diff options
Diffstat (limited to 'src/crypto/rsa')
-rw-r--r-- | src/crypto/rsa/equal_test.go | 51 | ||||
-rw-r--r-- | src/crypto/rsa/example_test.go | 169 | ||||
-rw-r--r-- | src/crypto/rsa/pkcs1v15.go | 323 | ||||
-rw-r--r-- | src/crypto/rsa/pkcs1v15_test.go | 316 | ||||
-rw-r--r-- | src/crypto/rsa/pss.go | 303 | ||||
-rw-r--r-- | src/crypto/rsa/pss_test.go | 258 | ||||
-rw-r--r-- | src/crypto/rsa/rsa.go | 659 | ||||
-rw-r--r-- | src/crypto/rsa/rsa_test.go | 420 | ||||
-rw-r--r-- | src/crypto/rsa/testdata/pss-vect.txt.bz2 | bin | 0 -> 28526 bytes |
9 files changed, 2499 insertions, 0 deletions
diff --git a/src/crypto/rsa/equal_test.go b/src/crypto/rsa/equal_test.go new file mode 100644 index 0000000..90f4bf9 --- /dev/null +++ b/src/crypto/rsa/equal_test.go @@ -0,0 +1,51 @@ +// Copyright 2020 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa_test + +import ( + "crypto" + "crypto/rand" + "crypto/rsa" + "crypto/x509" + "testing" +) + +func TestEqual(t *testing.T) { + private, _ := rsa.GenerateKey(rand.Reader, 512) + public := &private.PublicKey + + if !public.Equal(public) { + t.Errorf("public key is not equal to itself: %v", public) + } + if !public.Equal(crypto.Signer(private).Public().(*rsa.PublicKey)) { + t.Errorf("private.Public() is not Equal to public: %q", public) + } + if !private.Equal(private) { + t.Errorf("private key is not equal to itself: %v", private) + } + + enc, err := x509.MarshalPKCS8PrivateKey(private) + if err != nil { + t.Fatal(err) + } + decoded, err := x509.ParsePKCS8PrivateKey(enc) + if err != nil { + t.Fatal(err) + } + if !public.Equal(decoded.(crypto.Signer).Public()) { + t.Errorf("public key is not equal to itself after decoding: %v", public) + } + if !private.Equal(decoded) { + t.Errorf("private key is not equal to itself after decoding: %v", private) + } + + other, _ := rsa.GenerateKey(rand.Reader, 512) + if public.Equal(other.Public()) { + t.Errorf("different public keys are Equal") + } + if private.Equal(other) { + t.Errorf("different private keys are Equal") + } +} diff --git a/src/crypto/rsa/example_test.go b/src/crypto/rsa/example_test.go new file mode 100644 index 0000000..ce5c2d9 --- /dev/null +++ b/src/crypto/rsa/example_test.go @@ -0,0 +1,169 @@ +// Copyright 2016 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "crypto" + "crypto/aes" + "crypto/cipher" + "crypto/rand" + "crypto/sha256" + "encoding/hex" + "fmt" + "io" + "os" +) + +// RSA is able to encrypt only a very limited amount of data. In order +// to encrypt reasonable amounts of data a hybrid scheme is commonly +// used: RSA is used to encrypt a key for a symmetric primitive like +// AES-GCM. +// +// Before encrypting, data is “padded” by embedding it in a known +// structure. This is done for a number of reasons, but the most +// obvious is to ensure that the value is large enough that the +// exponentiation is larger than the modulus. (Otherwise it could be +// decrypted with a square-root.) +// +// In these designs, when using PKCS #1 v1.5, it's vitally important to +// avoid disclosing whether the received RSA message was well-formed +// (that is, whether the result of decrypting is a correctly padded +// message) because this leaks secret information. +// DecryptPKCS1v15SessionKey is designed for this situation and copies +// the decrypted, symmetric key (if well-formed) in constant-time over +// a buffer that contains a random key. Thus, if the RSA result isn't +// well-formed, the implementation uses a random key in constant time. +func ExampleDecryptPKCS1v15SessionKey() { + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + // The hybrid scheme should use at least a 16-byte symmetric key. Here + // we read the random key that will be used if the RSA decryption isn't + // well-formed. + key := make([]byte, 32) + if _, err := io.ReadFull(rng, key); err != nil { + panic("RNG failure") + } + + rsaCiphertext, _ := hex.DecodeString("aabbccddeeff") + + if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil { + // Any errors that result will be “public” – meaning that they + // can be determined without any secret information. (For + // instance, if the length of key is impossible given the RSA + // public key.) + fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err) + return + } + + // Given the resulting key, a symmetric scheme can be used to decrypt a + // larger ciphertext. + block, err := aes.NewCipher(key) + if err != nil { + panic("aes.NewCipher failed: " + err.Error()) + } + + // Since the key is random, using a fixed nonce is acceptable as the + // (key, nonce) pair will still be unique, as required. + var zeroNonce [12]byte + aead, err := cipher.NewGCM(block) + if err != nil { + panic("cipher.NewGCM failed: " + err.Error()) + } + ciphertext, _ := hex.DecodeString("00112233445566") + plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil) + if err != nil { + // The RSA ciphertext was badly formed; the decryption will + // fail here because the AES-GCM key will be incorrect. + fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) +} + +func ExampleSignPKCS1v15() { + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + message := []byte("message to be signed") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:]) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err) + return + } + + fmt.Printf("Signature: %x\n", signature) +} + +func ExampleVerifyPKCS1v15() { + message := []byte("message to be signed") + signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530") + + // Only small messages can be signed directly; thus the hash of a + // message, rather than the message itself, is signed. This requires + // that the hash function be collision resistant. SHA-256 is the + // least-strong hash function that should be used for this at the time + // of writing (2016). + hashed := sha256.Sum256(message) + + err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err) + return + } + + // signature is a valid signature of message from the public key. +} + +func ExampleEncryptOAEP() { + secretMessage := []byte("send reinforcements, we're going to advance") + label := []byte("orders") + + // crypto/rand.Reader is a good source of entropy for randomizing the + // encryption function. + rng := rand.Reader + + ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err) + return + } + + // Since encryption is a randomized function, ciphertext will be + // different each time. + fmt.Printf("Ciphertext: %x\n", ciphertext) +} + +func ExampleDecryptOAEP() { + ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460") + label := []byte("orders") + + // crypto/rand.Reader is a good source of entropy for blinding the RSA + // operation. + rng := rand.Reader + + plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label) + if err != nil { + fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err) + return + } + + fmt.Printf("Plaintext: %s\n", string(plaintext)) + + // Remember that encryption only provides confidentiality. The + // ciphertext should be signed before authenticity is assumed and, even + // then, consider that messages might be reordered. +} diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go new file mode 100644 index 0000000..0cbd6d0 --- /dev/null +++ b/src/crypto/rsa/pkcs1v15.go @@ -0,0 +1,323 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "crypto" + "crypto/subtle" + "errors" + "io" + "math/big" + + "crypto/internal/randutil" +) + +// This file implements encryption and decryption using PKCS #1 v1.5 padding. + +// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using +// the crypto.Decrypter interface. +type PKCS1v15DecryptOptions struct { + // SessionKeyLen is the length of the session key that is being + // decrypted. If not zero, then a padding error during decryption will + // cause a random plaintext of this length to be returned rather than + // an error. These alternatives happen in constant time. + SessionKeyLen int +} + +// EncryptPKCS1v15 encrypts the given message with RSA and the padding +// scheme from PKCS #1 v1.5. The message must be no longer than the +// length of the public modulus minus 11 bytes. +// +// The rand parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same +// ciphertext. +// +// WARNING: use of this function to encrypt plaintexts other than +// session keys is dangerous. Use RSA OAEP in new protocols. +func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) { + randutil.MaybeReadByte(rand) + + if err := checkPub(pub); err != nil { + return nil, err + } + k := pub.Size() + if len(msg) > k-11 { + return nil, ErrMessageTooLong + } + + // EM = 0x00 || 0x02 || PS || 0x00 || M + em := make([]byte, k) + em[1] = 2 + ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] + err := nonZeroRandomBytes(ps, rand) + if err != nil { + return nil, err + } + em[len(em)-len(msg)-1] = 0 + copy(mm, msg) + + m := new(big.Int).SetBytes(em) + c := encrypt(new(big.Int), pub, m) + + return c.FillBytes(em), nil +} + +// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5. +// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. +// +// Note that whether this function returns an error or not discloses secret +// information. If an attacker can cause this function to run repeatedly and +// learn whether each instance returned an error then they can decrypt and +// forge signatures as if they had the private key. See +// DecryptPKCS1v15SessionKey for a way of solving this problem. +func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext) + if err != nil { + return nil, err + } + if valid == 0 { + return nil, ErrDecryption + } + return out[index:], nil +} + +// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5. +// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. +// It returns an error