diff options
Diffstat (limited to 'src/cmd/compile/internal/ssa/gen/386.rules')
-rw-r--r-- | src/cmd/compile/internal/ssa/gen/386.rules | 1111 |
1 files changed, 1111 insertions, 0 deletions
diff --git a/src/cmd/compile/internal/ssa/gen/386.rules b/src/cmd/compile/internal/ssa/gen/386.rules new file mode 100644 index 0000000..fbc12fd --- /dev/null +++ b/src/cmd/compile/internal/ssa/gen/386.rules @@ -0,0 +1,1111 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Lowering arithmetic +(Add(Ptr|32|16|8) ...) => (ADDL ...) +(Add(32|64)F ...) => (ADDS(S|D) ...) +(Add32carry ...) => (ADDLcarry ...) +(Add32withcarry ...) => (ADCL ...) + +(Sub(Ptr|32|16|8) ...) => (SUBL ...) +(Sub(32|64)F ...) => (SUBS(S|D) ...) +(Sub32carry ...) => (SUBLcarry ...) +(Sub32withcarry ...) => (SBBL ...) + +(Mul(32|16|8) ...) => (MULL ...) +(Mul(32|64)F ...) => (MULS(S|D) ...) +(Mul32uhilo ...) => (MULLQU ...) + +(Select0 (Mul32uover x y)) => (Select0 <typ.UInt32> (MULLU x y)) +(Select1 (Mul32uover x y)) => (SETO (Select1 <types.TypeFlags> (MULLU x y))) + +(Avg32u ...) => (AVGLU ...) + +(Div(32|64)F ...) => (DIVS(S|D) ...) +(Div(32|32u|16|16u) ...) => (DIV(L|LU|W|WU) ...) +(Div8 x y) => (DIVW (SignExt8to16 x) (SignExt8to16 y)) +(Div8u x y) => (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)) + +(Hmul(32|32u) ...) => (HMUL(L|LU) ...) + +(Mod(32|32u|16|16u) ...) => (MOD(L|LU|W|WU) ...) +(Mod8 x y) => (MODW (SignExt8to16 x) (SignExt8to16 y)) +(Mod8u x y) => (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y)) + +(And(32|16|8) ...) => (ANDL ...) +(Or(32|16|8) ...) => (ORL ...) +(Xor(32|16|8) ...) => (XORL ...) + +(Neg(32|16|8) ...) => (NEGL ...) +(Neg32F x) => (PXOR x (MOVSSconst <typ.Float32> [float32(math.Copysign(0, -1))])) +(Neg64F x) => (PXOR x (MOVSDconst <typ.Float64> [math.Copysign(0, -1)])) + +(Com(32|16|8) ...) => (NOTL ...) + +// Lowering boolean ops +(AndB ...) => (ANDL ...) +(OrB ...) => (ORL ...) +(Not x) => (XORLconst [1] x) + +// Lowering pointer arithmetic +(OffPtr [off] ptr) => (ADDLconst [int32(off)] ptr) + +(Bswap32 ...) => (BSWAPL ...) + +(Sqrt ...) => (SQRTSD ...) + +(Ctz16 x) => (BSFL (ORLconst <typ.UInt32> [0x10000] x)) +(Ctz16NonZero ...) => (BSFL ...) + +// Lowering extension +(SignExt8to16 ...) => (MOVBLSX ...) +(SignExt8to32 ...) => (MOVBLSX ...) +(SignExt16to32 ...) => (MOVWLSX ...) + +(ZeroExt8to16 ...) => (MOVBLZX ...) +(ZeroExt8to32 ...) => (MOVBLZX ...) +(ZeroExt16to32 ...) => (MOVWLZX ...) + +(Signmask x) => (SARLconst x [31]) +(Zeromask <t> x) => (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1]))) +(Slicemask <t> x) => (SARLconst (NEGL <t> x) [31]) + +// Lowering truncation +// Because we ignore high parts of registers, truncates are just copies. +(Trunc16to8 ...) => (Copy ...) +(Trunc32to8 ...) => (Copy ...) +(Trunc32to16 ...) => (Copy ...) + +// Lowering float-int conversions +(Cvt32to32F ...) => (CVTSL2SS ...) +(Cvt32to64F ...) => (CVTSL2SD ...) + +(Cvt32Fto32 ...) => (CVTTSS2SL ...) +(Cvt64Fto32 ...) => (CVTTSD2SL ...) + +(Cvt32Fto64F ...) => (CVTSS2SD ...) +(Cvt64Fto32F ...) => (CVTSD2SS ...) + +(Round32F ...) => (Copy ...) +(Round64F ...) => (Copy ...) + +(CvtBoolToUint8 ...) => (Copy ...) + +// Lowering shifts +// Unsigned shifts need to return 0 if shift amount is >= width of shifted value. +// result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff) +(Lsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32]))) +(Lsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32]))) +(Lsh8x(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32]))) + +(Lsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y) +(Lsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y) +(Lsh8x(32|16|8) <t> x y) && shiftIsBounded(v) => (SHLL <t> x y) + +(Rsh32Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [32]))) +(Rsh16Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [16]))) +(Rsh8Ux(32|16|8) <t> x y) && !shiftIsBounded(v) => (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMP(L|W|B)const y [8]))) + +(Rsh32Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRL <t> x y) +(Rsh16Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRW <t> x y) +(Rsh8Ux(32|16|8) <t> x y) && shiftIsBounded(v) => (SHRB <t> x y) + +// Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value. +// We implement this by setting the shift value to -1 (all ones) if the shift value is >= width. + +(Rsh32x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [32]))))) +(Rsh16x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [16]))))) +(Rsh8x(32|16|8) <t> x y) && !shiftIsBounded(v) => (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMP(L|W|B)const y [8]))))) + +(Rsh32x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARL x y) +(Rsh16x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARW x y) +(Rsh8x(32|16|8) <t> x y) && shiftIsBounded(v) => (SARB x y) + +// constant shifts +// generic opt rewrites all constant shifts to shift by Const64 +(Lsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SHLLconst x [int32(c)]) +(Rsh32x64 x (Const64 [c])) && uint64(c) < 32 => (SARLconst x [int32(c)]) +(Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 => (SHRLconst x [int32(c)]) +(Lsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SHLLconst x [int32(c)]) +(Rsh16x64 x (Const64 [c])) && uint64(c) < 16 => (SARWconst x [int16(c)]) +(Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 => (SHRWconst x [int16(c)]) +(Lsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SHLLconst x [int32(c)]) +(Rsh8x64 x (Const64 [c])) && uint64(c) < 8 => (SARBconst x [int8(c)]) +(Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 => (SHRBconst x [int8(c)]) + +// large constant shifts +(Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) +(Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) +(Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) +(Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) +(Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) +(Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) + +// large