summaryrefslogtreecommitdiffstats
path: root/src/crypto/rsa
diff options
context:
space:
mode:
Diffstat (limited to 'src/crypto/rsa')
-rw-r--r--src/crypto/rsa/equal_test.go51
-rw-r--r--src/crypto/rsa/example_test.go169
-rw-r--r--src/crypto/rsa/pkcs1v15.go323
-rw-r--r--src/crypto/rsa/pkcs1v15_test.go316
-rw-r--r--src/crypto/rsa/pss.go303
-rw-r--r--src/crypto/rsa/pss_test.go258
-rw-r--r--src/crypto/rsa/rsa.go659
-rw-r--r--src/crypto/rsa/rsa_test.go420
-rw-r--r--src/crypto/rsa/testdata/pss-vect.txt.bz2bin0 -> 28526 bytes
9 files changed, 2499 insertions, 0 deletions
diff --git a/src/crypto/rsa/equal_test.go b/src/crypto/rsa/equal_test.go
new file mode 100644
index 0000000..90f4bf9
--- /dev/null
+++ b/src/crypto/rsa/equal_test.go
@@ -0,0 +1,51 @@
+// Copyright 2020 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa_test
+
+import (
+ "crypto"
+ "crypto/rand"
+ "crypto/rsa"
+ "crypto/x509"
+ "testing"
+)
+
+func TestEqual(t *testing.T) {
+ private, _ := rsa.GenerateKey(rand.Reader, 512)
+ public := &private.PublicKey
+
+ if !public.Equal(public) {
+ t.Errorf("public key is not equal to itself: %v", public)
+ }
+ if !public.Equal(crypto.Signer(private).Public().(*rsa.PublicKey)) {
+ t.Errorf("private.Public() is not Equal to public: %q", public)
+ }
+ if !private.Equal(private) {
+ t.Errorf("private key is not equal to itself: %v", private)
+ }
+
+ enc, err := x509.MarshalPKCS8PrivateKey(private)
+ if err != nil {
+ t.Fatal(err)
+ }
+ decoded, err := x509.ParsePKCS8PrivateKey(enc)
+ if err != nil {
+ t.Fatal(err)
+ }
+ if !public.Equal(decoded.(crypto.Signer).Public()) {
+ t.Errorf("public key is not equal to itself after decoding: %v", public)
+ }
+ if !private.Equal(decoded) {
+ t.Errorf("private key is not equal to itself after decoding: %v", private)
+ }
+
+ other, _ := rsa.GenerateKey(rand.Reader, 512)
+ if public.Equal(other.Public()) {
+ t.Errorf("different public keys are Equal")
+ }
+ if private.Equal(other) {
+ t.Errorf("different private keys are Equal")
+ }
+}
diff --git a/src/crypto/rsa/example_test.go b/src/crypto/rsa/example_test.go
new file mode 100644
index 0000000..ce5c2d9
--- /dev/null
+++ b/src/crypto/rsa/example_test.go
@@ -0,0 +1,169 @@
+// Copyright 2016 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "crypto"
+ "crypto/aes"
+ "crypto/cipher"
+ "crypto/rand"
+ "crypto/sha256"
+ "encoding/hex"
+ "fmt"
+ "io"
+ "os"
+)
+
+// RSA is able to encrypt only a very limited amount of data. In order
+// to encrypt reasonable amounts of data a hybrid scheme is commonly
+// used: RSA is used to encrypt a key for a symmetric primitive like
+// AES-GCM.
+//
+// Before encrypting, data is “padded” by embedding it in a known
+// structure. This is done for a number of reasons, but the most
+// obvious is to ensure that the value is large enough that the
+// exponentiation is larger than the modulus. (Otherwise it could be
+// decrypted with a square-root.)
+//
+// In these designs, when using PKCS #1 v1.5, it's vitally important to
+// avoid disclosing whether the received RSA message was well-formed
+// (that is, whether the result of decrypting is a correctly padded
+// message) because this leaks secret information.
+// DecryptPKCS1v15SessionKey is designed for this situation and copies
+// the decrypted, symmetric key (if well-formed) in constant-time over
+// a buffer that contains a random key. Thus, if the RSA result isn't
+// well-formed, the implementation uses a random key in constant time.
+func ExampleDecryptPKCS1v15SessionKey() {
+ // crypto/rand.Reader is a good source of entropy for blinding the RSA
+ // operation.
+ rng := rand.Reader
+
+ // The hybrid scheme should use at least a 16-byte symmetric key. Here
+ // we read the random key that will be used if the RSA decryption isn't
+ // well-formed.
+ key := make([]byte, 32)
+ if _, err := io.ReadFull(rng, key); err != nil {
+ panic("RNG failure")
+ }
+
+ rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
+
+ if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil {
+ // Any errors that result will be “public” – meaning that they
+ // can be determined without any secret information. (For
+ // instance, if the length of key is impossible given the RSA
+ // public key.)
+ fmt.Fprintf(os.Stderr, "Error from RSA decryption: %s\n", err)
+ return
+ }
+
+ // Given the resulting key, a symmetric scheme can be used to decrypt a
+ // larger ciphertext.
+ block, err := aes.NewCipher(key)
+ if err != nil {
+ panic("aes.NewCipher failed: " + err.Error())
+ }
+
+ // Since the key is random, using a fixed nonce is acceptable as the
+ // (key, nonce) pair will still be unique, as required.
+ var zeroNonce [12]byte
+ aead, err := cipher.NewGCM(block)
+ if err != nil {
+ panic("cipher.NewGCM failed: " + err.Error())
+ }
+ ciphertext, _ := hex.DecodeString("00112233445566")
+ plaintext, err := aead.Open(nil, zeroNonce[:], ciphertext, nil)
+ if err != nil {
+ // The RSA ciphertext was badly formed; the decryption will
+ // fail here because the AES-GCM key will be incorrect.
+ fmt.Fprintf(os.Stderr, "Error decrypting: %s\n", err)
+ return
+ }
+
+ fmt.Printf("Plaintext: %s\n", string(plaintext))
+}
+
+func ExampleSignPKCS1v15() {
+ // crypto/rand.Reader is a good source of entropy for blinding the RSA
+ // operation.