if the ciphertext is the wrong length or if the +// ciphertext is greater than the public modulus. Otherwise, no error is +// returned. If the padding is valid, the resulting plaintext message is copied +// into key. Otherwise, key is unchanged. These alternatives occur in constant +// time. It is intended that the user of this function generate a random +// session key beforehand and continue the protocol with the resulting value. +// This will remove any possibility that an attacker can learn any information +// about the plaintext. +// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA +// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology +// (Crypto '98). +// +// Note that if the session key is too small then it may be possible for an +// attacker to brute-force it. If they can do that then they can learn whether +// a random value was used (because it'll be different for the same ciphertext) +// and thus whether the padding was correct. This defeats the point of this +// function. Using at least a 16-byte key will protect against this attack. +func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + k := priv.Size() + if k-(len(key)+3+8) < 0 { + return ErrDecryption + } + + valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext) + if err != nil { + return err + } + + if len(em) != k { + // This should be impossible because decryptPKCS1v15 always + // returns the full slice. + return ErrDecryption + } + + valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) + subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) + return nil +} + +// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if +// rand is not nil. It returns one or zero in valid that indicates whether the +// plaintext was correctly structured. In either case, the plaintext is +// returned in em so that it may be read independently of whether it was valid +// in order to maintain constant memory access patterns. If the plaintext was +// valid then index contains the index of the original message in em. +func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { + k := priv.Size() + if k < 11 { + err = ErrDecryption + return + } + + c := new(big.Int).SetBytes(ciphertext) + m, err := decrypt(rand, priv, c) + if err != nil { + return + } + + em = m.FillBytes(make([]byte, k)) + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) + + // The remainder of the plaintext must be a string of non-zero random + // octets, followed by a 0, followed by the message. + // lookingForIndex: 1 iff we are still looking for the zero. + // index: the offset of the first zero byte. + lookingForIndex := 1 + + for i := 2; i < len(em); i++ { + equals0 := subtle.ConstantTimeByteEq(em[i], 0) + index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) + } + + // The PS padding must be at least 8 bytes long, and it starts two + // bytes into em. + validPS := subtle.ConstantTimeLessOrEq(2+8, index) + + valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS + index = subtle.ConstantTimeSelect(valid, index+1, 0) + return valid, em, index, nil +} + +// nonZeroRandomBytes fills the given slice with non-zero random octets. +func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { + _, err = io.ReadFull(rand, s) + if err != nil { + return + } + + for i := 0; i < len(s); i++ { + for s[i] == 0 { + _, err = io.ReadFull(rand, s[i:i+1]) + if err != nil { + return + } + // In tests, the PRNG may return all zeros so we do + // this to break the loop. + s[i] ^= 0x42 + } + } + + return +} + +// These are ASN1 DER structures: +// DigestInfo ::= SEQUENCE { +// digestAlgorithm AlgorithmIdentifier, +// digest OCTET STRING +// } +// For performance, we don't use the generic ASN1 encoder. Rather, we +// precompute a prefix of the digest value that makes a valid ASN1 DER string +// with the correct contents. +var hashPrefixes = map[crypto.Hash][]byte{ + crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, + crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, + crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, + crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, + crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, + crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, + crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix. + crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, +} + +// SignPKCS1v15 calculates the signature of hashed using +// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must +// be the result of hashing the input message using the given hash +// function. If hash is zero, hashed is signed directly. This isn't +// advisable except for interoperability. +// +// If rand is not nil then RSA blinding will be used to avoid timing +// side-channel attacks. +// +// This function is deterministic. Thus, if the set of possible +// messages is small, an attacker may be able to build a map from +// messages to signatures and identify the signed messages. As ever, +// signatures provide authenticity, not confidentiality. +func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return nil, err + } + + tLen := len(prefix) + hashLen + k := priv.Size() + if k < tLen+11 { + return nil, ErrMessageTooLong + } + + // EM = 0x00 || 0x01 || PS || 0x00 || T + em := make([]byte, k) + em[1] = 1 + for i := 2; i < k-tLen-1; i++ { + em[i] = 0xff + } + copy(em[k-tLen:k-hashLen], prefix) + copy(em[k-hashLen:k], hashed) + + m := new(big.Int).SetBytes(em) + c, err := decryptAndCheck(rand, priv, m) + if err != nil { + return nil, err + } + + return c.FillBytes(em), nil +} + +// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature. +// hashed is the result of hashing the input message using the given hash +// function and sig is the signature. A valid signature is indicated by +// returning a nil error. If hash is zero then hashed is used directly. This +// isn't advisable except for interoperability. +func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error { + hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) + if err != nil { + return err + } + + tLen := len(prefix) + hashLen + k := pub.Size() + if k < tLen+11 { + return ErrVerification + } + + // RFC 8017 Section 8.2.2: If the length of the signature S is not k + // octets (where k is the length in octets of the RSA modulus n), output + // "invalid signature" and stop. + if k != len(sig) { + return ErrVerification + } + + c := new(big.Int).SetBytes(sig) + m := encrypt(new(big.Int), pub, c) + em := m.FillBytes(make([]byte, k)) + // EM = 0x00 || 0x01 || PS || 0x00 || T + + ok := subtle.ConstantTimeByteEq(em[0], 0) + ok &= subtle.ConstantTimeByteEq(em[1], 1) + ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) + ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) + ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) + + for i := 2; i < k-tLen-1; i++ { + ok &= subtle.ConstantTimeByteEq(em[i], 0xff) + } + + if ok != 1 { + return ErrVerification + } + + return nil +} + +func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { + // Special case: crypto.Hash(0) is used to indicate that the data is + // signed directly. + if hash == 0 { + return inLen, nil, nil + } + + hashLen = hash.Size() + if inLen != hashLen { + return 0, nil, errors.New("crypto/rsa: input must be hashed message") + } + prefix, ok := hashPrefixes[hash] + if !ok { + return 0, nil, errors.New("crypto/rsa: unsupported hash function") + } + return +} diff --git a/src/crypto/rsa/pkcs1v15_test.go b/src/crypto/rsa/pkcs1v15_test.go new file mode 100644 index 0000000..26b8c5f --- /dev/null +++ b/src/crypto/rsa/pkcs1v15_test.go @@ -0,0 +1,316 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "bytes" + "crypto" + "crypto/rand" + "crypto/sha1" + "crypto/sha256" + "encoding/base64" + "encoding/hex" + "io" + "math/big" + "testing" + "testing/quick" +) + +func decodeBase64(in string) []byte { + out := make([]byte, base64.StdEncoding.DecodedLen(len(in))) + n, err := base64.StdEncoding.Decode(out, []byte(in)) + if err != nil { + return nil + } + return out[0:n] +} + +type DecryptPKCS1v15Test struct { + in, out string +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15Tests = []DecryptPKCS1v15Test{ + { + "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==", + "x", + }, + { + "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==", + "testing.", + }, + { + "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==", + "testing.