constant signed right shift, we leave the sign bit +(Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 => (SARLconst x [31]) +(Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 => (SARWconst x [15]) +(Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 => (SARBconst x [7]) + +// constant rotates +(RotateLeft32 x (MOVLconst [c])) => (ROLLconst [c&31] x) +(RotateLeft16 x (MOVLconst [c])) => (ROLWconst [int16(c&15)] x) +(RotateLeft8 x (MOVLconst [c])) => (ROLBconst [int8(c&7)] x) + +// Lowering comparisons +(Less32 x y) => (SETL (CMPL x y)) +(Less16 x y) => (SETL (CMPW x y)) +(Less8 x y) => (SETL (CMPB x y)) +(Less32U x y) => (SETB (CMPL x y)) +(Less16U x y) => (SETB (CMPW x y)) +(Less8U x y) => (SETB (CMPB x y)) +// Use SETGF with reversed operands to dodge NaN case +(Less64F x y) => (SETGF (UCOMISD y x)) +(Less32F x y) => (SETGF (UCOMISS y x)) + +(Leq32 x y) => (SETLE (CMPL x y)) +(Leq16 x y) => (SETLE (CMPW x y)) +(Leq8 x y) => (SETLE (CMPB x y)) +(Leq32U x y) => (SETBE (CMPL x y)) +(Leq16U x y) => (SETBE (CMPW x y)) +(Leq8U x y) => (SETBE (CMPB x y)) +// Use SETGEF with reversed operands to dodge NaN case +(Leq64F x y) => (SETGEF (UCOMISD y x)) +(Leq32F x y) => (SETGEF (UCOMISS y x)) + +(Eq32 x y) => (SETEQ (CMPL x y)) +(Eq16 x y) => (SETEQ (CMPW x y)) +(Eq8 x y) => (SETEQ (CMPB x y)) +(EqB x y) => (SETEQ (CMPB x y)) +(EqPtr x y) => (SETEQ (CMPL x y)) +(Eq64F x y) => (SETEQF (UCOMISD x y)) +(Eq32F x y) => (SETEQF (UCOMISS x y)) + +(Neq32 x y) => (SETNE (CMPL x y)) +(Neq16 x y) => (SETNE (CMPW x y)) +(Neq8 x y) => (SETNE (CMPB x y)) +(NeqB x y) => (SETNE (CMPB x y)) +(NeqPtr x y) => (SETNE (CMPL x y)) +(Neq64F x y) => (SETNEF (UCOMISD x y)) +(Neq32F x y) => (SETNEF (UCOMISS x y)) + +// Lowering loads +(Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) => (MOVLload ptr mem) +(Load <t> ptr mem) && is16BitInt(t) => (MOVWload ptr mem) +(Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) => (MOVBload ptr mem) +(Load <t> ptr mem) && is32BitFloat(t) => (MOVSSload ptr mem) +(Load <t> ptr mem) && is64BitFloat(t) => (MOVSDload ptr mem) + +// Lowering stores +// These more-specific FP versions of Store pattern should come first. +(Store {t} ptr val mem) && t.Size() == 8 && is64BitFloat(val.Type) => (MOVSDstore ptr val mem) +(Store {t} ptr val mem) && t.Size() == 4 && is32BitFloat(val.Type) => (MOVSSstore ptr val mem) + +(Store {t} ptr val mem) && t.Size() == 4 => (MOVLstore ptr val mem) +(Store {t} ptr val mem) && t.Size() == 2 => (MOVWstore ptr val mem) +(Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem) + +// Lowering moves +(Move [0] _ _ mem) => mem +(Move [1] dst src mem) => (MOVBstore dst (MOVBload src mem) mem) +(Move [2] dst src mem) => (MOVWstore dst (MOVWload src mem) mem) +(Move [4] dst src mem) => (MOVLstore dst (MOVLload src mem) mem) +(Move [3] dst src mem) => + (MOVBstore [2] dst (MOVBload [2] src mem) + (MOVWstore dst (MOVWload src mem) mem)) +(Move [5] dst src mem) => + (MOVBstore [4] dst (MOVBload [4] src mem) + (MOVLstore dst (MOVLload src mem) mem)) +(Move [6] dst src mem) => + (MOVWstore [4] dst (MOVWload [4] src mem) + (MOVLstore dst (MOVLload src mem) mem)) +(Move [7] dst src mem) => + (MOVLstore [3] dst (MOVLload [3] src mem) + (MOVLstore dst (MOVLload src mem) mem)) +(Move [8] dst src mem) => + (MOVLstore [4] dst (MOVLload [4] src mem) + (MOVLstore dst (MOVLload src mem) mem)) + +// Adjust moves to be a multiple of 4 bytes. +(Move [s] dst src mem) + && s > 8 && s%4 != 0 => + (Move [s-s%4] + (ADDLconst <dst.Type> dst [int32(s%4)]) + (ADDLconst <src.Type> src [int32(s%4)]) + (MOVLstore dst (MOVLload src mem) mem)) + +// Medium copying uses a duff device. +(Move [s] dst src mem) + && s > 8 && s <= 4*128 && s%4 == 0 + && !config.noDuffDevice && logLargeCopy(v, s) => + (DUFFCOPY [10*(128-s/4)] dst src mem) +// 10 and 128 are magic constants. 10 is the number of bytes to encode: +// MOVL (SI), CX +// ADDL $4, SI +// MOVL CX, (DI) +// ADDL $4, DI +// and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy. + +// Large copying uses REP MOVSL. +(Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 && logLargeCopy(v, s) => + (REPMOVSL dst src (MOVLconst [int32(s/4)]) mem) + +// Lowering Zero instructions +(Zero [0] _ mem) => mem +(Zero [1] destptr mem) => (MOVBstoreconst [0] destptr mem) +(Zero [2] destptr mem) => (MOVWstoreconst [0] destptr mem) +(Zero [4] destptr mem) => (MOVLstoreconst [0] destptr mem) + +(Zero [3] destptr mem) => + (MOVBstoreconst [makeValAndOff32(0,2)] destptr + (MOVWstoreconst [makeValAndOff32(0,0)] destptr mem)) +(Zero [5] destptr mem) => + (MOVBstoreconst [makeValAndOff32(0,4)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem)) +(Zero [6] destptr mem) => + (MOVWstoreconst [makeValAndOff32(0,4)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem)) +(Zero [7] destptr mem) => + (MOVLstoreconst [makeValAndOff32(0,3)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem)) + +// Strip off any fractional word zeroing. +(Zero [s] destptr mem) && s%4 != 0 && s > 4 => + (Zero [s-s%4] (ADDLconst destptr [int32(s%4)]) + (MOVLstoreconst [0] destptr mem)) + +// Zero small numbers of words directly. +(Zero [8] destptr mem) => + (MOVLstoreconst [makeValAndOff32(0,4)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem)) +(Zero [12] destptr mem) => + (MOVLstoreconst [makeValAndOff32(0,8)] destptr + (MOVLstoreconst [makeValAndOff32(0,4)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem))) +(Zero [16] destptr mem) => + (MOVLstoreconst [makeValAndOff32(0,12)] destptr + (MOVLstoreconst [makeValAndOff32(0,8)] destptr + (MOVLstoreconst [makeValAndOff32(0,4)] destptr + (MOVLstoreconst [makeValAndOff32(0,0)] destptr mem)))) + +// Medium zeroing uses a duff device. +(Zero [s] destptr mem) + && s > 16 && s <= 4*128 && s%4 == 0 + && !config.noDuffDevice => + (DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem) +// 1 and 128 are magic constants. 