+ rng := rand.Reader
+
+ message := []byte("message to be signed")
+
+ // Only small messages can be signed directly; thus the hash of a
+ // message, rather than the message itself, is signed. This requires
+ // that the hash function be collision resistant. SHA-256 is the
+ // least-strong hash function that should be used for this at the time
+ // of writing (2016).
+ hashed := sha256.Sum256(message)
+
+ signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:])
+ if err != nil {
+ fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err)
+ return
+ }
+
+ fmt.Printf("Signature: %x\n", signature)
+}
+
+func ExampleVerifyPKCS1v15() {
+ message := []byte("message to be signed")
+ signature, _ := hex.DecodeString("ad2766728615cc7a746cc553916380ca7bfa4f8983b990913bc69eb0556539a350ff0f8fe65ddfd3ebe91fe1c299c2fac135bc8c61e26be44ee259f2f80c1530")
+
+ // Only small messages can be signed directly; thus the hash of a
+ // message, rather than the message itself, is signed. This requires
+ // that the hash function be collision resistant. SHA-256 is the
+ // least-strong hash function that should be used for this at the time
+ // of writing (2016).
+ hashed := sha256.Sum256(message)
+
+ err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA256, hashed[:], signature)
+ if err != nil {
+ fmt.Fprintf(os.Stderr, "Error from verification: %s\n", err)
+ return
+ }
+
+ // signature is a valid signature of message from the public key.
+}
+
+func ExampleEncryptOAEP() {
+ secretMessage := []byte("send reinforcements, we're going to advance")
+ label := []byte("orders")
+
+ // crypto/rand.Reader is a good source of entropy for randomizing the
+ // encryption function.
+ rng := rand.Reader
+
+ ciphertext, err := EncryptOAEP(sha256.New(), rng, &test2048Key.PublicKey, secretMessage, label)
+ if err != nil {
+ fmt.Fprintf(os.Stderr, "Error from encryption: %s\n", err)
+ return
+ }
+
+ // Since encryption is a randomized function, ciphertext will be
+ // different each time.
+ fmt.Printf("Ciphertext: %x\n", ciphertext)
+}
+
+func ExampleDecryptOAEP() {
+ ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460")
+ label := []byte("orders")
+
+ // crypto/rand.Reader is a good source of entropy for blinding the RSA
+ // operation.
+ rng := rand.Reader
+
+ plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label)
+ if err != nil {
+ fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err)
+ return
+ }
+
+ fmt.Printf("Plaintext: %s\n", string(plaintext))
+
+ // Remember that encryption only provides confidentiality. The
+ // ciphertext should be signed before authenticity is assumed and, even
+ // then, consider that messages might be reordered.
+}
diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go
new file mode 100644
index 0000000..0cbd6d0
--- /dev/null
+++ b/src/crypto/rsa/pkcs1v15.go
@@ -0,0 +1,323 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "crypto"
+ "crypto/subtle"
+ "errors"
+ "io"
+ "math/big"
+
+ "crypto/internal/randutil"
+)
+
+// This file implements encryption and decryption using PKCS #1 v1.5 padding.
+
+// PKCS1v15DecrypterOpts is for passing options to PKCS #1 v1.5 decryption using
+// the crypto.Decrypter interface.
+type PKCS1v15DecryptOptions struct {
+ // SessionKeyLen is the length of the session key that is being
+ // decrypted. If not zero, then a padding error during decryption will
+ // cause a random plaintext of this length to be returned rather than
+ // an error. These alternatives happen in constant time.
+ SessionKeyLen int
+}
+
+// EncryptPKCS1v15 encrypts the given message with RSA and the padding
+// scheme from PKCS #1 v1.5. The message must be no longer than the
+// length of the public modulus minus 11 bytes.
+//
+// The rand parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same
+// ciphertext.
+//
+// WARNING: use of this function to encrypt plaintexts other than
+// session keys is dangerous. Use RSA OAEP in new protocols.
+func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error) {
+ randutil.MaybeReadByte(rand)
+
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ k := pub.Size()
+ if len(msg) > k-11 {
+ return nil, ErrMessageTooLong
+ }
+
+ // EM = 0x00 || 0x02 || PS || 0x00 || M
+ em := make([]byte, k)
+ em[1] = 2
+ ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):]
+ err := nonZeroRandomBytes(ps, rand)
+ if err != nil {
+ return nil, err
+ }
+ em[len(em)-len(msg)-1] = 0
+ copy(mm, msg)
+
+ m := new(big.Int).SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+
+ return c.FillBytes(em), nil
+}
+
+// DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS #1 v1.5.
+// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+//
+// Note that whether this function returns an error or not discloses secret
+// information. If an attacker can cause this function to run repeatedly and
+// learn whether each instance returned an error then they can decrypt and
+// forge signatures as if they had the private key. See
+// DecryptPKCS1v15SessionKey for a way of solving this problem.
+func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+ valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+ if err != nil {
+ return nil, err
+ }
+ if valid == 0 {
+ return nil, ErrDecryption
+ }
+ return out[index:], nil
+}
+
+// DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS #1 v1.5.
+// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+// It returns an error if the ciphertext is the wrong length or if the
+// ciphertext is greater than the public modulus. Otherwise, no error is
+// returned. If the padding is valid, the resulting plaintext message is copied
+// into key. Otherwise, key is unchanged. These alternatives occur in constant
+// time. It is intended that the user of this function generate a random
+// session key beforehand and continue the protocol with the resulting value.
+// This will remove any possibility that an attacker can learn any information
+// about the plaintext.
+// See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA
+// Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology
+// (Crypto '98).
+//
+// Note that if the session key is too small then it may be possible for an
+// attacker to brute-force it. If they can do that then they can learn whether
+// a random value was used (because it'll be different for the same ciphertext)
+// and thus whether the padding was correct. This defeats the point of this
+// function. Using at least a 16-byte key will protect against this attack.