\n", + }, + { + "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==", + "01234567890123456789012345678901234567890123456789012", + }, +} + +func TestDecryptPKCS1v15(t *testing.T) { + decryptionFuncs := []func([]byte) ([]byte, error){ + func(ciphertext []byte) (plaintext []byte, err error) { + return DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext) + }, + func(ciphertext []byte) (plaintext []byte, err error) { + return rsaPrivateKey.Decrypt(nil, ciphertext, nil) + }, + } + + for _, decryptFunc := range decryptionFuncs { + for i, test := range decryptPKCS1v15Tests { + out, err := decryptFunc(decodeBase64(test.in)) + if err != nil { + t.Errorf("#%d error decrypting", i) + } + want := []byte(test.out) + if !bytes.Equal(out, want) { + t.Errorf("#%d got:%#v want:%#v", i, out, want) + } + } + } +} + +func TestEncryptPKCS1v15(t *testing.T) { + random := rand.Reader + k := (rsaPrivateKey.N.BitLen() + 7) / 8 + + tryEncryptDecrypt := func(in []byte, blind bool) bool { + if len(in) > k-11 { + in = in[0 : k-11] + } + + ciphertext, err := EncryptPKCS1v15(random, &rsaPrivateKey.PublicKey, in) + if err != nil { + t.Errorf("error encrypting: %s", err) + return false + } + + var rand io.Reader + if !blind { + rand = nil + } else { + rand = random + } + plaintext, err := DecryptPKCS1v15(rand, rsaPrivateKey, ciphertext) + if err != nil { + t.Errorf("error decrypting: %s", err) + return false + } + + if !bytes.Equal(plaintext, in) { + t.Errorf("output mismatch: %#v %#v", plaintext, in) + return false + } + return true + } + + config := new(quick.Config) + if testing.Short() { + config.MaxCount = 10 + } + quick.Check(tryEncryptDecrypt, config) +} + +// These test vectors were generated with `openssl rsautl -pkcs -encrypt` +var decryptPKCS1v15SessionKeyTests = []DecryptPKCS1v15Test{ + { + "e6ukkae6Gykq0fKzYwULpZehX+UPXYzMoB5mHQUDEiclRbOTqas4Y0E6nwns1BBpdvEJcilhl5zsox/6DtGsYg==", + "1234", + }, + { + "Dtis4uk/q/LQGGqGk97P59K03hkCIVFMEFZRgVWOAAhxgYpCRG0MX2adptt92l67IqMki6iVQyyt0TtX3IdtEw==", + "FAIL", + }, + { + "LIyFyCYCptPxrvTxpol8F3M7ZivlMsf53zs0vHRAv+rDIh2YsHS69ePMoPMe3TkOMZ3NupiL3takPxIs1sK+dw==", + "abcd", + }, + { + "bafnobel46bKy76JzqU/RIVOH0uAYvzUtauKmIidKgM0sMlvobYVAVQPeUQ/oTGjbIZ1v/6Gyi5AO4DtHruGdw==", + "FAIL", + }, +} + +func TestEncryptPKCS1v15SessionKey(t *testing.T) { + for i, test := range decryptPKCS1v15SessionKeyTests { + key := []byte("FAIL") + err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, decodeBase64(test.in), key) + if err != nil { + t.Errorf("#%d error decrypting", i) + } + want := []byte(test.out) + if !bytes.Equal(key, want) { + t.Errorf("#%d got:%#v want:%#v", i, key, want) + } + } +} + +func TestEncryptPKCS1v15DecrypterSessionKey(t *testing.T) { + for i, test := range decryptPKCS1v15SessionKeyTests { + plaintext, err := rsaPrivateKey.Decrypt(rand.Reader, decodeBase64(test.in), &PKCS1v15DecryptOptions{SessionKeyLen: 4}) + if err != nil { + t.Fatalf("#%d: error decrypting: %s", i, err) + } + if len(plaintext) != 4 { + t.Fatalf("#%d: incorrect length plaintext: got %d, want 4", i, len(plaintext)) + } + + if test.out != "FAIL" && !bytes.Equal(plaintext, []byte(test.out)) { + t.Errorf("#%d: incorrect plaintext: got %x, want %x", i, plaintext, test.out) + } + } +} + +func TestNonZeroRandomBytes(t *testing.T) { + random := rand.Reader + + b := make([]byte, 512) + err := nonZeroRandomBytes(b, random) + if err != nil { + t.Errorf("returned error: %s", err) + } + for _, b := range b { + if b == 0 { + t.Errorf("Zero octet found") + return + } + } +} + +type signPKCS1v15Test struct { + in, out string +} + +// These vectors have been tested with +// `openssl rsautl -verify -inkey pk -in signature | hexdump -C` +var signPKCS1v15Tests = []signPKCS1v15Test{ + {"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"}, +} + +func TestSignPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum(nil) + + s, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA1, digest) + if err != nil { + t.Errorf("#%d %s", i, err) + } + + expected, _ := hex.DecodeString(test.out) + if !bytes.Equal(s, expected) { + t.Errorf("#%d got: %x want: %x", i, s, expected) + } + } +} + +func TestVerifyPKCS1v15(t *testing.T) { + for i, test := range signPKCS1v15Tests { + h := sha1.New() + h.Write([]byte(test.in)) + digest := h.Sum(nil) + + sig, _ := hex.DecodeString(test.out) + + err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA1, digest, sig) + if err != nil { + t.Errorf("#%d %s", i, err) + } + } +} + +func TestOverlongMessagePKCS1v15(t *testing.T) { + ciphertext := decodeBase64("fjOVdirUzFoLlukv80dBllMLjXythIf22feqPrNo0YoIjzyzyoMFiLjAc/Y4krkeZ11XFThIrEvw\nkRiZcCq5ng==") + _, err := DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext) + if err == nil { + t.Error("RSA decrypted a message that was too long.") + } +} + +func TestUnpaddedSignature(t *testing.T) { + msg := []byte("Thu Dec 19 18:06:16 EST 2013\n") + // This base64 value was generated with: + // % echo Thu Dec 19 18:06:16 EST 2013 > /tmp/msg + // % openssl rsautl -sign -inkey key -out /tmp/sig -in /tmp/msg + // + // Where "key" contains the RSA private key given at the bottom of this + // file. + expectedSig := decodeBase64("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==") + + sig, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.Hash(0), msg) + if err != nil { + t.Fatalf("SignPKCS1v15 failed: %s", err) + } + if !bytes.Equal(sig, expectedSig) { + t.Fatalf("signature is not expected value: got %x, want %x", sig, expectedSig) + } + if err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.Hash(0), msg, sig); err != nil { + t.Fatalf("signature failed to verify: %s", err) + } +} + +func TestShortSessionKey(t *testing.T) { + // This tests that attempting to decrypt a session key where the + // ciphertext is too small doesn't run outside the array bounds. + ciphertext, err := EncryptPKCS1v15(rand.Reader, &rsaPrivateKey.PublicKey, []byte{1}) + if err != nil { + t.Fatalf("Failed to encrypt short message: %s", err) + } + + var key [32]byte + if err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, ciphertext, key[:]); err != nil { + t.Fatalf("Failed to decrypt short message: %s", err) + } + + for _, v := range key { + if v != 0 { + t.Fatal("key was modified when ciphertext was invalid") + } + } +} + +// In order to generate new test vectors you'll need the PEM form of this key (and s/TESTING/PRIVATE/): +// -----BEGIN RSA TESTING KEY----- +// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0 +// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu +// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu +// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/ +// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A +// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS +// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V +// -----END RSA TESTING KEY----- + +var rsaPrivateKey = &PrivateKey{ + PublicKey: PublicKey{ + N: fromBase10("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077"), + E: 65537, + }, + D: fromBase10("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861"), + Primes: []*big.Int{ + fromBase10("98920366548084643601728869055592650835572950932266967461790948584315647051443"), + fromBase10("94560208308847015747498523884063394671606671904944666360068158221458669711639"), + }, +} + +func TestShortPKCS1v15Signature(t *testing.T) { + pub := &PublicKey{ + E: 65537, + N: fromBase10("8272693557323587081220342447407965471608219912416565371060697606400726784709760494166080686904546560026343451112103559482851304715739629410219358933351333"), + } + sig, err := hex.DecodeString("193a310d0dcf64094c6e3a00c8219b80ded70535473acff72c08e1222974bb24a93a535b1dc4c59fc0e65775df7ba2007dd20e9193f4c4025a18a7070aee93") + if err != nil { + t.Fatalf("failed to decode signature: %s", err) + } + + h := sha256.Sum256([]byte("hello")) + err = VerifyPKCS1v15(pub, crypto.SHA256, h[:], sig) + if err == nil { + t.Fatal("VerifyPKCS1v15 accepted a truncated signature") + } +} diff --git a/src/crypto/rsa/pss.go b/src/crypto/rsa/pss.go new file mode 100644 index 0000000..b2adbed --- /dev/null +++ b/src/crypto/rsa/pss.go @@ -0,0 +1,303 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +// This file implements the RSASSA-PSS signature scheme according to RFC 8017. + +import ( + "bytes" + "crypto" + "errors" + "hash" + "io" + "math/big" +) + +// Per RFC 8017, Section 9.1 +// +// EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc +// +// where +// +// DB = PS || 0x01 || salt +// +// and PS can be empty so +// +// emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2 +// + +func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) { + // See RFC 8017, Section 9.1.1. + + hLen := hash.Size() + sLen := len(salt) + emLen := (emBits + 7) / 8 + + // 1. If the length of M is greater than the input limitation for the + // hash function (2^61 - 1 octets for SHA-1), output "message too + // long" and stop. + // + // 2. Let mHash = Hash(M), an octet string of length hLen. + + if len(mHash) != hLen { + return nil, errors.New("crypto/rsa: input must be hashed with given hash") + } + + // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop. + + if emLen < hLen+sLen+2 { + return nil, errors.New("crypto/rsa: key size too small for PSS signature") + } + + em := make([]byte, emLen) + psLen := emLen - sLen - hLen - 2 + db := em[:psLen+1+sLen] + h := em[psLen+1+sLen : emLen-1] + + // 4. Generate a random octet string salt of length sLen; if sLen = 0, + // then salt is the empty string. + // + // 5. Let + // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt; + // + // M' is an octet string of length 8 + hLen + sLen with eight + // initial zero octets. + // + // 6. Let H = Hash(M'), an octet string of length hLen. + + var prefix [8]byte + + hash.Write(prefix[:]) + hash.Write(mHash) + hash.Write(salt) + + h = hash.Sum(h[:0]) + hash.Reset() + + // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2 + // zero octets. The length of PS may be 0. + // + // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length + // emLen - hLen - 1. + + db[psLen] = 0x01 + copy(db[psLen+1:], salt) + + // 9. Let dbMask = MGF(H, emLen - hLen - 1). + // + // 10. Let maskedDB = DB \xor dbMask. + + mgf1XOR(db, hash, h) + + // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in + // maskedDB to zero. + + db[0] &= 0xff >> (8*emLen - emBits) + + // 12. Let EM = maskedDB || H || 0xbc. + em[emLen-1] = 0xbc + + // 13. Output EM. + return em, nil +} + +func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error { + // See RFC 8017, Section 9.1.2. + + hLen := hash.Size() + if sLen == PSSSaltLengthEqualsHash { + sLen = hLen + } + emLen := (emBits + 7) / 8 + if emLen != len(em) { + return errors.New("rsa: internal error: inconsistent length") + } + + // 1. If the length of M is greater than the input limitation for the + // hash function (2^61 - 1 octets for SHA-1), output "inconsistent" + // and stop. + // + // 2. Let mHash = Hash(M), an octet string of length hLen. + if hLen != len(mHash) { + return ErrVerification + } + + // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop. + if