStore: + if !v.Type.IsMemory() { + f.Fatalf("bad %s type: want mem, have %s", + v.Op, v.Type.String()) + } + if !v.Args[2].Type.IsMemory() { + f.Fatalf("bad arg 2 type to %s: want mem, have %s", + v.Op, v.Args[2].Type.String()) + } + case OpCondSelect: + if !v.Args[2].Type.IsBoolean() { + f.Fatalf("bad arg 2 type to %s: want boolean, have %s", + v.Op, v.Args[2].Type.String()) + } + case OpAddPtr: + if !v.Args[0].Type.IsPtrShaped() && v.Args[0].Type != c.Types.Uintptr { + f.Fatalf("bad arg 0 type to %s: want ptr, have %s", v.Op, v.Args[0].LongString()) + } + if !v.Args[1].Type.IsInteger() { + f.Fatalf("bad arg 1 type to %s: want integer, have %s", v.Op, v.Args[1].LongString()) + } + + } + + // TODO: check for cycles in values + } + } + + // Check to make sure all Blocks referenced are in the function. + if !blockMark[f.Entry.ID] { + f.Fatalf("entry block %v is missing", f.Entry) + } + for _, b := range f.Blocks { + for _, c := range b.Preds { + if !blockMark[c.b.ID] { + f.Fatalf("predecessor block %v for %v is missing", c, b) + } + } + for _, c := range b.Succs { + if !blockMark[c.b.ID] { + f.Fatalf("successor block %v for %v is missing", c, b) + } + } + } + + if len(f.Entry.Preds) > 0 { + f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds) + } + + // Check to make sure all Values referenced are in the function. + for _, b := range f.Blocks { + for _, v := range b.Values { + for i, a := range v.Args { + if !valueMark[a.ID] { + f.Fatalf("%v, arg %d of %s, is missing", a, i, v.LongString()) + } + } + } + for _, c := range b.ControlValues() { + if !valueMark[c.ID] { + f.Fatalf("control value for %s is missing: %v", b, c) + } + } + } + for b := f.freeBlocks; b != nil; b = b.succstorage[0].b { + if blockMark[b.ID] { + f.Fatalf("used block b%d in free list", b.ID) + } + } + for v := f.freeValues; v != nil; v = v.argstorage[0] { + if valueMark[v.ID] { + f.Fatalf("used value v%d in free list", v.ID) + } + } + + // Check to make sure all args dominate uses. + if f.RegAlloc == nil { + // Note: regalloc introduces non-dominating args. + // See TODO in regalloc.go. + sdom := f.Sdom() + for _, b := range f.Blocks { + for _, v := range b.Values { + for i, arg := range v.Args { + x := arg.Block + y := b + if v.Op == OpPhi { + y = b.Preds[i].b + } + if !domCheck(f, sdom, x, y) { + f.Fatalf("arg %d of value %s does not dominate, arg=%s", i, v.LongString(), arg.LongString()) + } + } + } + for _, c := range b.ControlValues() { + if !domCheck(f, sdom, c.Block, b) { + f.Fatalf("control value %s for %s doesn't dominate", c, b) + } + } + } + } + + // Check loop construction + if f.RegAlloc == nil && f.pass != nil { // non-nil pass allows better-targeted debug printing + ln := f.loopnest() + if !ln.hasIrreducible { + po := f.postorder() // use po to avoid unreachable blocks. + for _, b := range po { + for _, s := range b.Succs { + bb := s.Block() + if ln.b2l[b.ID] == nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header { + f.Fatalf("block %s not in loop branches to non-header block %s in loop", b.String(), bb.String()) + } + if ln.b2l[b.ID] != nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header && !ln.b2l[b.ID].isWithinOrEq(ln.b2l[bb.ID]) { + f.Fatalf("block %s in loop branches to non-header block %s in non-containing loop", b.String(), bb.String()) + } + } + } + } + } + + // Check use counts + uses := make([]int32, f.NumValues()) + for _, b := range f.Blocks { + for _, v := range b.Values { + for _, a := range v.Args { + uses[a.ID]++ + } + } + for _, c := range b.ControlValues() { + uses[c.ID]++ + } + } + for _, b := range f.Blocks { + for _, v := range b.Values { + if v.Uses != uses[v.ID] { + f.Fatalf("%s has %d uses, but has Uses=%d", v, uses[v.ID], v.Uses) + } + } + } + + memCheck(f) +} + +func memCheck(f *Func) { + // Check that if a tuple has a memory type, it is second. + for _, b := range f.Blocks { + for _, v := range b.Values { + if