+func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+ k := priv.Size()
+ if k-(len(key)+3+8) < 0 {
+ return ErrDecryption
+ }
+
+ valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+ if err != nil {
+ return err
+ }
+
+ if len(em) != k {
+ // This should be impossible because decryptPKCS1v15 always
+ // returns the full slice.
+ return ErrDecryption
+ }
+
+ valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key)))
+ subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):])
+ return nil
+}
+
+// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
+// rand is not nil. It returns one or zero in valid that indicates whether the
+// plaintext was correctly structured. In either case, the plaintext is
+// returned in em so that it may be read independently of whether it was valid
+// in order to maintain constant memory access patterns. If the plaintext was
+// valid then index contains the index of the original message in em.
+func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
+ k := priv.Size()
+ if k < 11 {
+ err = ErrDecryption
+ return
+ }
+
+ c := new(big.Int).SetBytes(ciphertext)
+ m, err := decrypt(rand, priv, c)
+ if err != nil {
+ return
+ }
+
+ em = m.FillBytes(make([]byte, k))
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+ secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
+
+ // The remainder of the plaintext must be a string of non-zero random
+ // octets, followed by a 0, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the zero.
+ // index: the offset of the first zero byte.
+ lookingForIndex := 1
+
+ for i := 2; i < len(em); i++ {
+ equals0 := subtle.ConstantTimeByteEq(em[i], 0)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
+ }
+
+ // The PS padding must be at least 8 bytes long, and it starts two
+ // bytes into em.
+ validPS := subtle.ConstantTimeLessOrEq(2+8, index)
+
+ valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS
+ index = subtle.ConstantTimeSelect(valid, index+1, 0)
+ return valid, em, index, nil
+}
+
+// nonZeroRandomBytes fills the given slice with non-zero random octets.
+func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
+ _, err = io.ReadFull(rand, s)
+ if err != nil {
+ return
+ }
+
+ for i := 0; i < len(s); i++ {
+ for s[i] == 0 {
+ _, err = io.ReadFull(rand, s[i:i+1])
+ if err != nil {
+ return
+ }
+ // In tests, the PRNG may return all zeros so we do
+ // this to break the loop.
+ s[i] ^= 0x42
+ }
+ }
+
+ return
+}
+
+// These are ASN1 DER structures:
+// DigestInfo ::= SEQUENCE {
+// digestAlgorithm AlgorithmIdentifier,
+// digest OCTET STRING
+// }
+// For performance, we don't use the generic ASN1 encoder. Rather, we
+// precompute a prefix of the digest value that makes a valid ASN1 DER string
+// with the correct contents.
+var hashPrefixes = map[crypto.Hash][]byte{
+ crypto.MD5: {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10},
+ crypto.SHA1: {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14},
+ crypto.SHA224: {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c},
+ crypto.SHA256: {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20},
+ crypto.SHA384: {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30},
+ crypto.SHA512: {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40},
+ crypto.MD5SHA1: {}, // A special TLS case which doesn't use an ASN1 prefix.
+ crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14},
+}
+
+// SignPKCS1v15 calculates the signature of hashed using
+// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS #1 v1.5. Note that hashed must
+// be the result of hashing the input message using the given hash
+// function. If hash is zero, hashed is signed directly. This isn't
+// advisable except for interoperability.
+//
+// If rand is not nil then RSA blinding will be used to avoid timing
+// side-channel attacks.
+//
+// This function is deterministic. Thus, if the set of possible
+// messages is small, an attacker may be able to build a map from
+// messages to signatures and identify the signed messages. As ever,
+// signatures provide authenticity, not confidentiality.
+func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) ([]byte, error) {
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return nil, err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := priv.Size()
+ if k < tLen+11 {
+ return nil, ErrMessageTooLong
+ }
+
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+ em := make([]byte, k)
+ em[1] = 1
+ for i := 2; i < k-tLen-1; i++ {
+ em[i] = 0xff
+ }
+ copy(em[k-tLen:k-hashLen], prefix)
+ copy(em[k-hashLen:k], hashed)
+
+ m := new(big.Int).SetBytes(em)
+ c, err := decryptAndCheck(rand, priv, m)
+ if err != nil {
+ return nil, err
+ }
+
+ return c.FillBytes(em), nil
+}
+
+// VerifyPKCS1v15 verifies an RSA PKCS #1 v1.5 signature.
+// hashed is the result of hashing the input message using the given hash
+// function and sig is the signature. A valid signature is indicated by
+// returning a nil error. If hash is zero then hashed is used directly. This
+// isn't advisable except for interoperability.
+func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) error {
+ hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed))
+ if err != nil {
+ return err
+ }
+
+ tLen := len(prefix) + hashLen
+ k := pub.Size()
+ if k < tLen+11 {
+ return ErrVerification
+ }
+
+ // RFC 8017 Section 8.2.2: If the length of the signature S is not k
+ // octets (where k is the length in octets of the RSA modulus n), output
+ // "invalid signature" and stop.
+ if k != len(sig) {
+ return ErrVerification
+ }
+
+ c := new(big.Int).SetBytes(sig)
+ m := encrypt(new(big.Int), pub, c)
+ em := m.FillBytes(make([]byte, k))
+ // EM = 0x00 || 0x01 || PS || 0x00 || T
+
+ ok := subtle.ConstantTimeByteEq(em[0], 0)
+ ok &= subtle.ConstantTimeByteEq(em[1], 1)
+ ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed)
+ ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix)
+ ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0)
+
+ for i := 2; i < k-tLen-1; i++ {
+ ok &= subtle.ConstantTimeByteEq(em[i], 0xff)
+ }
+
+ if ok != 1 {
+ return ErrVerification
+ }
+
+ return nil
+}
+
+func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) {
+ // Special case: crypto.Hash(0) is used to indicate that the data is
+ // signed directly.