emLen < hLen+sLen+2 { + return ErrVerification + } + + // 4. If the rightmost octet of EM does not have hexadecimal value + // 0xbc, output "inconsistent" and stop. + if em[emLen-1] != 0xbc { + return ErrVerification + } + + // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and + // let H be the next hLen octets. + db := em[:emLen-hLen-1] + h := em[emLen-hLen-1 : emLen-1] + + // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in + // maskedDB are not all equal to zero, output "inconsistent" and + // stop. + var bitMask byte = 0xff >> (8*emLen - emBits) + if em[0] & ^bitMask != 0 { + return ErrVerification + } + + // 7. Let dbMask = MGF(H, emLen - hLen - 1). + // + // 8. Let DB = maskedDB \xor dbMask. + mgf1XOR(db, hash, h) + + // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB + // to zero. + db[0] &= bitMask + + // If we don't know the salt length, look for the 0x01 delimiter. + if sLen == PSSSaltLengthAuto { + psLen := bytes.IndexByte(db, 0x01) + if psLen < 0 { + return ErrVerification + } + sLen = len(db) - psLen - 1 + } + + // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero + // or if the octet at position emLen - hLen - sLen - 1 (the leftmost + // position is "position 1") does not have hexadecimal value 0x01, + // output "inconsistent" and stop. + psLen := emLen - hLen - sLen - 2 + for _, e := range db[:psLen] { + if e != 0x00 { + return ErrVerification + } + } + if db[psLen] != 0x01 { + return ErrVerification + } + + // 11. Let salt be the last sLen octets of DB. + salt := db[len(db)-sLen:] + + // 12. Let + // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ; + // M' is an octet string of length 8 + hLen + sLen with eight + // initial zero octets. + // + // 13. Let H' = Hash(M'), an octet string of length hLen. + var prefix [8]byte + hash.Write(prefix[:]) + hash.Write(mHash) + hash.Write(salt) + + h0 := hash.Sum(nil) + + // 14. If H = H', output "consistent." Otherwise, output "inconsistent." + if !bytes.Equal(h0, h) { // TODO: constant time? + return ErrVerification + } + return nil +} + +// signPSSWithSalt calculates the signature of hashed using PSS with specified salt. +// Note that hashed must be the result of hashing the input message using the +// given hash function. salt is a random sequence of bytes whose length will be +// later used to verify the signature. +func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) { + emBits := priv.N.BitLen() - 1 + em, err := emsaPSSEncode(hashed, emBits, salt, hash.New()) + if err != nil { + return nil, err + } + m := new(big.Int).SetBytes(em) + c, err := decryptAndCheck(rand, priv, m) + if err != nil { + return nil, err + } + s := make([]byte, priv.Size()) + return c.FillBytes(s), nil +} + +const ( + // PSSSaltLengthAuto causes the salt in a PSS signature to be as large + // as possible when signing, and to be auto-detected when verifying. + PSSSaltLengthAuto = 0 + // PSSSaltLengthEqualsHash causes the salt length to equal the length + // of the hash used in the signature. + PSSSaltLengthEqualsHash = -1 +) + +// PSSOptions contains options for creating and verifying PSS signatures. +type PSSOptions struct { + // SaltLength controls the length of the salt used in the PSS + // signature. It can either be a number of bytes, or one of the special + // PSSSaltLength constants. + SaltLength int + + // Hash is the hash function used to generate the message digest. If not + // zero, it overrides the hash function passed to SignPSS. It's required + // when using PrivateKey.Sign. + Hash crypto.Hash +} + +// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts. +func (opts *PSSOptions) HashFunc() crypto.Hash { + return opts.Hash +} + +func (opts *PSSOptions) saltLength() int { + if opts == nil { + return PSSSaltLengthAuto + } + return opts.SaltLength +} + +// SignPSS calculates the signature of digest using PSS. +// +// digest must be the result of hashing the input message using the given hash +// function. The opts argument may be nil, in which case sensible defaults are +// used. If opts.Hash is set, it overrides hash. +func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) { + if opts != nil && opts.Hash != 0 { + hash = opts.Hash + } + + saltLength := opts.saltLength() + switch saltLength { + case PSSSaltLengthAuto: + saltLength = priv.Size() - 2 - hash.Size() + case PSSSaltLengthEqualsHash: + saltLength = hash.Size() + } + + salt := make([]byte, saltLength) + if _, err := io.ReadFull(rand, salt); err != nil { + return nil, err + } + return signPSSWithSalt(rand, priv, hash, digest, salt) +} + +// VerifyPSS verifies a PSS signature. +// +// A valid signature is indicated by returning a nil error. digest must be the +// result of hashing the input message using the given hash function. The opts +// argument may be nil, in which case sensible defaults are used. opts.Hash is +// ignored. +func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error { + if len(sig) != pub.Size() { + return ErrVerification + } + s := new(big.Int).SetBytes(sig) + m := encrypt(new(big.Int), pub, s) + emBits := pub.N.BitLen() - 1 + emLen := (emBits + 7) / 8 + if m.BitLen() > emLen*8 { + return ErrVerification + } + em := m.FillBytes(make([]byte, emLen)) + return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New()) +} diff --git a/src/crypto/rsa/pss_test.go b/src/crypto/rsa/pss_test.go new file mode 100644 index 0000000..dfa8d8b --- /dev/null +++ b/src/crypto/rsa/pss_test.go @@ -0,0 +1,258 @@ +// Copyright 2013 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "bufio" + "bytes" + "compress/bzip2" + "crypto" + _ "crypto/md5" + "crypto/rand" + "crypto/sha1" + _ "crypto/sha256" + "encoding/hex" + "math/big" + "os" + "strconv" + "strings" + "testing" +) + +func TestEMSAPSS(t *testing.T) { + // Test vector in file pss-int.txt from: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip + msg := []byte{ + 0x85, 0x9e, 0xef, 0x2f, 0xd7, 0x8a, 0xca, 0x00, 0x30, 0x8b, + 0xdc, 0x47, 0x11, 0x93, 0xbf, 0x55, 0xbf, 0x9d, 0x78, 0xdb, + 0x8f, 0x8a, 0x67, 0x2b, 0x48, 0x46, 0x34, 0xf3, 0xc9, 0xc2, + 0x6e, 0x64, 0x78, 0xae, 0x10, 0x26, 0x0f, 0xe0, 0xdd, 0x8c, + 0x08, 0x2e, 0x53, 0xa5, 0x29, 0x3a, 0xf2, 0x17, 0x3c, 0xd5, + 0x0c, 0x6d, 0x5d, 0x35, 0x4f, 0xeb, 0xf7, 0x8b, 0x26, 0x02, + 0x1c, 0x25, 0xc0, 0x27, 0x12, 0xe7, 0x8c, 0xd4, 0x69, 0x4c, + 0x9f, 0x46, 0x97, 0x77, 0xe4, 0x51, 0xe7, 0xf8, 0xe9, 0xe0, + 0x4c, 0xd3, 0x73, 0x9c, 0x6b, 0xbf, 0xed, 0xae, 0x48, 0x7f, + 0xb5, 0x56, 0x44, 0xe9, 0xca, 0x74, 0xff, 0x77, 0xa5, 0x3c, + 0xb7, 0x29, 0x80, 0x2f, 0x6e, 0xd4, 0xa5, 0xff, 0xa8, 0xba, + 0x15, 0x98, 0x90, 0xfc, + } + salt := []byte{ + 0xe3, 0xb5, 0xd5, 0xd0, 0x02, 0xc1, 0xbc, 0xe5, 0x0c, 0x2b, + 0x65, 0xef, 0x88, 0xa1, 0x88, 0xd8, 0x3b, 0xce, 0x7e, 0x61, + } + expected := []byte{ + 0x66, 0xe4, 0x67, 0x2e, 0x83, 0x6a, 0xd1, 0x21, 0xba, 0x24, + 0x4b, 0xed, 0x65, 0x76, 0xb8, 0x67, 0xd9, 0xa4, 0x47, 0xc2, + 0x8a, 0x6e, 0x66, 0xa5, 0xb8, 0x7d, 0xee, 0x7f, 0xbc, 0x7e, + 0x65, 0xaf, 0x50, 0x57, 0xf8, 0x6f, 0xae, 0x89, 0x84, 0xd9, + 0xba, 0x7f, 0x96, 0x9a, 0xd6, 0xfe, 0x02, 0xa4, 0xd7, 0x5f, + 0x74, 0x45, 0xfe, 0xfd, 0xd8, 0x5b, 0x6d, 0x3a, 0x47, 0x7c, + 0x28, 0xd2, 0x4b, 0xa1, 0xe3, 0x75, 0x6f, 0x79, 0x2d, 0xd1, + 0xdc, 0xe8, 0xca, 0x94, 0x44, 0x0e, 0xcb, 0x52, 0x79, 0xec, + 0xd3, 0x18, 0x3a, 0x31, 0x1f, 0xc8, 0x96, 0xda, 0x1c, 0xb3, + 0x93, 0x11, 0xaf, 0x37, 0xea, 0x4a, 0x75, 0xe2, 0x4b, 0xdb, + 0xfd, 0x5c, 0x1d, 0xa0, 0xde, 0x7c, 0xec, 0xdf, 0x1a, 0x89, + 0x6f, 0x9d, 0x8b, 0xc8, 0x16, 0xd9, 0x7c, 0xd7, 0xa2, 0xc4, + 0x3b, 0xad, 0x54, 0x6f, 0xbe, 0x8c, 0xfe, 0xbc, + } + + hash := sha1.New() + hash.Write(msg) + hashed := hash.Sum(nil) + + encoded, err := emsaPSSEncode(hashed, 1023, salt, sha1.New()) + if err != nil { + t.Errorf("Error from emsaPSSEncode: %s\n", err) + } + if !bytes.Equal(encoded, expected) { + t.Errorf("Bad encoding. got %x, want %x", encoded, expected) + } + + if err = emsaPSSVerify(hashed, encoded, 1023, len(salt), sha1.New()); err != nil { + t.Errorf("Bad verification: %s", err) + } +} + +// TestPSSGolden tests all the test vectors in pss-vect.txt from +// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip +func TestPSSGolden(t *testing.T) { + inFile, err := os.Open("testdata/pss-vect.txt.bz2") + if err != nil { + t.Fatalf("Failed to open input file: %s", err) + } + defer inFile.Close() + + // The pss-vect.txt file contains RSA keys and then a series of + // signatures. A goroutine is used to preprocess the input by merging + // lines, removing spaces in hex values and identifying the start of + // new keys and signature blocks. + const newKeyMarker = "START NEW KEY" + const newSignatureMarker = "START NEW SIGNATURE" + + values := make(chan string) + + go func() { + defer close(values) + scanner := bufio.NewScanner(bzip2.NewReader(inFile)) + var partialValue string + lastWasValue := true + + for scanner.Scan() { + line := scanner.Text() + switch { + case len(line) == 0: + if len(partialValue) > 0 { + values <- strings.ReplaceAll(partialValue, " ", "") + partialValue = "" + lastWasValue = true + } + continue + case strings.HasPrefix(line, "# ======") && lastWasValue: + values <- newKeyMarker + lastWasValue = false + case strings.HasPrefix(line, "# ------") && lastWasValue: + values <- newSignatureMarker + lastWasValue = false + case strings.HasPrefix(line, "#"): + continue + default: + partialValue += line + } + } + if err := scanner.Err(); err != nil { + panic(err) + } + }() + + var key *PublicKey + var hashed []byte + hash := crypto.SHA1 + h := hash.New() + opts := &PSSOptions{ + SaltLength: PSSSaltLengthEqualsHash, + } + + for marker := range values { + switch marker { + case newKeyMarker: + key = new(PublicKey) + nHex, ok := <-values + if !ok { + continue + } + key.N = bigFromHex(nHex) + key.E = intFromHex(<-values) + // We don't care for d, p, q, dP, dQ or qInv. + for i := 0; i < 6; i++ { + <-values + } + case newSignatureMarker: + msg := fromHex(<-values) + <-values // skip salt + sig := fromHex(<-values) + + h.Reset() + h.Write(msg) + hashed = h.Sum(hashed[:0]) + + if err := VerifyPSS(key, hash, hashed, sig, opts); err != nil { + t.Error(err) + } + default: + t.Fatalf("unknown marker: " + marker) + } + } +} + +// TestPSSOpenSSL ensures that we can verify a PSS signature from OpenSSL with +// the default options. OpenSSL sets the salt length to be maximal. +func TestPSSOpenSSL(t *testing.T) { + hash := crypto.SHA256 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + + // Generated with `echo -n testing | openssl dgst -sign key.pem -sigopt rsa_padding_mode:pss -sha256 > sig` + sig := []byte{ + 0x95, 0x59, 0x6f, 0xd3, 0x10, 0xa2, 0xe7, 0xa2, 0x92, 0x9d, + 0x4a, 0x07, 0x2e, 0x2b, 0x27, 0xcc, 0x06, 0xc2, 0x87, 0x2c, + 0x52, 0xf0, 0x4a, 0xcc, 0x05, 0x94, 0xf2, 0xc3, 0x2e, 0x20, + 0xd7, 0x3e, 0x66, 0x62, 0xb5, 0x95, 0x2b, 0xa3, 0x93, 0x9a, + 0x66, 0x64, 0x25, 0xe0, 0x74, 0x66, 0x8c, 0x3e, 0x92, 0xeb, + 0xc6, 0xe6, 0xc0, 0x44, 0xf3, 0xb4, 0xb4, 0x2e, 0x8c, 0x66, + 0x0a, 0x37, 0x9c, 0x69, + } + + if err := VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, nil); err != nil { + t.Error(err) + } +} + +func TestPSSNilOpts(t *testing.T) { + hash := crypto.SHA256 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + + SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, nil) +} + +func TestPSSSigning(t *testing.T) { + var saltLengthCombinations = []struct { + signSaltLength, verifySaltLength int + good bool + }{ + {PSSSaltLengthAuto, PSSSaltLengthAuto, true}, + {PSSSaltLengthEqualsHash, PSSSaltLengthAuto, true}, + {PSSSaltLengthEqualsHash, PSSSaltLengthEqualsHash, true}, + {PSSSaltLengthEqualsHash, 8, false}, + {PSSSaltLengthAuto, PSSSaltLengthEqualsHash, false}, + {8, 8, true}, + } + + hash := crypto.MD5 + h := hash.New() + h.Write([]byte("testing")) + hashed := h.Sum(nil) + var opts PSSOptions + + for i, test := range saltLengthCombinations { + opts.SaltLength = test.signSaltLength + sig, err := SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, &opts) + if err != nil { + t.Errorf("#%d: error while signing: %s", i, err) + continue + } + + opts.SaltLength = test.verifySaltLength + err = VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, &opts) + if (err == nil) != test.good { + t.Errorf("#%d: bad result, wanted: %t, got: %s", i, test.good, err) + } + } +} + +func bigFromHex(hex string) *big.Int { + n, ok := new(big.Int).SetString(hex, 16) + if !ok { + panic("bad hex: " + hex) + } + return n +} + +func intFromHex(hex string) int { + i, err := strconv.ParseInt(hex, 16, 32) + if err != nil { + panic(err) + } + return int(i) +} + +func fromHex(hexStr string) []byte { + s, err := hex.DecodeString(hexStr) + if err != nil { + panic(err) + } + return s +} diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go new file mode 100644 index 0000000..178ade6 --- /dev/null +++ b/src/crypto/rsa/rsa.go @@ -0,0 +1,659 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017. +// +// RSA is a single, fundamental operation that is used in this package to +// implement either public-key encryption or public-key signatures. +// +// The original specification for encryption and signatures with RSA is PKCS #1 +// and the terms "RSA encryption" and "RSA signatures" by default refer to +// PKCS #1 version 1.5. However, that specification has flaws and new designs +// should use version 2, usually called by just OAEP and PSS, where +// possible. +// +// Two sets of interfaces are included in this package. When a more abstract +// interface isn't necessary, there are functions for encrypting/decrypting +// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract +// over the public key primitive, the PrivateKey type implements the +// Decrypter and Signer interfaces from the crypto package. +// +// The RSA operations in this package are not implemented using constant-time algorithms. +package rsa + +import ( + "crypto" + "crypto/rand" + "crypto/subtle" + "errors" + "hash" + "io" + "math" + "math/big" + + "crypto/internal/randutil" +) + +var bigZero = big.NewInt(0) +var bigOne = big.NewInt(1) + +// A PublicKey represents the public part of an RSA key. +type PublicKey struct { + N *big.Int // modulus + E int // public exponent +} + +// Any methods implemented on PublicKey might need to also be implemented on +// PrivateKey, as the latter embeds the former and will expose its methods. + +// Size returns the modulus size in bytes. Raw signatures and ciphertexts +// for or by this public key will have the same size. +func (pub *PublicKey) Size() int { + return (pub.N.BitLen() + 7) / 8 +} + +// Equal reports whether pub and x have the same value. +func (pub *PublicKey) Equal(x crypto.PublicKey) bool { + xx, ok := x.(*PublicKey) + if !ok { + return false + } + return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E +} + +// OAEPOptions is an interface for passing options to OAEP decryption using the +// crypto.Decrypter interface. +type OAEPOptions struct { + // Hash is the hash function that will be used when generating the mask. + Hash crypto.Hash + // Label is an arbitrary byte string that must be equal to the value + // used when encrypting. + Label []byte +} + +var ( + errPublicModulus = errors.New("crypto/rsa: missing public modulus") + errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") + errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") +) + +// checkPub sanity checks the public key before we use it. +// We require pub.E to fit into a 32-bit integer so that we +// do not have different behavior depending on whether +// int is 32 or 64 bits. See also +// https://www.imperialviolet.org/2012/03/16/rsae.html. +func checkPub(pub *PublicKey) error { + if pub.N == nil { + return errPublicModulus + } + if pub.E < 2 { + return errPublicExponentSmall + } + if pub.E > 1<<31-1 { + return errPublicExponentLarge + } + return nil +} + +// A PrivateKey represents an RSA key +type PrivateKey struct { + PublicKey // public part. + D *big.Int // private exponent + Primes []*big.Int // prime factors of N, has >= 2 elements. + + // Precomputed contains precomputed values that speed up private + // operations, if available. + Precomputed PrecomputedValues +} + +// Public returns the public key corresponding to priv. +func (priv *PrivateKey) Public() crypto.PublicKey { + return &priv.PublicKey +} + +// Equal reports whether priv and x have equivalent values. It ignores +// Precomputed values. +func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool { + xx, ok := x.(*PrivateKey) + if !ok { + return false + } + if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 { + return false + } + if len(priv.Primes) != len(xx.Primes) { + return false + } + for i := range priv.Primes { + if priv.Primes[i].Cmp(xx.Primes[i]) != 0 { + return false + } + } + return true +} + +// Sign signs digest with priv, reading randomness from rand. If opts is a +// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will +// be used. digest must be the result of hashing the input message using +// opts.HashFunc(). +// +// This method implements crypto.Signer, which is an interface to support keys +// where the private part is kept in, for example, a hardware module. Common +// uses should use the Sign* functions in this package directly. +func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { + if pssOpts, ok := opts.(*PSSOptions); ok { + return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts) + } + + return SignPKCS1v15(rand, priv, opts.HashFunc(), digest) +} + +// Decrypt decrypts ciphertext with priv. If opts is nil or of type +// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise +// opts must have type *OAEPOptions and OAEP decryption is done. +func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { + if opts == nil { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + switch opts := opts.(type) { + case *OAEPOptions: + return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) + + case *PKCS1v15DecryptOptions: + if l := opts.SessionKeyLen; l > 0 { + plaintext = make([]byte, l) + if _, err := io.ReadFull(rand, plaintext); err != nil { + return nil, err + } + if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { + return nil, err + } + return plaintext, nil + } else { + return DecryptPKCS1v15(rand, priv, ciphertext) + } + + default: + return nil, errors.New("crypto/rsa: invalid options for Decrypt") + } +} + +type PrecomputedValues struct { + Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) + Qinv *big.Int // Q^-1 mod P + + // CRTValues is used for the 3rd and subsequent primes. Due to a + // historical accident, the CRT for the first two primes is handled + // differently in PKCS #1 and interoperability is sufficiently + // important that we mirror this. + CRTValues []CRTValue +} + +// CRTValue contains the precomputed Chinese remainder theorem values. +type CRTValue struct { + Exp *big.Int // D mod (prime-1). + Coeff *big.Int // R·Coeff ≡ 1 mod Prime. + R *big.Int // product of primes prior to this (inc p and q). +} + +// Validate performs basic sanity checks on the key. +// It returns nil if the key is valid, or else an error describing a problem. +func (priv *PrivateKey) Validate() error { + if err := checkPub(&priv.PublicKey); err != nil { + return err + } + + // Check that Πprimes == n. + modulus := new(big.Int).Set(bigOne) + for _, prime := range priv.Primes { + // Any primes ≤ 1 will cause divide-by-zero panics later. + if prime.Cmp(bigOne) <= 0 { + return errors.New("crypto/rsa: invalid prime