1 is the number of bytes to encode STOSL. +// 128 is the number of STOSL instructions in duffzero. +// See src/runtime/duff_386.s:duffzero. + +// Large zeroing uses REP STOSQ. +(Zero [s] destptr mem) + && (s > 4*128 || (config.noDuffDevice && s > 16)) + && s%4 == 0 => + (REPSTOSL destptr (MOVLconst [int32(s/4)]) (MOVLconst [0]) mem) + + +// Lowering constants +(Const8 [c]) => (MOVLconst [int32(c)]) +(Const16 [c]) => (MOVLconst [int32(c)]) +(Const32 ...) => (MOVLconst ...) +(Const(32|64)F ...) => (MOVS(S|D)const ...) +(ConstNil) => (MOVLconst [0]) +(ConstBool [c]) => (MOVLconst [b2i32(c)]) + +// Lowering calls +(StaticCall ...) => (CALLstatic ...) +(ClosureCall ...) => (CALLclosure ...) +(InterCall ...) => (CALLinter ...) + +// Miscellaneous +(IsNonNil p) => (SETNE (TESTL p p)) +(IsInBounds idx len) => (SETB (CMPL idx len)) +(IsSliceInBounds idx len) => (SETBE (CMPL idx len)) +(NilCheck ...) => (LoweredNilCheck ...) +(GetG ...) => (LoweredGetG ...) +(GetClosurePtr ...) => (LoweredGetClosurePtr ...) +(GetCallerPC ...) => (LoweredGetCallerPC ...) +(GetCallerSP ...) => (LoweredGetCallerSP ...) +(Addr {sym} base) => (LEAL {sym} base) +(LocalAddr {sym} base _) => (LEAL {sym} base) + +// block rewrites +(If (SETL cmp) yes no) => (LT cmp yes no) +(If (SETLE cmp) yes no) => (LE cmp yes no) +(If (SETG cmp) yes no) => (GT cmp yes no) +(If (SETGE cmp) yes no) => (GE cmp yes no) +(If (SETEQ cmp) yes no) => (EQ cmp yes no) +(If (SETNE cmp) yes no) => (NE cmp yes no) +(If (SETB cmp) yes no) => (ULT cmp yes no) +(If (SETBE cmp) yes no) => (ULE cmp yes no) +(If (SETA cmp) yes no) => (UGT cmp yes no) +(If (SETAE cmp) yes no) => (UGE cmp yes no) +(If (SETO cmp) yes no) => (OS cmp yes no) + +// Special case for floating point - LF/LEF not generated +(If (SETGF cmp) yes no) => (UGT cmp yes no) +(If (SETGEF cmp) yes no) => (UGE cmp yes no) +(If (SETEQF cmp) yes no) => (EQF cmp yes no) +(If (SETNEF cmp) yes no) => (NEF cmp yes no) + +(If cond yes no) => (NE (TESTB cond cond) yes no) + +// Write barrier. +(WB ...) => (LoweredWB ...) + +(PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem) +(PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem) +(PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem) + +(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 => (LoweredPanicExtendA [kind] hi lo y mem) +(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 => (LoweredPanicExtendB [kind] hi lo y mem) +(PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 => (LoweredPanicExtendC [kind] hi lo y mem) + +// *************************** +// Above: lowering rules +// Below: optimizations +// *************************** +// TODO: Should the optimizations be a separate pass? + +// Fold boolean tests into blocks +(NE (TESTB (SETL cmp) (SETL cmp)) yes no) => (LT cmp yes no) +(NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) => (LE cmp yes no) +(NE (TESTB (SETG cmp) (SETG cmp)) yes no) => (GT cmp yes no) +(NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) => (GE cmp yes no) +(NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) => (EQ cmp yes no) +(NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) => (NE cmp yes no) +(NE (TESTB (SETB cmp) (SETB cmp)) yes no) => (ULT cmp yes no) +(NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) => (ULE cmp yes no) +(NE (TESTB (SETA cmp) (SETA cmp)) yes no) => (UGT cmp yes no) +(NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) => (UGE cmp yes no) +(NE (TESTB (SETO cmp) (SETO cmp)) yes no) => (OS cmp yes no) + +// Special case for floating point - LF/LEF not generated +(NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) => (UGT cmp yes no) +(NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) => (UGE cmp yes no) +(NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) => (EQF cmp yes no) +(NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) => (NEF cmp yes no) + +// fold constants into instructions +(ADDL x (MOVLconst [c])) => (ADDLconst [c] x) +(ADDLcarry x (MOVLconst [c])) => (ADDLconstcarry [c] x) +(ADCL x (MOVLconst [c]) f) => (ADCLconst [c] x f) + +(SUBL x (MOVLconst [c])) => (SUBLconst x [c]) +(SUBL (MOVLconst [c]) x) => (NEGL (SUBLconst <v.Type> x [c])) +(SUBLcarry x (MOVLconst [c])) => (SUBLconstcarry [c] x) +(SBBL x (MOVLconst [c]) f) => (SBBLconst [c] x f) + +(MULL x (MOVLconst [c])) => (MULLconst [c] x) +(ANDL x (MOVLconst [c])) => (ANDLconst [c] x) + +(ANDLconst [c] (ANDLconst [d] x)) => (ANDLconst [c & d] x) +(XORLconst [c] (XORLconst [d] x)) => (XORLconst [c ^ d] x) +(MULLconst [c] (MULLconst [d] x)) => (MULLconst [c * d] x) + +(ORL x (MOVLconst [c])) => (ORLconst [c] x) +(XORL x (MOVLconst [c])) => (XORLconst [c] x) + +(SHLL x (MOVLconst [c])) => (SHLLconst [c&31] x) +(SHRL x (MOVLconst [c])) => (SHRLconst [c&31] x) +(SHRW x (MOVLconst [c])) && c&31 < 16 => (SHRWconst [int16(c&31)] x) +(SHRW _ (MOVLconst [c])) && c&31 >= 16 => (MOVLconst [0]) +(SHRB x (MOVLconst [c])) && c&31 < 8 => (SHRBconst [int8(c&31)] x) +(SHRB _ (MOVLconst [c])) && c&31 >= 8 => (MOVLconst [0]) + +(SARL x (MOVLconst [c])) => (SARLconst [c&31] x) +(SARW x (MOVLconst [c])) => (SARWconst [int16(min(int64(c&31),15))] x) +(SARB x (MOVLconst [c])) => (SARBconst [int8(min(int64(c&31),7))] x) + +(SARL x (ANDLconst [31] y)) => (SARL x y) +(SHLL x (ANDLconst [31] y)) => (SHLL x y) +(SHRL x (ANDLconst [31] y)) => (SHRL x y) + +// Rotate instructions + +(ADDL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x) +( ORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x) +(XORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c => (ROLLconst [c] x) + +(ADDL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2 + => (ROLWconst x [int16(c)]) +( ORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2 + => (ROLWconst x [int16(c)]) +(XORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == int16(16-c) && t.Size() == 2 + => (ROLWconst x [int16(c)]) + +(ADDL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1 + => (ROLBconst x [int8(c)]) +( ORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1 + => (ROLBconst x [int8(c)]) +(XORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == int8(8-c) && t.Size() == 1 + => (ROLBconst x [int8(c)]) + +(ROLLconst [c] (ROLLconst [d] x)) => (ROLLconst [(c+d)&31] x) +(ROLWconst [c] (ROLWconst [d] x)) => (ROLWconst [(c+d)&15] x) +(ROLBconst [c] (ROLBconst [d] x)) => (ROLBconst [(c+d)& 7] x) + + +// Constant shift simplifications + +(SHLLconst x [0]) => x +(SHRLconst x [0]) => x +(SARLconst x [0]) => x + +(SHRWconst x [0]) => x +(SARWconst x [0]) => x + +(SHRBconst x [0]) => x +(SARBconst x [0]) => x + +(ROLLconst [0] x) => x +(ROLWconst [0] x) => x +(ROLBconst [0] x) => x + +// Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits) +// because the x86 instructions are defined to use all 5 bits of the shift even +// for the small shifts. I don't think we'll ever generate a weird shift (e.g. +// (SHRW x (MOVLconst [24])), but just in case. + +(CMPL x (MOVLconst [c])) => (CMPLconst x [c]) +(CMPL (MOVLconst [c]) x) => (InvertFlags (CMPLconst x [c])) +(CMPW x (MOVLconst [c])) => (CMPWconst x [int16(c)]) +(CMPW (MOVLconst [c]) x) => (InvertFlags (CMPWconst x [int16(c)])) +(CMPB x (MOVLconst [c])) => (CMPBconst x [int8(c)]) +(CMPB (MOVLconst [c]) x) => (InvertFlags (CMPBconst x [int8(c)])) + +// Canonicalize the order of arguments to comparisons - helps with CSE. +(CMP(L|W|B) x y) && x.ID > y.ID => (InvertFlags (CMP(L|W|B) y x)) + +// strength reduction +// Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf: +// 1 - addl, shll, leal, negl, subl +// 3 - imull +// This limits the rewrites to two instructions. +// Note that negl always operates in-place, +// which can require a register-register move +// to preserve the original value, +// so it must be used with care. +(MULLconst [-9] x) => (NEGL (LEAL8 <v.Type> x x)) +(MULLconst [-5] x) => (NEGL (LEAL4 <v.Type> x x)) +(MULLconst [-3] x) => (NEGL (LEAL2 <v.Type> x x)) +(MULLconst [-1] x) => (NEGL x) +(MULLconst [0] _) => (MOVLconst [0]) +(MULLconst [1] x) => x +(MULLconst [3] x) => (LEAL2 x x) +(MULLconst [5] x) => (LEAL4 x x) +(MULLconst [7] x) => (LEAL2 x (LEAL2 <v.Type> x x)) +(MULLconst [9] x) => (LEAL8 x x) +(MULLconst [11] x) => (LEAL2 x (LEAL4 <v.Type> x x)) +(MULLconst [13] x) => (LEAL4 x (LEAL2 <v.Type> x x)) +(MULLconst [19] x) => (LEAL2 x (LEAL8 <v.Type> x x)) +(MULLconst [21] x) => (LEAL4 x (LEAL4 <v.Type> x x)) +(MULLconst [25] x) => (LEAL8 x (LEAL2 <v.Type> x x)) +(MULLconst [27] x) => (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x)) +(MULLconst [37] x) => (LEAL4 x (LEAL8 <v.Type> x x)) +(MULLconst [41] x) => (LEAL8 x (LEAL4 <v.Type> x x)) +(MULLconst [45] x) => (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x)) +(MULLconst [73] x) => (LEAL8 x (LEAL8 <v.Type> x x)) +(MULLconst [81] x) => (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x)) + +(MULLconst [c] x) && isPowerOfTwo32(c+1) && c >= 15 => (SUBL (SHLLconst <v.Type> [int32(log32(c+1))] x) x) +(MULLconst [c] x) && isPowerOfTwo32(c-1) && c >= 17 => (LEAL1 (SHLLconst <v.Type> [int32(log32(c-1))] x) x) +(MULLconst [c] x) && isPowerOfTwo32(c-2) && c >= 34 => (LEAL2 (SHLLconst <v.Type> [int32(log32(c-2))] x) x) +(MULLconst [c] x) && isPowerOfTwo32(c-4) && c >= 68 => (LEAL4 (SHLLconst <v.Type> [int32(log32(c-4))] x) x) +(MULLconst [c] x) && isPowerOfTwo32(c-8) && c >= 136 => (LEAL8 (SHLLconst <v.Type> [int32(log32(c-8))] x) x) +(MULLconst [c] x) && c%3 == 0 && isPowerOfTwo32(c/3) => (SHLLconst [int32(log32(c/3))] (LEAL2 <v.Type> x x)) +(MULLconst [c] x) && c%5 == 0 && isPowerOfTwo32(c/5) => (SHLLconst [int32(log32(c/5))] (LEAL4 <v.Type> x x)) +(MULLconst [c] x) && c%9 == 0 && isPowerOfTwo32(c/9) => (SHLLconst [int32(log32(c/9))] (LEAL8 <v.Type> x x)) + +// combine add/shift into LEAL +(ADDL x (SHLLconst [3] y)) => (LEAL8 x y) +(ADDL x (SHLLconst [2] y)) => (LEAL4 x y) +(ADDL x (SHLLconst [1] y)) => (LEAL2 x y) +(ADDL x (ADDL y y)) => (LEAL2 x y) +(ADDL x (ADDL x y)) => (LEAL2 y x) + +// combine ADDL/ADDLconst into LEAL1 +(ADDLconst [c] (ADDL x y)) => (LEAL1 [c] x y) +(ADDL (ADDLconst [c] x) y) => (LEAL1 [c] x y) + +// fold ADDL into LEAL +(ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x) +(LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(int64(c)+int64(d)) => (LEAL [c+d] {s} x) +(ADDLconst [c] x:(SP)) => (LEAL [c] x) // so it is rematerializeable +(LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y) +(ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB => (LEAL1 [c] {s} x y) + +// fold ADDLconst into LEALx +(ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL1 [c+d] {s} x y) +(ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL2 [c+d] {s} x y) +(ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL4 [c+d] {s} x y) +(ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(int64(c)+int64(d)) => (LEAL8 [c+d] {s} x y) +(LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEAL1 [c+d] {s} x y) +(LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEAL2 [c+d] {s} x y) +(LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+2*int64(d)) && y.Op != OpSB => (LEAL2 [c+2*d] {s} x y) +(LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEAL4 [c+d] {s} x y) +(LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+4*int64(d)) && y.Op != OpSB => (LEAL4 [c+4*d] {s} x y) +(LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(int64(c)+int64(d)) && x.Op != OpSB => (LEAL8 [c+d] {s} x y) +(LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(int64(c)+8*int64(d)) && y.Op != OpSB => (LEAL8 [c+8*d] {s} x y) + +// fold shifts into LEALx +(LEAL1 [c] {s} x (SHLLconst [1] y)) => (LEAL2 [c] {s} x y) +(LEAL1 [c] {s} x (SHLLconst [2] y)) => (LEAL4 [c] {s} x y) +(LEAL1 [c] {s} x (SHLLconst [3] y)) => (LEAL8 [c] {s} x y) +(LEAL2 [c] {s} x (SHLLconst [1] y)) => (LEAL4 [c] {s} x y) +(LEAL2 [c] {s} x (SHLLconst [2] y)) => (LEAL8 [c] {s} x y) +(LEAL4 [c] {s} x (SHLLconst [1] y)) => (LEAL8 [c] {s} x y) + +// reverse ordering of compare instruction +(SETL (InvertFlags x)) => (SETG x) +(SETG (InvertFlags