+ if hash == 0 {
+ return inLen, nil, nil
+ }
+
+ hashLen = hash.Size()
+ if inLen != hashLen {
+ return 0, nil, errors.New("crypto/rsa: input must be hashed message")
+ }
+ prefix, ok := hashPrefixes[hash]
+ if !ok {
+ return 0, nil, errors.New("crypto/rsa: unsupported hash function")
+ }
+ return
+}
diff --git a/src/crypto/rsa/pkcs1v15_test.go b/src/crypto/rsa/pkcs1v15_test.go
new file mode 100644
index 0000000..26b8c5f
--- /dev/null
+++ b/src/crypto/rsa/pkcs1v15_test.go
@@ -0,0 +1,316 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/rand"
+ "crypto/sha1"
+ "crypto/sha256"
+ "encoding/base64"
+ "encoding/hex"
+ "io"
+ "math/big"
+ "testing"
+ "testing/quick"
+)
+
+func decodeBase64(in string) []byte {
+ out := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
+ n, err := base64.StdEncoding.Decode(out, []byte(in))
+ if err != nil {
+ return nil
+ }
+ return out[0:n]
+}
+
+type DecryptPKCS1v15Test struct {
+ in, out string
+}
+
+// These test vectors were generated with `openssl rsautl -pkcs -encrypt`
+var decryptPKCS1v15Tests = []DecryptPKCS1v15Test{
+ {
+ "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==",
+ "x",
+ },
+ {
+ "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==",
+ "testing.",
+ },
+ {
+ "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==",
+ "testing.\n",
+ },
+ {
+ "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==",
+ "01234567890123456789012345678901234567890123456789012",
+ },
+}
+
+func TestDecryptPKCS1v15(t *testing.T) {
+ decryptionFuncs := []func([]byte) ([]byte, error){
+ func(ciphertext []byte) (plaintext []byte, err error) {
+ return DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext)
+ },
+ func(ciphertext []byte) (plaintext []byte, err error) {
+ return rsaPrivateKey.Decrypt(nil, ciphertext, nil)
+ },
+ }
+
+ for _, decryptFunc := range decryptionFuncs {
+ for i, test := range decryptPKCS1v15Tests {
+ out, err := decryptFunc(decodeBase64(test.in))
+ if err != nil {
+ t.Errorf("#%d error decrypting", i)
+ }
+ want := []byte(test.out)
+ if !bytes.Equal(out, want) {
+ t.Errorf("#%d got:%#v want:%#v", i, out, want)
+ }
+ }
+ }
+}
+
+func TestEncryptPKCS1v15(t *testing.T) {
+ random := rand.Reader
+ k := (rsaPrivateKey.N.BitLen() + 7) / 8
+
+ tryEncryptDecrypt := func(in []byte, blind bool) bool {
+ if len(in) > k-11 {
+ in = in[0 : k-11]
+ }
+
+ ciphertext, err := EncryptPKCS1v15(random, &rsaPrivateKey.PublicKey, in)
+ if err != nil {
+ t.Errorf("error encrypting: %s", err)
+ return false
+ }
+
+ var rand io.Reader
+ if !blind {
+ rand = nil
+ } else {
+ rand = random
+ }
+ plaintext, err := DecryptPKCS1v15(rand, rsaPrivateKey, ciphertext)
+ if err != nil {
+ t.Errorf("error decrypting: %s", err)
+ return false
+ }
+
+ if !bytes.Equal(plaintext, in) {
+ t.Errorf("output mismatch: %#v %#v", plaintext, in)
+ return false
+ }
+ return true
+ }
+
+ config := new(quick.Config)
+ if testing.Short() {
+ config.MaxCount = 10
+ }
+ quick.Check(tryEncryptDecrypt, config)
+}
+
+// These test vectors were generated with `openssl rsautl -pkcs -encrypt`
+var decryptPKCS1v15SessionKeyTests = []DecryptPKCS1v15Test{
+ {
+ "e6ukkae6Gykq0fKzYwULpZehX+UPXYzMoB5mHQUDEiclRbOTqas4Y0E6nwns1BBpdvEJcilhl5zsox/6DtGsYg==",
+ "1234",
+ },
+ {
+ "Dtis4uk/q/LQGGqGk97P59K03hkCIVFMEFZRgVWOAAhxgYpCRG0MX2adptt92l67IqMki6iVQyyt0TtX3IdtEw==",
+ "FAIL",
+ },
+ {
+ "LIyFyCYCptPxrvTxpol8F3M7ZivlMsf53zs0vHRAv+rDIh2YsHS69ePMoPMe3TkOMZ3NupiL3takPxIs1sK+dw==",
+ "abcd",
+ },
+ {
+ "bafnobel46bKy76JzqU/RIVOH0uAYvzUtauKmIidKgM0sMlvobYVAVQPeUQ/oTGjbIZ1v/6Gyi5AO4DtHruGdw==",
+ "FAIL",
+ },
+}
+
+func TestEncryptPKCS1v15SessionKey(t *testing.T) {
+ for i, test := range decryptPKCS1v15SessionKeyTests {
+ key := []byte("FAIL")
+ err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, decodeBase64(test.in), key)
+ if err != nil {
+ t.Errorf("#%d error decrypting", i)
+ }
+ want := []byte(test.out)
+ if !bytes.Equal(key, want) {
+ t.Errorf("#%d got:%#v want:%#v", i, key, want)
+ }
+ }
+}
+
+func TestEncryptPKCS1v15DecrypterSessionKey(t *testing.T) {
+ for i, test := range decryptPKCS1v15SessionKeyTests {
+ plaintext, err := rsaPrivateKey.Decrypt(rand.Reader, decodeBase64(test.in), &PKCS1v15DecryptOptions{SessionKeyLen: 4})
+ if err != nil {
+ t.Fatalf("#%d: error decrypting: %s", i, err)
+ }
+ if len(plaintext) != 4 {
+ t.Fatalf("#%d: incorrect length plaintext: got %d, want 4", i, len(plaintext))
+ }
+
+ if test.out != "FAIL" && !bytes.Equal(plaintext, []byte(test.out)) {
+ t.Errorf("#%d: incorrect plaintext: got %x, want %x", i, plaintext, test.out)
+ }
+ }
+}
+
+func TestNonZeroRandomBytes(t *testing.T) {
+ random := rand.Reader
+
+ b := make([]byte, 512)
+ err := nonZeroRandomBytes(b, random)
+ if err != nil {
+ t.Errorf("returned error: %s", err)
+ }
+ for _, b := range b {
+ if b == 0 {
+ t.Errorf("Zero octet found")
+ return
+ }
+ }
+}
+
+type signPKCS1v15Test struct {
+ in, out string
+}
+
+// These vectors have been tested with
+// `openssl rsautl -verify -inkey pk -in signature | hexdump -C`
+var signPKCS1v15Tests = []signPKCS1v15Test{