v.Type.IsTuple() && v.Type.FieldType(0).IsMemory() { + f.Fatalf("memory is first in a tuple: %s\n", v.LongString()) + } + } + } + + // Single live memory checks. + // These checks only work if there are no memory copies. + // (Memory copies introduce ambiguity about which mem value is really live. + // probably fixable, but it's easier to avoid the problem.) + // For the same reason, disable this check if some memory ops are unused. + for _, b := range f.Blocks { + for _, v := range b.Values { + if (v.Op == OpCopy || v.Uses == 0) && v.Type.IsMemory() { + return + } + } + if b != f.Entry && len(b.Preds) == 0 { + return + } + } + + // Compute live memory at the end of each block. + lastmem := make([]*Value, f.NumBlocks()) + ss := newSparseSet(f.NumValues()) + for _, b := range f.Blocks { + // Mark overwritten memory values. Those are args of other + // ops that generate memory values. + ss.clear() + for _, v := range b.Values { + if v.Op == OpPhi || !v.Type.IsMemory() { + continue + } + if m := v.MemoryArg(); m != nil { + ss.add(m.ID) + } + } + // There should be at most one remaining unoverwritten memory value. + for _, v := range b.Values { + if !v.Type.IsMemory() { + continue + } + if ss.contains(v.ID) { + continue + } + if lastmem[b.ID] != nil { + f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], v) + } + lastmem[b.ID] = v + } + // If there is no remaining memory value, that means there was no memory update. + // Take any memory arg. + if lastmem[b.ID] == nil { + for _, v := range b.Values { + if v.Op == OpPhi { + continue + } + m := v.MemoryArg() + if m == nil { + continue + } + if lastmem[b.ID] != nil && lastmem[b.ID] != m { + f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], m) + } + lastmem[b.ID] = m + } + } + } + // Propagate last live memory through storeless blocks. + for { + changed := false + for _, b := range f.Blocks { + if lastmem[b.ID] != nil { + continue + } + for _, e := range b.Preds { + p := e.b + if lastmem[p.ID] != nil { + lastmem[b.ID] = lastmem[p.ID] + changed = true + break + } + } + } + if !changed { + break + } + } + // Check merge points. + for _, b := range f.Blocks { + for _, v := range b.Values { + if v.Op == OpPhi && v.Type.IsMemory() { + for i, a := range v.Args { + if a != lastmem[b.Preds[i].b.ID] { + f.Fatalf("inconsistent memory phi %s %d %s %s", v.LongString(), i, a, lastmem[b.Preds[i].b.ID]) + } + } + } + } + } + + // Check that only one memory is live at any point. + if f.scheduled { + for _, b := range f.Blocks { + var mem *Value // the current live memory in the block + for _, v := range b.Values { + if v.Op == OpPhi { + if v.Type.IsMemory() { + mem = v + } + continue + } + if mem == nil && len(b.Preds) > 0 { + // If no mem phi, take mem of any predecessor. + mem = lastmem[b.Preds[0].b.ID] + } + for _, a := range v.Args { + if a.Type.IsMemory() && a != mem { + f.Fatalf("two live mems @ %s: %s and %s", v, mem, a) + } + } + if v.Type.IsMemory() { + mem = v + } + } + } + } + + // Check that after scheduling, phis are always first in the block. + if f.scheduled { + for _, b := range f.Blocks { + seenNonPhi := false + for _, v := range b.Values { + switch v.Op { + case OpPhi: + if seenNonPhi { + f.Fatalf("phi after non-phi @ %s: %s", b, v) + } + default: + seenNonPhi = true + } + } + } + } +} + +// domCheck reports whether x dominates y (including x==y). +func domCheck(f *Func, sdom SparseTree, x, y *Block) bool { + if !sdom.IsAncestorEq(f.Entry, y) { + // unreachable - ignore + return true + } + return sdom.IsAncestorEq(x, y) +} + +// isExactFloat32 reports whether x can be exactly represented as a float32. +func isExactFloat32(x float64) bool { + // Check the mantissa is in range. + if bits.TrailingZeros64(math.Float64bits(x)) < 52-23 { + return false + } + // Check the exponent is in range. The mantissa check above is sufficient for NaN values. + return math.IsNaN(x) || x == float64(float32(x)) +} |