value") + } + modulus.Mul(modulus, prime) + } + if modulus.Cmp(priv.N) != 0 { + return errors.New("crypto/rsa: invalid modulus") + } + + // Check that de ≡ 1 mod p-1, for each prime. + // This implies that e is coprime to each p-1 as e has a multiplicative + // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = + // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 + // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. + congruence := new(big.Int) + de := new(big.Int).SetInt64(int64(priv.E)) + de.Mul(de, priv.D) + for _, prime := range priv.Primes { + pminus1 := new(big.Int).Sub(prime, bigOne) + congruence.Mod(de, pminus1) + if congruence.Cmp(bigOne) != 0 { + return errors.New("crypto/rsa: invalid exponents") + } + } + return nil +} + +// GenerateKey generates an RSA keypair of the given bit size using the +// random source random (for example, crypto/rand.Reader). +func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { + return GenerateMultiPrimeKey(random, 2, bits) +} + +// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit +// size and the given random source, as suggested in [1]. Although the public +// keys are compatible (actually, indistinguishable) from the 2-prime case, +// the private keys are not. Thus it may not be possible to export multi-prime +// private keys in certain formats or to subsequently import them into other +// code. +// +// Table 1 in [2] suggests maximum numbers of primes for a given size. +// +// [1] US patent 4405829 (1972, expired) +// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf +func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { + randutil.MaybeReadByte(random) + + priv := new(PrivateKey) + priv.E = 65537 + + if nprimes < 2 { + return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") + } + + if bits < 64 { + primeLimit := float64(uint64(1) << uint(bits/nprimes)) + // pi approximates the number of primes less than primeLimit + pi := primeLimit / (math.Log(primeLimit) - 1) + // Generated primes start with 11 (in binary) so we can only + // use a quarter of them. + pi /= 4 + // Use a factor of two to ensure that key generation terminates + // in a reasonable amount of time. + pi /= 2 + if pi <= float64(nprimes) { + return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key") + } + } + + primes := make([]*big.Int, nprimes) + +NextSetOfPrimes: + for { + todo := bits + // crypto/rand should set the top two bits in each prime. + // Thus each prime has the form + // p_i = 2^bitlen(p_i) × 0.11... (in base 2). + // And the product is: + // P = 2^todo × α + // where α is the product of nprimes numbers of the form 0.11... + // + // If α < 1/2 (which can happen for nprimes > 2), we need to + // shift todo to compensate for lost bits: the mean value of 0.11... + // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 + // will give good results. + if nprimes >= 7 { + todo += (nprimes - 2) / 5 + } + for i := 0; i < nprimes; i++ { + var err error + primes[i], err = rand.Prime(random, todo/(nprimes-i)) + if err != nil { + return nil, err + } + todo -= primes[i].BitLen() + } + + // Make sure that primes is pairwise unequal. + for i, prime := range primes { + for j := 0; j < i; j++ { + if prime.Cmp(primes[j]) == 0 { + continue NextSetOfPrimes + } + } + } + + n := new(big.Int).Set(bigOne) + totient := new(big.Int).Set(bigOne) + pminus1 := new(big.Int) + for _, prime := range primes { + n.Mul(n, prime) + pminus1.Sub(prime, bigOne) + totient.Mul(totient, pminus1) + } + if n.BitLen() != bits { + // This should never happen for nprimes == 2 because + // crypto/rand should set the top two bits in each prime. + // For nprimes > 2 we hope it does not happen often. + continue NextSetOfPrimes + } + + priv.D = new(big.Int) + e := big.NewInt(int64(priv.E)) + ok := priv.D.ModInverse(e, totient) + + if ok != nil { + priv.Primes = primes + priv.N = n + break + } + } + + priv.Precompute() + return priv, nil +} + +// incCounter increments a four byte, big-endian counter. +func incCounter(c *[4]byte) { + if c[3]++; c[3] != 0 { + return + } + if c[2]++; c[2] != 0 { + return + } + if c[1]++; c[1] != 0 { + return + } + c[0]++ +} + +// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function +// specified in PKCS #1 v2.1. +func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { + var counter [4]byte + var digest []byte + + done := 0 + for done < len(out) { + hash.Write(seed) + hash.Write(counter[0:4]) + digest = hash.Sum(digest[:0]) + hash.Reset() + + for i := 0; i < len(digest) && done < len(out); i++ { + out[done] ^= digest[i] + done++ + } + incCounter(&counter) + } +} + +// ErrMessageTooLong is returned when attempting to encrypt a message which is +// too large for the size of the public key. +var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") + +func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { + e := big.NewInt(int64(pub.E)) + c.Exp(m, e, pub.N) + return c +} + +// EncryptOAEP encrypts the given message with RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter is used as a source of entropy to ensure that +// encrypting the same message twice doesn't result in the same ciphertext. +// +// The label parameter may contain arbitrary data that will not be encrypted, +// but which gives important context to the message. For example, if a given +// public key is used to decrypt two types of messages then distinct label +// values could be used to ensure that a ciphertext for one purpose cannot be +// used for another by an attacker. If not required it can be empty. +// +// The message must be no longer than the length of the public modulus minus +// twice the hash length, minus a further 2. +func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { + if err := checkPub(pub); err != nil { + return nil, err + } + hash.Reset() + k := pub.Size() + if len(msg) > k-2*hash.Size()-2 { + return nil, ErrMessageTooLong + } + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + em := make([]byte, k) + seed := em[1 : 1+hash.Size()] + db := em[1+hash.Size():] + + copy(db[0:hash.Size()], lHash) + db[len(db)-len(msg)-1] = 1 + copy(db[len(db)-len(msg):], msg) + + _, err := io.ReadFull(random, seed) + if err != nil { + return nil, err + } + + mgf1XOR(db, hash, seed) + mgf1XOR(seed, hash, db) + + m := new(big.Int) + m.SetBytes(em) + c := encrypt(new(big.Int), pub, m) + + out := make([]byte, k) + return c.FillBytes(out), nil +} + +// ErrDecryption represents a failure to decrypt a message. +// It is deliberately vague to avoid adaptive attacks. +var ErrDecryption = errors.New("crypto/rsa: decryption error") + +// ErrVerification represents a failure to verify a signature. +// It is deliberately vague to avoid adaptive attacks. +var ErrVerification = errors.New("crypto/rsa: verification error") + +// Precompute performs some calculations that speed up private key operations +// in the future. +func (priv *PrivateKey) Precompute() { + if priv.Precomputed.Dp != nil { + return + } + + priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) + priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) + + priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) + priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) + + priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) + + r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) + priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) + for i := 2; i < len(priv.Primes); i++ { + prime := priv.Primes[i] + values := &priv.Precomputed.CRTValues[i-2] + + values.Exp = new(big.Int).Sub(prime, bigOne) + values.Exp.Mod(priv.D, values.Exp) + + values.R = new(big.Int).Set(r) + values.Coeff = new(big.Int).ModInverse(r, prime) + + r.Mul(r, prime) + } +} + +// decrypt performs an RSA decryption, resulting in a plaintext integer. If a +// random source is given, RSA blinding is used. +func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { + // TODO(agl): can we get away with reusing blinds? + if c.Cmp(priv.N) > 0 { + err = ErrDecryption + return + } + if priv.N.Sign() == 0 { + return nil, ErrDecryption + } + + var ir *big.Int + if random != nil { + randutil.MaybeReadByte(random) + + // Blinding enabled. Blinding involves multiplying c by r^e. + // Then the decryption operation performs (m^e * r^e)^d mod n + // which equals mr mod n. The factor of r can then be removed + // by multiplying by the multiplicative inverse of r. + + var r *big.Int + ir = new(big.Int) + for { + r, err = rand.Int(random, priv.N) + if err != nil { + return + } + if r.Cmp(bigZero) == 0 { + r = bigOne + } + ok := ir.ModInverse(r, priv.N) + if ok != nil { + break + } + } + bigE := big.NewInt(int64(priv.E)) + rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0 + cCopy := new(big.Int).Set(c) + cCopy.Mul(cCopy, rpowe) + cCopy.Mod(cCopy, priv.N) + c = cCopy + } + + if priv.Precomputed.Dp == nil { + m = new(big.Int).Exp(c, priv.D, priv.N) + } else { + // We have the precalculated values needed for the CRT. + m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) + m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) + m.Sub(m, m2) + if m.Sign() < 0 { + m.Add(m, priv.Primes[0]) + } + m.Mul(m, priv.Precomputed.Qinv) + m.Mod(m, priv.Primes[0]) + m.Mul(m, priv.Primes[1]) + m.Add(m, m2) + + for i, values := range priv.Precomputed.CRTValues { + prime := priv.Primes[2+i] + m2.Exp(c, values.Exp, prime) + m2.Sub(m2, m) + m2.Mul(m2, values.Coeff) + m2.Mod(m2, prime) + if m2.Sign() < 0 { + m2.Add(m2, prime) + } + m2.Mul(m2, values.R) + m.Add(m, m2) + } + } + + if ir != nil { + // Unblind. + m.Mul(m, ir) + m.Mod(m, priv.N) + } + + return +} + +func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { + m, err = decrypt(random, priv, c) + if err != nil { + return nil, err + } + + // In order to defend against errors in