+ {"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"},
+}
+
+func TestSignPKCS1v15(t *testing.T) {
+ for i, test := range signPKCS1v15Tests {
+ h := sha1.New()
+ h.Write([]byte(test.in))
+ digest := h.Sum(nil)
+
+ s, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA1, digest)
+ if err != nil {
+ t.Errorf("#%d %s", i, err)
+ }
+
+ expected, _ := hex.DecodeString(test.out)
+ if !bytes.Equal(s, expected) {
+ t.Errorf("#%d got: %x want: %x", i, s, expected)
+ }
+ }
+}
+
+func TestVerifyPKCS1v15(t *testing.T) {
+ for i, test := range signPKCS1v15Tests {
+ h := sha1.New()
+ h.Write([]byte(test.in))
+ digest := h.Sum(nil)
+
+ sig, _ := hex.DecodeString(test.out)
+
+ err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.SHA1, digest, sig)
+ if err != nil {
+ t.Errorf("#%d %s", i, err)
+ }
+ }
+}
+
+func TestOverlongMessagePKCS1v15(t *testing.T) {
+ ciphertext := decodeBase64("fjOVdirUzFoLlukv80dBllMLjXythIf22feqPrNo0YoIjzyzyoMFiLjAc/Y4krkeZ11XFThIrEvw\nkRiZcCq5ng==")
+ _, err := DecryptPKCS1v15(nil, rsaPrivateKey, ciphertext)
+ if err == nil {
+ t.Error("RSA decrypted a message that was too long.")
+ }
+}
+
+func TestUnpaddedSignature(t *testing.T) {
+ msg := []byte("Thu Dec 19 18:06:16 EST 2013\n")
+ // This base64 value was generated with:
+ // % echo Thu Dec 19 18:06:16 EST 2013 > /tmp/msg
+ // % openssl rsautl -sign -inkey key -out /tmp/sig -in /tmp/msg
+ //
+ // Where "key" contains the RSA private key given at the bottom of this
+ // file.
+ expectedSig := decodeBase64("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==")
+
+ sig, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.Hash(0), msg)
+ if err != nil {
+ t.Fatalf("SignPKCS1v15 failed: %s", err)
+ }
+ if !bytes.Equal(sig, expectedSig) {
+ t.Fatalf("signature is not expected value: got %x, want %x", sig, expectedSig)
+ }
+ if err := VerifyPKCS1v15(&rsaPrivateKey.PublicKey, crypto.Hash(0), msg, sig); err != nil {
+ t.Fatalf("signature failed to verify: %s", err)
+ }
+}
+
+func TestShortSessionKey(t *testing.T) {
+ // This tests that attempting to decrypt a session key where the
+ // ciphertext is too small doesn't run outside the array bounds.
+ ciphertext, err := EncryptPKCS1v15(rand.Reader, &rsaPrivateKey.PublicKey, []byte{1})
+ if err != nil {
+ t.Fatalf("Failed to encrypt short message: %s", err)
+ }
+
+ var key [32]byte
+ if err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, ciphertext, key[:]); err != nil {
+ t.Fatalf("Failed to decrypt short message: %s", err)
+ }
+
+ for _, v := range key {
+ if v != 0 {
+ t.Fatal("key was modified when ciphertext was invalid")
+ }
+ }
+}
+
+// In order to generate new test vectors you'll need the PEM form of this key (and s/TESTING/PRIVATE/):
+// -----BEGIN RSA TESTING KEY-----
+// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
+// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
+// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
+// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
+// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
+// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
+// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
+// -----END RSA TESTING KEY-----
+
+var rsaPrivateKey = &PrivateKey{
+ PublicKey: PublicKey{
+ N: fromBase10("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077"),
+ E: 65537,
+ },
+ D: fromBase10("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861"),
+ Primes: []*big.Int{
+ fromBase10("98920366548084643601728869055592650835572950932266967461790948584315647051443"),
+ fromBase10("94560208308847015747498523884063394671606671904944666360068158221458669711639"),
+ },
+}
+
+func TestShortPKCS1v15Signature(t *testing.T) {
+ pub := &PublicKey{
+ E: 65537,
+ N: fromBase10("8272693557323587081220342447407965471608219912416565371060697606400726784709760494166080686904546560026343451112103559482851304715739629410219358933351333"),
+ }
+ sig, err := hex.DecodeString("193a310d0dcf64094c6e3a00c8219b80ded70535473acff72c08e1222974bb24a93a535b1dc4c59fc0e65775df7ba2007dd20e9193f4c4025a18a7070aee93")
+ if err != nil {
+ t.Fatalf("failed to decode signature: %s", err)
+ }
+
+ h := sha256.Sum256([]byte("hello"))
+ err = VerifyPKCS1v15(pub, crypto.SHA256, h[:], sig)
+ if err == nil {
+ t.Fatal("VerifyPKCS1v15 accepted a truncated signature")
+ }
+}
diff --git a/src/crypto/rsa/pss.go b/src/crypto/rsa/pss.go
new file mode 100644
index 0000000..b2adbed
--- /dev/null
+++ b/src/crypto/rsa/pss.go
@@ -0,0 +1,303 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+// This file implements the RSASSA-PSS signature scheme according to RFC 8017.
+
+import (
+ "bytes"
+ "crypto"
+ "errors"
+ "hash"
+ "io"
+ "math/big"
+)
+
+// Per RFC 8017, Section 9.1
+//
+// EM = MGF1 xor DB || H( 8*0x00 || mHash || salt ) || 0xbc
+//
+// where
+//
+// DB = PS || 0x01 || salt
+//
+// and PS can be empty so
+//
+// emLen = dbLen + hLen + 1 = psLen + sLen + hLen + 2
+//
+
+func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) {
+ // See RFC 8017, Section 9.1.1.