x)) => (SETL x) +(SETB (InvertFlags x)) => (SETA x) +(SETA (InvertFlags x)) => (SETB x) +(SETLE (InvertFlags x)) => (SETGE x) +(SETGE (InvertFlags x)) => (SETLE x) +(SETBE (InvertFlags x)) => (SETAE x) +(SETAE (InvertFlags x)) => (SETBE x) +(SETEQ (InvertFlags x)) => (SETEQ x) +(SETNE (InvertFlags x)) => (SETNE x) + +// sign extended loads +// Note: The combined instruction must end up in the same block +// as the original load. If not, we end up making a value with +// memory type live in two different blocks, which can lead to +// multiple memory values alive simultaneously. +// Make sure we don't combine these ops if the load has another use. +// This prevents a single load from being split into multiple loads +// which then might return different values. See test/atomicload.go. +(MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem) +(MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVBload <v.Type> [off] {sym} ptr mem) +(MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem) +(MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (MOVWload <v.Type> [off] {sym} ptr mem) + +// replace load from same location as preceding store with zero/sign extension (or copy in case of full width) +(MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLZX x) +(MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLZX x) +(MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => x +(MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVBLSX x) +(MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) => (MOVWLSX x) + +// Fold extensions and ANDs together. +(MOVBLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xff] x) +(MOVWLZX (ANDLconst [c] x)) => (ANDLconst [c & 0xffff] x) +(MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 => (ANDLconst [c & 0x7f] x) +(MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 => (ANDLconst [c & 0x7fff] x) + +// Don't extend before storing +(MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) => (MOVWstore [off] {sym} ptr x mem) +(MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) => (MOVBstore [off] {sym} ptr x mem) + +// fold constants into memory operations +// Note that this is not always a good idea because if not all the uses of +// the ADDLconst get eliminated, we still have to compute the ADDLconst and we now +// have potentially two live values (ptr and (ADDLconst [off] ptr)) instead of one. +// Nevertheless, let's do it! +(MOV(L|W|B|SS|SD)load [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(int64(off1)+int64(off2)) => + (MOV(L|W|B|SS|SD)load [off1+off2] {sym} ptr mem) +(MOV(L|W|B|SS|SD)store [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(int64(off1)+int64(off2)) => + (MOV(L|W|B|SS|SD)store [off1+off2] {sym} ptr val mem) + +((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) => + ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem) +((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) => + ((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem) +((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(int64(off1)+int64(off2)) => + ((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem) +((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(int64(off1)+int64(off2)) => + ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem) +((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && valoff1.canAdd32(off2) => + ((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {sym} base mem) + +// Fold constants into stores. +(MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(int64(off)) => + (MOVLstoreconst [makeValAndOff32(c,off)] {sym} ptr mem) +(MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(int64(off)) => + (MOVWstoreconst [makeValAndOff32(c,off)] {sym} ptr mem) +(MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(int64(off)) => + (MOVBstoreconst [makeValAndOff32(c,off)] {sym} ptr mem) + +// Fold address offsets into constant stores. +(MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && sc.canAdd32(off) => + (MOV(L|W|B)storeconst [sc.addOffset32(off)] {s} ptr mem) + +// We need to fold LEAL into the MOVx ops so that the live variable analysis knows +// what variables are being read/written by the ops. +// Note: we turn off this merging for operations on globals when building +// position-independent code (when Flag_shared is set). +// PIC needs a spare register to load the PC into. Having the LEAL be +// a separate instruction gives us that register. Having the LEAL be +// a separate instruction also allows it to be CSEd (which is good because +// it compiles to a thunk call). +(MOV(L|W|B|SS|SD|BLSX|WLSX)load [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) + && (base.Op != OpSB || !config.ctxt.Flag_shared) => + (MOV(L|W|B|SS|SD|BLSX|WLSX)load [off1+off2] {mergeSym(sym1,sym2)} base mem) + +(MOV(L|W|B|SS|SD)store [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) + && (base.Op != OpSB || !config.ctxt.Flag_shared) => + (MOV(L|W|B|SS|SD)store [off1+off2] {mergeSym(sym1,sym2)} base val mem) + +(MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && sc.canAdd32(off) + && (ptr.Op != OpSB || !config.ctxt.Flag_shared) => + (MOV(L|W|B)storeconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) + +((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) + && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) => + ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem) +((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) + && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) => + ((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) +((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) + && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) => + ((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) +((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) + && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) => + ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) +((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) + && valoff1.canAdd32(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) => + ((ADD|AND|OR|XOR)Lconstmodify [valoff1.addOffset32(off2)] {mergeSym(sym1,sym2)} base mem) + +// Merge load/store to op +((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem) +((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem) +((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) => ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem) +(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) => ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem) +(MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y, l) => + ((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem) +(MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) + && y.Uses==1 && l.Uses==1 && clobber(y, l) && validValAndOff(int64(c),int64(off)) => + ((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff32(c,off)] {sym} ptr mem) + +// fold LEALs together +(LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL [off1+off2] {mergeSym(sym1,sym2)} x) + +// LEAL into LEAL1 +(LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB => + (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) + +// LEAL1 into LEAL +(LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) + +// LEAL into LEAL[248] +(LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB => + (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) +(LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB => + (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) +(LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB => + (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) + +// LEAL[248] into LEAL +(LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) +(LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) +(LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) + +// LEAL[1248] into LEAL[1248]. Only some such merges are possible. +(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} y y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} x y) +(LEAL1 [off1] {sym1} x (LEAL1 [off2] {sym2} x y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => + (LEAL2 [off1+off2] {mergeSym(sym1, sym2)} y x) +(LEAL2 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+2*int64(off2)) => + (LEAL4 [off1+2*off2] {sym} x y) +(LEAL4 [off1] {sym} x (LEAL1 [off2] {nil} y y)) && is32Bit(int64(off1)+4*int64(off2)) => + (LEAL8 [off1+4*off2] {sym} x y) + +// Absorb InvertFlags into branches. +(LT (InvertFlags cmp) yes no) => (GT cmp yes no) +(GT (InvertFlags cmp) yes no) => (LT cmp yes no) +(LE (InvertFlags cmp) yes no) => (GE cmp yes no) +(GE (InvertFlags cmp) yes no) => (LE cmp yes no) +(ULT (InvertFlags cmp) yes no) => (UGT cmp yes no) +(UGT (InvertFlags cmp) yes no) => (ULT cmp yes no) +(ULE (InvertFlags cmp) yes no) => (UGE cmp yes no) +(UGE (InvertFlags cmp) yes no) => (ULE cmp yes no) +(EQ (InvertFlags cmp) yes no) => (EQ cmp yes no) +(NE (InvertFlags cmp) yes no) => (NE cmp yes no) + +// Constant comparisons. +(CMPLconst (MOVLconst [x]) [y]) && x==y => (FlagEQ) +(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)<uint32(y) => (FlagLT_ULT) +(CMPLconst (MOVLconst [x]) [y]) && x<y && uint32(x)>uint32(y) => (FlagLT_UGT) +(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)<uint32(y) => (FlagGT_ULT) +(CMPLconst (MOVLconst [x]) [y]) && x>y && uint32(x)>uint32(y) => (FlagGT_UGT) + +(CMPWconst (MOVLconst [x]) [y]) && int16(x)==y => (FlagEQ) +(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)<uint16(y) => (FlagLT_ULT) +(CMPWconst (MOVLconst [x]) [y]) && int16(x)<y && uint16(x)>uint16(y) => (FlagLT_UGT) +(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)<uint16(y) => (FlagGT_ULT) +(CMPWconst (MOVLconst [x]) [y]) && int16(x)>y && uint16(x)>uint16(y) => (FlagGT_UGT) + +(CMPBconst (MOVLconst [x]) [y]) && int8(x)==y => (FlagEQ) +(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)<uint8(y) => (FlagLT_ULT) +(CMPBconst (MOVLconst [x]) [y]) && int8(x)<y && uint8(x)>uint8(y) => (FlagLT_UGT) +(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)<uint8(y) => (FlagGT_ULT) +(CMPBconst (MOVLconst [x]) [y]) && int8(x)>y && uint8(x)>uint8(y) => (FlagGT_UGT) + +// Other known comparisons. +(CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) => (FlagLT_ULT) +(CMPLconst (ANDLconst _ [m]) [n]) && 0 <= m && m < n => (FlagLT_ULT) +(CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < n => (FlagLT_ULT) +(CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < n => (FlagLT_ULT) +// TODO: DIVxU also. + +// Absorb flag constants into SBB ops. +(SBBLcarrymask (FlagEQ)) => (MOVLconst [0]) +(SBBLcarrymask (FlagLT_ULT)) => (MOVLconst [-1]) +(SBBLcarrymask (FlagLT_UGT)) => (MOVLconst [0]) +(SBBLcarrymask (FlagGT_ULT)) => (MOVLconst [-1]) +(SBBLcarrymask (FlagGT_UGT)) => (MOVLconst [0]) + +// Absorb flag constants into branches. +(EQ (FlagEQ) yes no) => (First yes no) +(EQ (FlagLT_ULT) yes no) => (First no yes) +(EQ (FlagLT_UGT) yes no) => (First no yes) +(EQ (FlagGT_ULT) yes no) => (First no yes) +(EQ (FlagGT_UGT) yes no) => (First no yes) + +(NE (FlagEQ) yes no) => (First no yes) +(NE (FlagLT_ULT) yes no) => (First yes no) +(NE (FlagLT_UGT) yes no) => (First yes no) +(NE (FlagGT_ULT) yes no) => (First yes no) +(NE (FlagGT_UGT) yes no) => (First yes no) + +(LT (FlagEQ) yes no) => (First no yes) +(LT (FlagLT_ULT) yes no) => (First yes no) +(LT (FlagLT_UGT) yes no) => (First yes no) +(LT (FlagGT_ULT) yes no) => (First no yes) +(LT (FlagGT_UGT) yes no) => (First no yes) + +(LE (FlagEQ) yes no) => (First yes no) +(LE (FlagLT_ULT) yes no) => (First yes no) +(LE (FlagLT_UGT) yes no) => (First yes no) +(LE (FlagGT_ULT) yes no) => (First no yes) +(LE (FlagGT_UGT) yes no) => (First no yes) + +(GT (FlagEQ) yes no) => (First no yes) +(GT (FlagLT_ULT) yes no) => (First no yes) +(GT (FlagLT_UGT) yes no) => (First no yes) +(GT (FlagGT_ULT) yes no) => (First yes no) +(GT (FlagGT_UGT) yes no) => (First yes no) + +(GE (FlagEQ) yes no) => (First yes no) +(GE (FlagLT_ULT) yes no) => (First no