the CRT computation, m^e is + // calculated, which should match the original ciphertext. + check := encrypt(new(big.Int), &priv.PublicKey, m) + if c.Cmp(check) != 0 { + return nil, errors.New("rsa: internal error") + } + return m, nil +} + +// DecryptOAEP decrypts ciphertext using RSA-OAEP. +// +// OAEP is parameterised by a hash function that is used as a random oracle. +// Encryption and decryption of a given message must use the same hash function +// and sha256.New() is a reasonable choice. +// +// The random parameter, if not nil, is used to blind the private-key operation +// and avoid timing side-channel attacks. Blinding is purely internal to this +// function – the random data need not match that used when encrypting. +// +// The label parameter must match the value given when encrypting. See +// EncryptOAEP for details. +func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { + if err := checkPub(&priv.PublicKey); err != nil { + return nil, err + } + k := priv.Size() + if len(ciphertext) > k || + k < hash.Size()*2+2 { + return nil, ErrDecryption + } + + c := new(big.Int).SetBytes(ciphertext) + + m, err := decrypt(random, priv, c) + if err != nil { + return nil, err + } + + hash.Write(label) + lHash := hash.Sum(nil) + hash.Reset() + + // We probably leak the number of leading zeros. + // It's not clear that we can do anything about this. + em := m.FillBytes(make([]byte, k)) + + firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) + + seed := em[1 : hash.Size()+1] + db := em[hash.Size()+1:] + + mgf1XOR(seed, hash, db) + mgf1XOR(db, hash, seed) + + lHash2 := db[0:hash.Size()] + + // We have to validate the plaintext in constant time in order to avoid + // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal + // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 + // v2.0. In J. Kilian, editor, Advances in Cryptology. + lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) + + // The remainder of the plaintext must be zero or more 0x00, followed + // by 0x01, followed by the message. + // lookingForIndex: 1 iff we are still looking for the 0x01 + // index: the offset of the first 0x01 byte + // invalid: 1 iff we saw a non-zero byte before the 0x01. + var lookingForIndex, index, invalid int + lookingForIndex = 1 + rest := db[hash.Size():] + + for i := 0; i < len(rest); i++ { + equals0 := subtle.ConstantTimeByteEq(rest[i], 0) + equals1 := subtle.ConstantTimeByteEq(rest[i], 1) + index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) + lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) + invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) + } + + if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { + return nil, ErrDecryption + } + + return rest[index+1:], nil +} diff --git a/src/crypto/rsa/rsa_test.go b/src/crypto/rsa/rsa_test.go new file mode 100644 index 0000000..84b1674 --- /dev/null +++ b/src/crypto/rsa/rsa_test.go @@ -0,0 +1,420 @@ +// Copyright 2009 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package rsa + +import ( + "bytes" + "crypto" + "crypto/rand" + "crypto/sha1" + "crypto/sha256" + "math/big" + "testing" +) + +func TestKeyGeneration(t *testing.T) { + size := 1024 + if testing.Short() { + size = 128 + } + priv, err := GenerateKey(rand.Reader, size) + if err != nil { + t.Errorf("failed to generate key") + } + if bits := priv.N.BitLen(); bits != size { + t.Errorf("key too short (%d vs %d)", bits, size) + } + testKeyBasics(t, priv) +} + +func Test3PrimeKeyGeneration(t *testing.T) { + size := 768 + if testing.Short() { + size = 256 + } + + priv, err := GenerateMultiPrimeKey(rand.Reader, 3, size) + if err != nil { + t.Errorf("failed to generate key") + } + testKeyBasics(t, priv) +} + +func Test4PrimeKeyGeneration(t *testing.T) { + size := 768 + if testing.Short() { + size = 256 + } + + priv, err := GenerateMultiPrimeKey(rand.Reader, 4, size) + if err != nil { + t.Errorf("failed to generate key") + } + testKeyBasics(t, priv) +} + +func TestNPrimeKeyGeneration(t *testing.T) { + primeSize := 64 + maxN := 24 + if testing.Short() { + primeSize = 16 + maxN = 16 + } + // Test that generation of N-prime keys works for N > 4. + for n := 5; n < maxN; n++ { + priv, err := GenerateMultiPrimeKey(rand.Reader, n, 64+n*primeSize) + if err == nil { + testKeyBasics(t, priv) + } else { + t.Errorf("failed to generate %d-prime key", n) + } + } +} + +func TestImpossibleKeyGeneration(t *testing.T) { + // This test ensures that trying to generate toy RSA keys doesn't enter + // an infinite loop. + for i := 0; i < 32; i++ { + GenerateKey(rand.Reader, i) + GenerateMultiPrimeKey(rand.Reader, 3, i) + GenerateMultiPrimeKey(rand.Reader, 4, i) + GenerateMultiPrimeKey(rand.Reader, 5, i) + } +} + +func TestGnuTLSKey(t *testing.T) { + // This is a key generated by `certtool --generate-privkey --bits 128`. + // It's such that de ≢ 1 mod φ(n), but is congruent mod the order of + // the group. + priv := &PrivateKey{ + PublicKey: PublicKey{ + N: fromBase10("290684273230919398108010081414538931343"), + E: 65537, + }, + D: fromBase10("31877380284581499213530787347443987241"), + Primes: []*big.Int{ + fromBase10("16775196964030542637"), + fromBase10("17328218193455850539"), + }, + } + testKeyBasics(t, priv) +} + +func testKeyBasics(t *testing.T, priv *PrivateKey) { + if err := priv.Validate(); err != nil { + t.Errorf("Validate() failed: %s", err) + } + if priv.D.Cmp(priv.N) > 0 { + t.Errorf("private exponent too large") + } + + pub := &priv.PublicKey + m := big.NewInt(42) + c := encrypt(new(big.Int), pub, m) + + m2, err := decrypt(nil, priv, c) + if err != nil { + t.Errorf("error while decrypting: %s", err) + return + } + if m.Cmp(m2) != 0 { + t.Errorf("got:%v, want:%v (%+v)", m2, m, priv) + } + + m3, err := decrypt(rand.Reader, priv, c) + if err != nil { + t.Errorf("error while decrypting (blind): %s", err) + } + if m.Cmp(m3) != 0 { + t.Errorf("(blind) got:%v, want:%v (%#v)", m3, m, priv) + } +} + +func fromBase10(base10 string) *big.Int { + i, ok := new(big.Int).SetString(base10, 10) + if !ok { + panic("bad number: " + base10) + } + return i +} + +var test2048Key *PrivateKey + +func init() { + test2048Key = &PrivateKey{ + PublicKey: PublicKey{ + N: fromBase10("14314132931241006650998084889274020608918049032671858325988396851334124245188214251956198731333464217832226406088020736932173064754214329009979944037640912127943488972644697423190955557435910767690712778463524983667852819010259499695177313115447116110358524558307947613422897787329221478860907963827160223559690523660574329011927531289655711860504630573766609239332569210831325633840174683944553667352219670930408593321661375473885147973879086994006440025257225431977751512374815915392249179976902953721486040787792801849818254465486633791826766873076617116727073077821584676715609985777563958286637185868165868520557"), + E: 3, + }, + D: fromBase10("9542755287494004433998723259516013739278699355114572217325597900889416163458809501304132487555642811888150937392013824621448709836142886006653296025093941418628992648429798282127303704957273845127141852309016655778568546006839666463451542076964744073572349705538631742281931858219480985907271975884773482372966847639853897890615456605598071088189838676728836833012254065983259638538107719766738032720239892094196108713378822882383694456030043492571063441943847195939549773271694647657549658603365629458610273821292232646334717612674519997533901052790334279661754176490593041941863932308687197618671528035670452762731"), + Primes: []*big.Int{ + fromBase10("130903255182996722426771613606077755295583329135067340152947172868415809027537376306193179624298874215608270802054347609836776473930072411958753044562214537013874103802006369634761074377213995983876788718033850153719421695468704276694983032644416930879093914927146648402139231293035971427838068945045019075433"), + fromBase10("109348945610485453577574767652527472924289229538286649661240938988020367005475727988253438647560958573506159449538793540472829815903949343191091817779240101054552748665267574271163617694640513549693841337820602726596756351006149518830932261246698766355347898158548465400674856021497190430791824869615170301029"), + }, + } + test2048Key.Precompute() +} + +func BenchmarkRSA2048Decrypt(b *testing.B) { + b.StopTimer() + + c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313") + + b.StartTimer() + + for i := 0; i < b.N; i++ { + decrypt(nil, test2048Key, c) + } +} + +func BenchmarkRSA2048Sign(b *testing.B) { + b.StopTimer() + hashed := sha256.Sum256([]byte("testing")) + b.StartTimer() + + for i := 0; i < b.N; i++ { + SignPKCS1v15(rand.Reader, test2048Key, crypto.SHA256, hashed[:]) + } +} + +func Benchmark3PrimeRSA2048Decrypt(b *testing.B) { + b.StopTimer() + priv := &PrivateKey{ + PublicKey: PublicKey{ + N: fromBase10("16346378922382193400538269749936049106320265317511766357599732575277382844051791096569333808598921852351577762718529818072849191122419410612033592401403764925096136759934497687765453905884149505175426053037420486697072448609022753683683718057795566811401938833367954642951433473337066311978821180526439641496973296037000052546108507805269279414789035461158073156772151892452251106173507240488993608650881929629163465099476849643165682709047462010581308719577053905787496296934240246311806555924593059995202856826239801816771116902778517096212527979497399966526283516447337775509777558018145573127308919204297111496233"), + E: 3, + }, + D: fromBase10("10897585948254795600358846499957366070880176878341177571733155050184921896034527397712889205732614568234385175145686545381899460748279607074689061600935843283397424506622998458510302603922766336783617368686090042765718290914099334449154829375179958369993407724946186243249568928237086215759259909861748642124071874879861299389874230489928271621259294894142840428407196932444474088857746123104978617098858619445675532587787023228852383149557470077802718705420275739737958953794088728369933811184572620857678792001136676902250566845618813972833750098806496641114644760255910789397593428910198080271317419213080834885003"), + Primes: []*big.Int{ + fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"), + fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"), + fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"), + }, + } + priv.Precompute() + + c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313") + + b.StartTimer() + + for i := 0; i < b.N; i++ { + decrypt(nil, priv, c) + } +} + +type testEncryptOAEPMessage struct { + in []byte + seed []byte + out []byte +} + +type testEncryptOAEPStruct struct { + modulus string + e int + d string + msgs []testEncryptOAEPMessage +} + +func TestEncryptOAEP(t *testing.T) { + sha1 := sha1.New() + n := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + public := PublicKey{n, test.e} + + for j, message := range test.msgs { + randomSource := bytes.NewReader(message.seed) + out, err := EncryptOAEP(sha1, randomSource, &public, message.in, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } + if !bytes.Equal(out, message.out) { + t.Errorf("#%d,%d bad result: %x (want %x)", i, j, out, message.out) + } + } + } +} + +func TestDecryptOAEP(t *testing.T) { + random := rand.Reader + + sha1 := sha1.New() + n := new(big.Int) + d := new(big.Int) + for i, test := range testEncryptOAEPData { + n.SetString(test.modulus, 16) + d.SetString(test.d, 16) + private := new(PrivateKey) + private.PublicKey = PublicKey{n, test.e} + private.D = d + + for j, message := range test.msgs { + out, err := DecryptOAEP(sha1, nil, private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d error: %s", i, j, err) + } else if !bytes.Equal(out, message.in) { + t.Errorf("#%d,%d bad result: %#v (want %#v)", i, j, out, message.in) + } + + // Decrypt with blinding. + out, err = DecryptOAEP(sha1, random, private, message.out, nil) + if err != nil { + t.Errorf("#%d,%d (blind) error: %s", i, j, err) + } else if !bytes.Equal(out, message.in) { + t.Errorf("#%d,%d (blind) bad result: %#v (want %#v)", i, j, out, message.in) + } + } + if testing.Short() { + break + } + } +} + +// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP". +var testEncryptOAEPData = []testEncryptOAEPStruct{ + // Key 1 + {"a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0cbc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bdbf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb", + 65537, + "53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf119517ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d65a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1", + []testEncryptOAEPMessage{ + // Example 1.1 + { + []byte{0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0, + 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23, 0x97, + 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe, + 0xfe, 0x34, + }, + []byte{0x18, 0xb7, 0x76, 0xea, 0x21, 0x06, 0x9d, 0x69, + 0x77, 0x6a, 0x33, 0xe9, 0x6b, 0xad, 0x48, 0xe1, 0xdd, + 0xa0, 0xa5, 0xef, + }, + []byte{0x35, 0x4f, 0xe6, 0x7b, 0x4a, 0x12, 0x6d, 0x5d, + 0x35, 0xfe, 0x36, 0xc7, 0x77, 0x79, 0x1a, 0x3f, 0x7b, + 0xa1, 0x3d, 0xef, 0x48, 0x4e, 0x2d, 0x39, 0x08, 0xaf, + 0xf7, 0x22, 0xfa, 0xd4, 0x68, 0xfb, 0x21, 0x69, 0x6d, + 0xe9, 0x5d, 0x0b, 0xe9, 0x11, 0xc2, 0xd3, 0x17, 0x4f, + 0x8a, 0xfc, 0xc2, 0x01, 0x03, 0x5f, 0x7b, 0x6d, 0x8e, + 0x69, 0x40, 0x2d, 0xe5, 0x45, 0x16, 0x18, 0xc2, 0x1a, + 0x53, 0x5f, 0xa9, 0xd7, 0xbf, 0xc5, 0xb8, 0xdd, 0x9f, + 0xc2, 0x43, 0xf8, 0xcf, 0x92, 0x7d, 0xb3, 0x13, 0x22, + 0xd6, 0xe8, 0x81, 0xea, 0xa9, 0x1a, 0x99, 0x61, 0x70, + 0xe6, 0x57, 0xa0, 0x5a, 0x26, 0x64, 0x26, 0xd9, 0x8c, + 0x88, 0x00, 0x3f, 0x84, 0x77, 0xc1, 0x22, 0x70, 0x94, + 0xa0, 0xd9, 0xfa, 0x1e, 0x8c, 0x40, 0x24, 0x30, 0x9c, + 0xe1, 0xec, 0xcc, 0xb5, 0x21, 0x00, 0x35, 0xd4, 0x7a, + 0xc7, 0x2e, 0x8a, + }, + }, + // Example 1.2 + { + []byte{0x75, 0x0c, 0x40, 0x47, 0xf5, 0x47, 0xe8, 0xe4, + 0x14, 0x11, 0x85, 0x65, 0x23, 0x29, 0x8a, 0xc9, 0xba, + 0xe2, 0x45, 0xef, 0xaf, 0x13, 0x97, 0xfb, 0xe5, 0x6f, + 0x9d, 0xd5, + }, + []byte{0x0c, 0xc7, 0x42, 0xce, 0x4a, 0x9b, 0x7f, 0x32, + 0xf9, 0x51, 0xbc, 0xb2, 0x51, 0xef, 0xd9, 0x25, 0xfe, + 0x4f, 0xe3, 0x5f, + }, + []byte{0x64, 0x0d, 0xb1, 0xac, 0xc5, 0x8e, 0x05, 0x68, + 0xfe, 0x54, 0x07, 0xe5, 0xf9, 0xb7, 0x01, 0xdf, 0xf8, + 0xc3, 0xc9, 0x1e, 0x71, 0x6c, 0x53, 0x6f, 0xc7, 0xfc, + 0xec, 0x6c, 0xb5, 0xb7, 0x1c, 0x11, 0x65, 0x98, 0x8d, + 0x4a, 0x27, 0x9e, 0x15, 0x77, 0xd7, 0x30, 0xfc, 0x7a, + 0x29, 0x93, 0x2e, 0x3f, 0x00, 0xc8, 0x15, 0x15, 0x23, + 0x6d, 0x8d, 0x8e, 0x31, 0x01, 0x7a, 0x7a, 0x09, 0xdf, + 0x43, 0x52, 0xd9, 0x04, 0xcd, 0xeb, 0x79, 0xaa, 0x58, + 0x3a, 0xdc, 0xc3, 0x1e, 0xa6, 0x98, 0xa4, 0xc0, 0x52, + 0x83, 0xda, 0xba, 0x90, 0x89, 0xbe, 0x54, 0x91, 0xf6, + 0x7c, 0x1a, 0x4e, 0xe4, 0x8d, 0xc7, 0x4b, 0xbb, 0xe6, + 0x64, 0x3a, 0xef, 0x84, 0x66, 0x79, 0xb4, 0xcb, 0x39, + 0x5a, 0x35, 0x2d, 0x5e, 0xd1, 0x15, 0x91, 0x2d, 0xf6, + 0x96, 0xff, 0xe0, 0x70, 0x29, 0x32, 0x94, 0x6d, 0x71, + 0x49, 0x2b, 0x44, + }, + }, + // Example 1.3 + { + []byte{0xd9, 0x4a, 0xe0, 0x83, 0x2e, 0x64, 0x45, 0xce, + 0x42, 0x33, 0x1c, 0xb0, 0x6d, 0x53, 0x1a, 0x82, 0xb1, + 0xdb, 0x4b, 0xaa, 0xd3, 0x0f, 0x74, 0x6d, 0xc9, 0x16, + 0xdf, 0x24, 0xd4, 0xe3, 0xc2, 0x45, 0x1f, 0xff, 0x59, + 0xa6, 0x42, 0x3e, 0xb0, 0xe1, 0xd0, 0x2d, 0x4f, 0xe6, + 0x46, 0xcf, 0x69, 0x9d, 0xfd, 0x81, 0x8c, 0x6e, 0x97, + 0xb0, 0x51, + }, + []byte{0x25, 0x14, 0xdf, 0x46, 0x95, 0x75, 0x5a, 0x67, + 0xb2, 0x88, 0xea, 0xf4, 0x90, 0x5c, 0x36, 0xee, 0xc6, + 0x6f, 0xd2, 0xfd, + }, + []byte{0x42, 0x37, 0x36, 0xed, 0x03, 0x5f, 0x60, 0x26, + 0xaf, 0x27, 0x6c, 0x35, 0xc0, 0xb3, 0x74, 0x1b, 0x36, + 0x5e, 0x5f, 0x76, 0xca, 0x09, 0x1b, 0x4e, 0x8c, 0x29, + 0xe2, 0xf0, 0xbe, 0xfe, 0xe6, 0x03, 0x59, 0x5a, 0xa8, + 0x32, 0x2d, 0x60, 0x2d, 0x2e, 0x62, 0x5e, 0x95, 0xeb, + 0x81, 0xb2, 0xf1, 0xc9, 0x72, 0x4e, 0x82, 0x2e, 0xca, + 0x76, 0xdb, 0x86, 0x18, 0xcf, 0x09, 0xc5, 0x34, 0x35, + 0x03, 0xa4, 0x36, 0x08, 0x35, 0xb5, 0x90, 0x3b, 0xc6, + 0x37, 0xe3, 0x87, 0x9f, 0xb0, 0x5e, 0x0e, 0xf3, 0x26, + 0x85, 0xd5, 0xae, 0xc5, 0x06, 0x7c, 0xd7, 0xcc, 0x96, + 0xfe, 0x4b, 0x26, 0x70, 0xb6, 0xea, 0xc3, 0x06, 0x6b, + 0x1f, 0xcf, 0x56, 0x86, 0xb6, 0x85, 0x89, 0xaa, 0xfb, + 0x7d, 0x62, 0x9b, 0x02, 0xd8, 0xf8, 0x62, 0x5c, 0xa3, + 0x83, 0x36, 0x24, 0xd4, 0x80, 0x0f, 0xb0, 0x81, 0xb1, + 0xcf, 0x94, 0xeb, + }, + }, + }, + }, + // Key 10 + {"ae45ed5601cec6b8cc05f803935c674ddbe0d75c4c09fd7951fc6b0caec313a8df39970c518bffba5ed68f3f0d7f22a4029d413f1ae07e4ebe9e4177ce23e7f5404b569e4ee1bdcf3c1fb03ef113802d4f855eb9b5134b5a7c8085adcae6fa2fa1417ec3763be171b0c62b760ede23c12ad92b980884c641f5a8fac26bdad4a03381a22fe1b754885094c82506d4019a535a286afeb271bb9ba592de18dcf600c2aeeae56e02f7cf79fc14cf3bdc7cd84febbbf950ca90304b2219a7aa063aefa2c3c1980e560cd64afe779585b6107657b957857efde6010988ab7de417fc88d8f384c4e6e72c3f943e0c31c0c4a5cc36f879d8a3ac9d7d59860eaada6b83bb", + 65537, + "056b04216fe5f354ac77250a4b6b0c8525a85c59b0bd80c56450a22d5f438e596a333aa875e291dd43f48cb88b9d5fc0d499f9fcd1c397f9afc070cd9e398c8d19e61db7c7410a6b2675dfbf5d345b804d201add502d5ce2dfcb091ce9997bbebe57306f383e4d588103f036f7e85d1934d152a323e4a8db451d6f4a5b1b0f102cc150e02feee2b88dea4ad4c1baccb24d84072d14e1d24a6771f7408ee30564fb86d4393a34bcf0b788501d193303f13a2284b001f0f649eaf79328d4ac5c430ab4414920a9460ed1b7bc40ec653e876d09abc509ae45b525190116a0c26101848298509c1c3bf3a483e7274054e15e97075036e989f60932807b5257751e79", + []testEncryptOAEPMessage{ + // Example 10.1 + { + []byte{0x8b, 0xba, 0x6b, 0xf8, 0x2a, 0x6c, 0x0f, 0x86, + 0xd5, 0xf1, 0x75, 0x6e, 0x97, 0x95, 0x68, 0x70, 0xb0, + 0x89, 0x53, 0xb0, 0x6b, 0x4e, 0xb2, 0x05, 0xbc, 0x16, + 0x94, 0xee, + }, + []byte{0x47, 0xe1, 0xab, 0x71, 0x19, 0xfe, 0xe5, 0x6c, + 0x95, 0xee, 0x5e, 0xaa, 0xd8, 0x6f, 0x40, 0xd0, 0xaa, + 0x63, 0xbd, 0x33, + }, + []byte{0x53, 0xea, 0x5d, 0xc0, 0x8c, 0xd2, 0x60, 0xfb, + 0x3b, 0x85, 0x85, 0x67, 0x28, 0x7f, 0xa9, 0x15, 0x52, + 0xc3, 0x0b, 0x2f, 0xeb, 0xfb, 0xa2, 0x13, 0xf0, 0xae, + 0x87, 0x70, 0x2d, 0x06, 0x8d, 0x19, 0xba, 0xb0, 0x7f, + 0xe5, 0x74, 0x52, 0x3d, 0xfb, 0x42, 0x13, 0x9d, 0x68, + 0xc3, 0xc5, 0xaf, 0xee, 0xe0, 0xbf, 0xe4, 0xcb, 0x79, + 0x69, 0xcb, 0xf3, 0x82, 0xb8, 0x04, 0xd6, 0xe6, 0x13, + 0x96, 0x14, 0x4e, 0x2d, 0x0e, 0x60, 0x74, 0x1f, 0x89, + 0x93, 0xc3, 0x01, 0x4b, 0x58, 0xb9, 0xb1, 0x95, 0x7a, + 0x8b, 0xab, 0xcd, 0x23, 0xaf, 0x85, 0x4f, 0x4c, 0x35, + 0x6f, 0xb1, 0x66, 0x2a, 0xa7, 0x2b, 0xfc, 0xc7, 0xe5, + 0x86, 0x55, 0x9d, 0xc4, 0x28, 0x0d, 0x16, 0x0c, 0x12, + 0x67, 0x85, 0xa7, 0x23, 0xeb, 0xee, 0xbe, 0xff, 0x71, + 0xf1, 0x15, 0x94, 0x44, 0x0a, 0xae, 0xf8, 0x7d, 0x10, + 0x79, 0x3a, 0x87, 0x74, 0xa2, 0x39, 0xd4, 0xa0, 0x4c, + 0x87, 0xfe, 0x14, 0x67, 0xb9, 0xda, 0xf8, 0x52, 0x08, + 0xec, 0x6c, 0x72, 0x55, 0x79, 0x4a, 0x96, 0xcc, 0x29, + 0x14, 0x2f, 0x9a, 0x8b, 0xd4, 0x18, 0xe3, 0xc1, 0xfd, + 0x67, 0x34, 0x4b, 0x0c, 0xd0, 0x82, 0x9d, 0xf3, 0xb2, + 0xbe, 0xc6, 0x02, 0x53, 0x19, 0x62, 0x93, 0xc6, 0xb3, + 0x4d, 0x3f, 0x75, 0xd3, 0x2f, 0x21, 0x3d, 0xd4, 0x5c, + 0x62, 0x73, 0xd5, 0x05, 0xad, 0xf4, 0xcc, 0xed, 0x10, + 0x57, 0xcb, 0x75, 0x8f, 0xc2, 0x6a, 0xee, 0xfa, 0x44, + 0x12, 0x55, 0xed, 0x4e, 0x64, 0xc1, 0x99, 0xee, 0x07, + 0x5e, 0x7f, 0x16, 0x64, 0x61, 0x82, 0xfd, 0xb4, 0x64, + 0x73, 0x9b, 0x68, 0xab, 0x5d, 0xaf, 0xf0, 0xe6, 0x3e, + 0x95, 0x52, 0x01, 0x68, 0x24, 0xf0, 0x54, 0xbf, 0x4d, + 0x3c, 0x8c, 0x90, 0xa9, 0x7b, 0xb6, 0xb6, 0x55, 0x32, + 0x84, 0xeb, 0x42, 0x9f, 0xcc, + }, + }, + }, + }, +} diff --git a/src/crypto/rsa/testdata/pss-vect.txt.bz2 b/src/crypto/rsa/testdata/pss-vect.txt.bz2 Binary files differnew file mode 100644 index 0000000..ad3da1a --- /dev/null +++ b/src/crypto/rsa/testdata/pss-vect.txt.bz2 |