+
+ hLen := hash.Size()
+ sLen := len(salt)
+ emLen := (emBits + 7) / 8
+
+ // 1. If the length of M is greater than the input limitation for the
+ // hash function (2^61 - 1 octets for SHA-1), output "message too
+ // long" and stop.
+ //
+ // 2. Let mHash = Hash(M), an octet string of length hLen.
+
+ if len(mHash) != hLen {
+ return nil, errors.New("crypto/rsa: input must be hashed with given hash")
+ }
+
+ // 3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
+
+ if emLen < hLen+sLen+2 {
+ return nil, errors.New("crypto/rsa: key size too small for PSS signature")
+ }
+
+ em := make([]byte, emLen)
+ psLen := emLen - sLen - hLen - 2
+ db := em[:psLen+1+sLen]
+ h := em[psLen+1+sLen : emLen-1]
+
+ // 4. Generate a random octet string salt of length sLen; if sLen = 0,
+ // then salt is the empty string.
+ //
+ // 5. Let
+ // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;
+ //
+ // M' is an octet string of length 8 + hLen + sLen with eight
+ // initial zero octets.
+ //
+ // 6. Let H = Hash(M'), an octet string of length hLen.
+
+ var prefix [8]byte
+
+ hash.Write(prefix[:])
+ hash.Write(mHash)
+ hash.Write(salt)
+
+ h = hash.Sum(h[:0])
+ hash.Reset()
+
+ // 7. Generate an octet string PS consisting of emLen - sLen - hLen - 2
+ // zero octets. The length of PS may be 0.
+ //
+ // 8. Let DB = PS || 0x01 || salt; DB is an octet string of length
+ // emLen - hLen - 1.
+
+ db[psLen] = 0x01
+ copy(db[psLen+1:], salt)
+
+ // 9. Let dbMask = MGF(H, emLen - hLen - 1).
+ //
+ // 10. Let maskedDB = DB \xor dbMask.
+
+ mgf1XOR(db, hash, h)
+
+ // 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in
+ // maskedDB to zero.
+
+ db[0] &= 0xff >> (8*emLen - emBits)
+
+ // 12. Let EM = maskedDB || H || 0xbc.
+ em[emLen-1] = 0xbc
+
+ // 13. Output EM.
+ return em, nil
+}
+
+func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
+ // See RFC 8017, Section 9.1.2.
+
+ hLen := hash.Size()
+ if sLen == PSSSaltLengthEqualsHash {
+ sLen = hLen
+ }
+ emLen := (emBits + 7) / 8
+ if emLen != len(em) {
+ return errors.New("rsa: internal error: inconsistent length")
+ }
+
+ // 1. If the length of M is greater than the input limitation for the
+ // hash function (2^61 - 1 octets for SHA-1), output "inconsistent"
+ // and stop.
+ //
+ // 2. Let mHash = Hash(M), an octet string of length hLen.
+ if hLen != len(mHash) {
+ return ErrVerification
+ }
+
+ // 3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
+ if emLen < hLen+sLen+2 {
+ return ErrVerification
+ }
+
+ // 4. If the rightmost octet of EM does not have hexadecimal value
+ // 0xbc, output "inconsistent" and stop.
+ if em[emLen-1] != 0xbc {
+ return ErrVerification
+ }
+
+ // 5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and
+ // let H be the next hLen octets.
+ db := em[:emLen-hLen-1]
+ h := em[emLen-hLen-1 : emLen-1]
+
+ // 6. If the leftmost 8 * emLen - emBits bits of the leftmost octet in
+ // maskedDB are not all equal to zero, output "inconsistent" and
+ // stop.
+ var bitMask byte = 0xff >> (8*emLen - emBits)
+ if em[0] & ^bitMask != 0 {
+ return ErrVerification
+ }
+
+ // 7. Let dbMask = MGF(H, emLen - hLen - 1).
+ //
+ // 8. Let DB = maskedDB \xor dbMask.
+ mgf1XOR(db, hash, h)
+
+ // 9. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB
+ // to zero.
+ db[0] &= bitMask
+
+ // If we don't know the salt length, look for the 0x01 delimiter.
+ if sLen == PSSSaltLengthAuto {
+ psLen := bytes.IndexByte(db, 0x01)
+ if psLen < 0 {
+ return ErrVerification
+ }
+ sLen = len(db) - psLen - 1
+ }
+
+ // 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero
+ // or if the octet at position emLen - hLen - sLen - 1 (the leftmost
+ // position is "position 1") does not have hexadecimal value 0x01,
+ // output "inconsistent" and stop.
+ psLen := emLen - hLen - sLen - 2
+ for _, e := range db[:psLen] {
+ if e != 0x00 {
+ return ErrVerification
+ }
+ }
+ if db[psLen] != 0x01 {
+ return ErrVerification
+ }
+
+ // 11. Let salt be the last sLen octets of DB.
+ salt := db[len(db)-sLen:]
+
+ // 12. Let
+ // M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;
+ // M' is an octet string of length 8 + hLen + sLen with eight
+ // initial zero octets.
+ //
+ // 13. Let H' = Hash(M'), an octet string of length hLen.
+ var prefix [8]byte
+ hash.Write(prefix[:])
+ hash.Write(mHash)
+ hash.Write(salt)
+
+ h0 := hash.Sum(nil)
+
+ // 14. If H = H', output "consistent." Otherwise, output "inconsistent."
+ if !bytes.Equal(h0, h) { // TODO: constant time?
+ return ErrVerification
+ }
+ return nil
+}
+
+// signPSSWithSalt calculates the signature of hashed using PSS with specified salt.
+// Note that hashed must be the result of hashing the input message using the
+// given hash function. salt is a random sequence of bytes whose length will be
+// later used to verify the signature.