yes) +(GE (FlagLT_UGT) yes no) => (First no yes) +(GE (FlagGT_ULT) yes no) => (First yes no) +(GE (FlagGT_UGT) yes no) => (First yes no) + +(ULT (FlagEQ) yes no) => (First no yes) +(ULT (FlagLT_ULT) yes no) => (First yes no) +(ULT (FlagLT_UGT) yes no) => (First no yes) +(ULT (FlagGT_ULT) yes no) => (First yes no) +(ULT (FlagGT_UGT) yes no) => (First no yes) + +(ULE (FlagEQ) yes no) => (First yes no) +(ULE (FlagLT_ULT) yes no) => (First yes no) +(ULE (FlagLT_UGT) yes no) => (First no yes) +(ULE (FlagGT_ULT) yes no) => (First yes no) +(ULE (FlagGT_UGT) yes no) => (First no yes) + +(UGT (FlagEQ) yes no) => (First no yes) +(UGT (FlagLT_ULT) yes no) => (First no yes) +(UGT (FlagLT_UGT) yes no) => (First yes no) +(UGT (FlagGT_ULT) yes no) => (First no yes) +(UGT (FlagGT_UGT) yes no) => (First yes no) + +(UGE (FlagEQ) yes no) => (First yes no) +(UGE (FlagLT_ULT) yes no) => (First no yes) +(UGE (FlagLT_UGT) yes no) => (First yes no) +(UGE (FlagGT_ULT) yes no) => (First no yes) +(UGE (FlagGT_UGT) yes no) => (First yes no) + +// Absorb flag constants into SETxx ops. +(SETEQ (FlagEQ)) => (MOVLconst [1]) +(SETEQ (FlagLT_ULT)) => (MOVLconst [0]) +(SETEQ (FlagLT_UGT)) => (MOVLconst [0]) +(SETEQ (FlagGT_ULT)) => (MOVLconst [0]) +(SETEQ (FlagGT_UGT)) => (MOVLconst [0]) + +(SETNE (FlagEQ)) => (MOVLconst [0]) +(SETNE (FlagLT_ULT)) => (MOVLconst [1]) +(SETNE (FlagLT_UGT)) => (MOVLconst [1]) +(SETNE (FlagGT_ULT)) => (MOVLconst [1]) +(SETNE (FlagGT_UGT)) => (MOVLconst [1]) + +(SETL (FlagEQ)) => (MOVLconst [0]) +(SETL (FlagLT_ULT)) => (MOVLconst [1]) +(SETL (FlagLT_UGT)) => (MOVLconst [1]) +(SETL (FlagGT_ULT)) => (MOVLconst [0]) +(SETL (FlagGT_UGT)) => (MOVLconst [0]) + +(SETLE (FlagEQ)) => (MOVLconst [1]) +(SETLE (FlagLT_ULT)) => (MOVLconst [1]) +(SETLE (FlagLT_UGT)) => (MOVLconst [1]) +(SETLE (FlagGT_ULT)) => (MOVLconst [0]) +(SETLE (FlagGT_UGT)) => (MOVLconst [0]) + +(SETG (FlagEQ)) => (MOVLconst [0]) +(SETG (FlagLT_ULT)) => (MOVLconst [0]) +(SETG (FlagLT_UGT)) => (MOVLconst [0]) +(SETG (FlagGT_ULT)) => (MOVLconst [1]) +(SETG (FlagGT_UGT)) => (MOVLconst [1]) + +(SETGE (FlagEQ)) => (MOVLconst [1]) +(SETGE (FlagLT_ULT)) => (MOVLconst [0]) +(SETGE (FlagLT_UGT)) => (MOVLconst [0]) +(SETGE (FlagGT_ULT)) => (MOVLconst [1]) +(SETGE (FlagGT_UGT)) => (MOVLconst [1]) + +(SETB (FlagEQ)) => (MOVLconst [0]) +(SETB (FlagLT_ULT)) => (MOVLconst [1]) +(SETB (FlagLT_UGT)) => (MOVLconst [0]) +(SETB (FlagGT_ULT)) => (MOVLconst [1]) +(SETB (FlagGT_UGT)) => (MOVLconst [0]) + +(SETBE (FlagEQ)) => (MOVLconst [1]) +(SETBE (FlagLT_ULT)) => (MOVLconst [1]) +(SETBE (FlagLT_UGT)) => (MOVLconst [0]) +(SETBE (FlagGT_ULT)) => (MOVLconst [1]) +(SETBE (FlagGT_UGT)) => (MOVLconst [0]) + +(SETA (FlagEQ)) => (MOVLconst [0]) +(SETA (FlagLT_ULT)) => (MOVLconst [0]) +(SETA (FlagLT_UGT)) => (MOVLconst [1]) +(SETA (FlagGT_ULT)) => (MOVLconst [0]) +(SETA (FlagGT_UGT)) => (MOVLconst [1]) + +(SETAE (FlagEQ)) => (MOVLconst [1]) +(SETAE (FlagLT_ULT)) => (MOVLconst [0]) +(SETAE (FlagLT_UGT)) => (MOVLconst [1]) +(SETAE (FlagGT_ULT)) => (MOVLconst [0]) +(SETAE (FlagGT_UGT)) => (MOVLconst [1]) + +// Remove redundant *const ops +(ADDLconst [c] x) && c==0 => x +(SUBLconst [c] x) && c==0 => x +(ANDLconst [c] _) && c==0 => (MOVLconst [0]) +(ANDLconst [c] x) && c==-1 => x +(ORLconst [c] x) && c==0 => x +(ORLconst [c] _) && c==-1 => (MOVLconst [-1]) +(XORLconst [c] x) && c==0 => x +// TODO: since we got rid of the W/B versions, we might miss +// things like (ANDLconst [0x100] x) which were formerly +// (ANDBconst [0] x). Probably doesn't happen very often. +// If we cared, we might do: +// (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 => (MOVLconst [0]) + +// Convert constant subtracts to constant adds +(SUBLconst [c] x) => (ADDLconst [-c] x) + +// generic constant folding +// TODO: more of this +(ADDLconst [c] (MOVLconst [d])) => (MOVLconst [c+d]) +(ADDLconst [c] (ADDLconst [d] x)) => (ADDLconst [c+d] x) +(SARLconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)]) +(SARWconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)]) +(SARBconst [c] (MOVLconst [d])) => (MOVLconst [d>>uint64(c)]) +(NEGL (MOVLconst [c])) => (MOVLconst [-c]) +(MULLconst [c] (MOVLconst [d])) => (MOVLconst [c*d]) +(ANDLconst [c] (MOVLconst [d])) => (MOVLconst [c&d]) +(ORLconst [c] (MOVLconst [d])) => (MOVLconst [c|d]) +(XORLconst [c] (MOVLconst [d])) => (MOVLconst [c^d]) +(NOTL (MOVLconst [c])) => (MOVLconst [^c]) + +// generic simplifications +// TODO: more of this +(ADDL x (NEGL y)) => (SUBL x y) +(SUBL x x) => (MOVLconst [0]) +(ANDL x x) => x +(ORL x x) => x +(XORL x x) => (MOVLconst [0]) + +// checking AND against 0. +(CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 => (TEST(L|W|B) x y) +(CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTLconst [c] x) +(CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTWconst [int16(c)] x) +(CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 => (TESTBconst [int8(c)] x) + +// TEST %reg,%reg is shorter than CMP +(CMP(L|W|B)const x [0]) => (TEST(L|W|B) x x) + +// Convert LEAL1 back to ADDL if we can +(LEAL1 [0] {nil} x y) => (ADDL x y) + +// Combining byte loads into larger (unaligned) loads. +// There are many ways these combinations could occur. This is +// designed to match the way encoding/binary.LittleEndian does it. +(ORL x0:(MOVBload [i0] {s} p mem) + s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem))) + && i1 == i0+1 + && x0.Uses == 1 + && x1.Uses == 1 + && s0.Uses == 1 + && mergePoint(b,x0,x1) != nil + && clobber(x0, x1, s0) + => @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem) + +(ORL x0:(MOVBload [i] {s} p0 mem) + s0:(SHLLconst [8] x1:(MOVBload [i] {s} p1 mem))) + && x0.Uses == 1 + && x1.Uses == 1 + && s0.Uses == 1 + && sequentialAddresses(p0, p1, 1) + && mergePoint(b,x0,x1) != nil + && clobber(x0, x1, s0) + => @mergePoint(b,x0,x1) (MOVWload [i] {s} p0 mem) + +(ORL o0:(ORL + x0:(MOVWload [i0] {s} p mem) + s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem))) + s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem))) + && i2 == i0+2 + && i3 == i0+3 + && x0.Uses == 1 + && x1.Uses == 1 + && x2.Uses == 1 + && s0.Uses == 1 + && s1.Uses == 1 + && o0.Uses == 1 + && mergePoint(b,x0,x1,x2) != nil + && clobber(x0, x1, x2, s0, s1, o0) + => @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem) + +(ORL o0:(ORL + x0:(MOVWload [i] {s} p0 mem) + s0:(SHLLconst [16] x1:(MOVBload [i] {s} p1 mem))) + s1:(SHLLconst [24] x2:(MOVBload [i] {s} p2 mem))) + && x0.Uses == 1 + && x1.Uses == 1 + && x2.Uses == 1 + && s0.Uses == 1 + && s1.Uses == 1 + && o0.Uses == 1 + && sequentialAddresses(p0, p1, 2) + && sequentialAddresses(p1, p2, 1) + && mergePoint(b,x0,x1,x2) != nil + && clobber(x0, x1, x2, s0, s1, o0) + => @mergePoint(b,x0,x1,x2) (MOVLload [i] {s} p0 mem) + +// Combine constant stores into larger (unaligned) stores. +(MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem)) + && x.Uses == 1 + && a.Off() + 1 == c.Off() + && clobber(x) + => (MOVWstoreconst [makeValAndOff32(int32(a.Val()&0xff | c.Val()<<8), a.Off32())] {s} p mem) +(MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem)) + && x.Uses == 1 + && a.Off() + 1 == c.Off() + && clobber(x) + => (MOVWstoreconst [makeValAndOff32(int32(a.Val()&0xff | c.Val()<<8), a.Off32())] {s} p mem) + +(MOVBstoreconst [c] {s} p1 x:(MOVBstoreconst [a] {s} p0 mem)) + && x.Uses == 1 + && a.Off() == c.Off() + && sequentialAddresses(p0, p1, 1) + && clobber(x) + => (MOVWstoreconst [makeValAndOff32(int32(a.Val()&0xff | c.Val()<<8), a.Off32())] {s} p0 mem) +(MOVBstoreconst [a] {s} p0 x:(MOVBstoreconst [c] {s} p1 mem)) + && x.Uses == 1 + && a.Off() == c.Off() + && sequentialAddresses(p0, p1, 1) + && clobber(x) + => (MOVWstoreconst [makeValAndOff32(int32(a.Val()&0xff | c.Val()<<8), a.Off32())] {s} p0 mem) + +(MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem)) + && x.Uses == 1 + && a.Off() + 2 == c.Off() + && clobber(x) + => (MOVLstoreconst [makeValAndOff32(int32(a.Val()&0xffff | c.Val()<<16), a.Off32())] {s} p mem) +(MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem)) + && x.Uses == 1 + && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() + && clobber(x) + => (MOVLstoreconst [makeValAndOff32(int32(a.Val()&0xffff | c.Val()<<16), a.Off32())] {s} p mem) + +(MOVWstoreconst [c] {s} p1 x:(MOVWstoreconst [a] {s} p0 mem)) + && x.Uses == 1 + && a.Off() == c.Off() + && sequentialAddresses(p0, p1, 2) + && clobber(x) + => (MOVLstoreconst [makeValAndOff32(int32(a.Val()&0xffff | c.Val()<<16), a.Off32())] {s} p0 mem) +(MOVWstoreconst [a] {s} p0 x:(MOVWstoreconst [c] {s} p1 mem)) + && x.Uses == 1 + && a.Off() == c.Off() + && sequentialAddresses(p0, p1, 2) + && clobber(x) + => (MOVLstoreconst [makeValAndOff32(int32(a.Val()&0xffff | c.Val()<<16), a.Off32())] {s} p0 mem) + +// Combine stores into larger (unaligned) stores. +(MOVBstore [i] {s} p (SHR(W|L)const [8] w) x:(MOVBstore [i-1] {s} p w mem)) + && x.Uses == 1 + && clobber(x) + => (MOVWstore [i-1] {s} p w mem) +(MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHR(W|L)const [8] w) mem)) + && x.Uses == 1 + && clobber(x) + => (MOVWstore [i] {s} p w mem) +(MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem)) + && x.Uses == 1 + && clobber(x) + => (MOVWstore [i-1] {s} p w0 mem) + +(MOVBstore [i] {s} p1 (SHR(W|L)const [8] w) x:(MOVBstore [i] {s} p0 w mem)) + && x.Uses == 1 + && sequentialAddresses(p0, p1, 1) + && clobber(x) + => (MOVWstore [i] {s} p0 w mem) +(MOVBstore [i] {s} p0 w x:(MOVBstore {s} [i] p1 (SHR(W|L)const [8] w) mem)) + && x.Uses == 1 + && sequentialAddresses(p0, p1, 1) + && clobber(x) + => (MOVWstore [i] {s} p0 w mem) +(MOVBstore [i] {s} p1 (SHRLconst [j] w) x:(MOVBstore [i] {s} p0 w0:(SHRLconst [j-8] w) mem)) + && x.Uses == 1 + && sequentialAddresses(p0, p1, 1) + && clobber(x) + => (MOVWstore [i] {s} p0 w0 mem) + +(MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem)) + && x.Uses == 1 + && clobber(x) + => (MOVLstore [i-2] {s} p w mem) +(MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem)) + && x.Uses == 1 + && clobber(x) + => (MOVLstore [i-2] {s} p w0 mem) + +(MOVWstore [i] {s} p1 (SHRLconst [16] w) x:(MOVWstore [i] {s} p0 w mem)) + && x.Uses == 1 + && sequentialAddresses(p0, p1, 2) + && clobber(x) + => (MOVLstore [i] {s} p0 w mem) +(MOVWstore [i] {s} p1 (SHRLconst [j] w) x:(MOVWstore [i] {s} p0 w0:(SHRLconst [j-16] w) mem)) + && x.Uses == 1 + && sequentialAddresses(p0, p1, 2) + && clobber(x) + => (MOVLstore [i] {s} p0 w0 mem) + +// For PIC, break floating-point constant loading into two instructions so we have +// a register to use for holding the address of the constant pool entry. +(MOVSSconst [c]) && config.ctxt.Flag_shared => (MOVSSconst2 (MOVSSconst1 [c])) +(MOVSDconst [c]) && config.ctxt.Flag_shared => (MOVSDconst2 (MOVSDconst1 [c])) + +(CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) => (CMP(L|W|B)load {sym} [off] ptr x mem) +(CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) => (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem)) + +(CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c]) + && l.Uses == 1 + && validValAndOff(int64(c), int64(off)) + && clobber(l) => + @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff32(int32(c),int32(off))] ptr mem) + +(CMPLload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(c),int64(off)) => (CMPLconstload {sym} [makeValAndOff32(c,off)] ptr mem) +(CMPWload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int16(c)),int64(off)) => (CMPWconstload {sym} [makeValAndOff32(int32(int16(c)),off)] ptr mem) +(CMPBload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int8(c)),int64(off)) => (CMPBconstload {sym} [makeValAndOff32(int32(int8(c)),off)] ptr mem) + +(MOVBload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read8(sym, int64(off)))]) +(MOVWload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read16(sym, int64(off), config.ctxt.Arch.ByteOrder))]) +(MOVLload [off] {sym} (SB) _) && symIsRO(sym) => (MOVLconst [int32(read32(sym, int64(off), config.ctxt.Arch.ByteOrder))]) |