+func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
+ emBits := priv.N.BitLen() - 1
+ em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
+ if err != nil {
+ return nil, err
+ }
+ m := new(big.Int).SetBytes(em)
+ c, err := decryptAndCheck(rand, priv, m)
+ if err != nil {
+ return nil, err
+ }
+ s := make([]byte, priv.Size())
+ return c.FillBytes(s), nil
+}
+
+const (
+ // PSSSaltLengthAuto causes the salt in a PSS signature to be as large
+ // as possible when signing, and to be auto-detected when verifying.
+ PSSSaltLengthAuto = 0
+ // PSSSaltLengthEqualsHash causes the salt length to equal the length
+ // of the hash used in the signature.
+ PSSSaltLengthEqualsHash = -1
+)
+
+// PSSOptions contains options for creating and verifying PSS signatures.
+type PSSOptions struct {
+ // SaltLength controls the length of the salt used in the PSS
+ // signature. It can either be a number of bytes, or one of the special
+ // PSSSaltLength constants.
+ SaltLength int
+
+ // Hash is the hash function used to generate the message digest. If not
+ // zero, it overrides the hash function passed to SignPSS. It's required
+ // when using PrivateKey.Sign.
+ Hash crypto.Hash
+}
+
+// HashFunc returns opts.Hash so that PSSOptions implements crypto.SignerOpts.
+func (opts *PSSOptions) HashFunc() crypto.Hash {
+ return opts.Hash
+}
+
+func (opts *PSSOptions) saltLength() int {
+ if opts == nil {
+ return PSSSaltLengthAuto
+ }
+ return opts.SaltLength
+}
+
+// SignPSS calculates the signature of digest using PSS.
+//
+// digest must be the result of hashing the input message using the given hash
+// function. The opts argument may be nil, in which case sensible defaults are
+// used. If opts.Hash is set, it overrides hash.
+func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte, opts *PSSOptions) ([]byte, error) {
+ if opts != nil && opts.Hash != 0 {
+ hash = opts.Hash
+ }
+
+ saltLength := opts.saltLength()
+ switch saltLength {
+ case PSSSaltLengthAuto:
+ saltLength = priv.Size() - 2 - hash.Size()
+ case PSSSaltLengthEqualsHash:
+ saltLength = hash.Size()
+ }
+
+ salt := make([]byte, saltLength)
+ if _, err := io.ReadFull(rand, salt); err != nil {
+ return nil, err
+ }
+ return signPSSWithSalt(rand, priv, hash, digest, salt)
+}
+
+// VerifyPSS verifies a PSS signature.
+//
+// A valid signature is indicated by returning a nil error. digest must be the
+// result of hashing the input message using the given hash function. The opts
+// argument may be nil, in which case sensible defaults are used. opts.Hash is
+// ignored.
+func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts *PSSOptions) error {
+ if len(sig) != pub.Size() {
+ return ErrVerification
+ }
+ s := new(big.Int).SetBytes(sig)
+ m := encrypt(new(big.Int), pub, s)
+ emBits := pub.N.BitLen() - 1
+ emLen := (emBits + 7) / 8
+ if m.BitLen() > emLen*8 {
+ return ErrVerification
+ }
+ em := m.FillBytes(make([]byte, emLen))
+ return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
+}
diff --git a/src/crypto/rsa/pss_test.go b/src/crypto/rsa/pss_test.go
new file mode 100644
index 0000000..dfa8d8b
--- /dev/null
+++ b/src/crypto/rsa/pss_test.go
@@ -0,0 +1,258 @@
+// Copyright 2013 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "bufio"
+ "bytes"
+ "compress/bzip2"
+ "crypto"
+ _ "crypto/md5"
+ "crypto/rand"
+ "crypto/sha1"
+ _ "crypto/sha256"
+ "encoding/hex"
+ "math/big"
+ "os"
+ "strconv"
+ "strings"
+ "testing"
+)
+
+func TestEMSAPSS(t *testing.T) {
+ // Test vector in file pss-int.txt from: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
+ msg := []byte{
+ 0x85, 0x9e, 0xef, 0x2f, 0xd7, 0x8a, 0xca, 0x00, 0x30, 0x8b,
+ 0xdc, 0x47, 0x11, 0x93, 0xbf, 0x55, 0xbf, 0x9d, 0x78, 0xdb,
+ 0x8f, 0x8a, 0x67, 0x2b, 0x48, 0x46, 0x34, 0xf3, 0xc9, 0xc2,
+ 0x6e, 0x64, 0x78, 0xae, 0x10, 0x26, 0x0f, 0xe0, 0xdd, 0x8c,
+ 0x08, 0x2e, 0x53, 0xa5, 0x29, 0x3a, 0xf2, 0x17, 0x3c, 0xd5,
+ 0x0c, 0x6d, 0x5d, 0x35, 0x4f, 0xeb, 0xf7, 0x8b, 0x26, 0x02,
+ 0x1c, 0x25, 0xc0, 0x27, 0x12, 0xe7, 0x8c, 0xd4, 0x69, 0x4c,
+ 0x9f, 0x46, 0x97, 0x77, 0xe4, 0x51, 0xe7, 0xf8, 0xe9, 0xe0,
+ 0x4c, 0xd3, 0x73, 0x9c, 0x6b, 0xbf, 0xed, 0xae, 0x48, 0x7f,
+ 0xb5, 0x56, 0x44, 0xe9, 0xca, 0x74, 0xff, 0x77, 0xa5, 0x3c,
+ 0xb7, 0x29, 0x80, 0x2f, 0x6e, 0xd4, 0xa5, 0xff, 0xa8, 0xba,
+ 0x15, 0x98, 0x90, 0xfc,
+ }
+ salt := []byte{
+ 0xe3, 0xb5, 0xd5, 0xd0, 0x02, 0xc1, 0xbc, 0xe5, 0x0c, 0x2b,
+ 0x65, 0xef, 0x88, 0xa1, 0x88, 0xd8, 0x3b, 0xce, 0x7e, 0x61,
+ }
+ expected := []byte{
+ 0x66, 0xe4, 0x67, 0x2e, 0x83, 0x6a, 0xd1, 0x21, 0xba, 0x24,
+ 0x4b, 0xed, 0x65, 0x76, 0xb8, 0x67, 0xd9, 0xa4, 0x47, 0xc2,
+ 0x8a, 0x6e, 0x66, 0xa5, 0xb8, 0x7d, 0xee, 0x7f, 0xbc, 0x7e,
+ 0x65, 0xaf, 0x50, 0x57, 0xf8, 0x6f, 0xae, 0x89, 0x84, 0xd9,
+ 0xba, 0x7f, 0x96, 0x9a, 0xd6, 0xfe, 0x02, 0xa4, 0xd7, 0x5f,
+ 0x74, 0x45, 0xfe, 0xfd, 0xd8, 0x5b, 0x6d, 0x3a, 0x47, 0x7c,
+ 0x28, 0xd2, 0x4b, 0xa1, 0xe3, 0x75, 0x6f, 0x79, 0x2d, 0xd1,
+ 0xdc, 0xe8, 0xca, 0x94, 0x44, 0x0e, 0xcb, 0x52, 0x79, 0xec,
+ 0xd3, 0x18, 0x3a, 0x31, 0x1f, 0xc8, 0x96, 0xda, 0x1c, 0xb3,
+ 0x93, 0x11, 0xaf, 0x37, 0xea, 0x4a, 0x75, 0xe2, 0x4b, 0xdb,
+ 0xfd, 0x5c, 0x1d, 0xa0, 0xde, 0x7c, 0xec, 0xdf, 0x1a, 0x89,
+ 0x6f, 0x9d, 0x8b, 0xc8, 0x16, 0xd9, 0x7c, 0xd7, 0xa2, 0xc4,
+ 0x3b, 0xad, 0x54, 0x6f, 0xbe, 0x8c, 0xfe, 0xbc,
+ }
+
+ hash := sha1.New()
+ hash.Write(msg)
+ hashed := hash.Sum(nil)
+
+ encoded, err := emsaPSSEncode(hashed, 1023, salt, sha1.New())
+ if err != nil {
+ t.Errorf("Error from emsaPSSEncode: %s\n", err)
+ }
+ if !bytes.Equal(encoded, expected) {
+ t.Errorf("Bad encoding. got %x, want %x", encoded, expected)
+ }
+
+ if err = emsaPSSVerify(hashed, encoded, 1023, len(salt), sha1.New()); err != nil {
+ t.Errorf("Bad verification: %s", err)
+ }
+}
+
+// TestPSSGolden tests all the test vectors in pss-vect.txt from
+// ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
+func TestPSSGolden(t *testing.T) {
+ inFile, err := os.Open("testdata/pss-vect.txt.bz2")
+ if err != nil {
+ t.Fatalf("Failed to open input file: %s", err)
+ }
+ defer inFile.Close()
+
+ // The pss-vect.txt file contains RSA keys and then a series of
+ // signatures. A goroutine is used to preprocess the input by merging
+ // lines, removing spaces in hex values and identifying the start of
+ // new keys and signature blocks.
+ const newKeyMarker = "START NEW KEY"
+ const newSignatureMarker = "START NEW SIGNATURE"
+
+ values := make(chan string)
+
+ go func() {
+ defer close(values)
+ scanner := bufio.NewScanner(bzip2.NewReader(inFile))
+ var partialValue string
+ lastWasValue := true
+
+ for scanner.Scan() {
+ line := scanner.Text()
+ switch {
+ case len(line) == 0:
+ if len(partialValue) > 0 {
+ values <- strings.ReplaceAll(partialValue, " ", "")
+ partialValue = ""
+ lastWasValue = true
+ }
+ continue
+ case strings.HasPrefix(line, "# ======") && lastWasValue:
+ values <- newKeyMarker
+ lastWasValue = false
+ case strings.HasPrefix(line, "# ------") && lastWasValue:
+ values <- newSignatureMarker
+ lastWasValue = false
+ case strings.HasPrefix(line, "#"):
+ continue
+ default:
+ partialValue += line
+ }
+ }
+ if err := scanner.Err(); err != nil {
+ panic(err)
+ }
+ }()
+
+ var key *PublicKey
+ var hashed []byte
+ hash := crypto.SHA1
+ h := hash.New()
+ opts := &PSSOptions{
+ SaltLength: PSSSaltLengthEqualsHash,
+ }
+
+ for marker := range values {
+ switch marker {
+ case newKeyMarker:
+ key = new(PublicKey)
+ nHex, ok := <-values
+ if !ok {
+ continue
+ }
+ key.N = bigFromHex(nHex)
+ key.E = intFromHex(<-values)
+ // We don't care for d, p, q, dP, dQ or qInv.
+ for i := 0; i < 6; i++ {
+ <-values
+ }
+ case newSignatureMarker:
+ msg := fromHex(<-values)
+ <-values // skip salt
+ sig := fromHex(<-values)
+
+ h.Reset()
+ h.Write(msg)
+ hashed = h.Sum(hashed[:0])
+
+ if err := VerifyPSS(key, hash, hashed, sig, opts); err != nil {
+ t.Error(err)
+ }
+ default:
+ t.Fatalf("unknown marker: " + marker)
+ }
+ }
+}
+
+// TestPSSOpenSSL ensures that we can verify a PSS signature from OpenSSL with
+// the default options. OpenSSL sets the salt length to be maximal.
+func TestPSSOpenSSL(t *testing.T) {
+ hash := crypto.SHA256
+ h := hash.New()
+ h.Write([]byte("testing"))
+ hashed := h.Sum(nil)
+
+ // Generated with `echo -n testing | openssl dgst -sign key.pem -sigopt rsa_padding_mode:pss -sha256 > sig`
+ sig := []byte{
+ 0x95, 0x59, 0x6f, 0xd3, 0x10, 0xa2, 0xe7, 0xa2, 0x92, 0x9d,
+ 0x4a, 0x07, 0x2e, 0x2b, 0x27, 0xcc, 0x06, 0xc2, 0x87, 0x2c,
+ 0x52, 0xf0, 0x4a, 0xcc, 0x05, 0x94, 0xf2, 0xc3, 0x2e, 0x20,
+ 0xd7, 0x3e, 0x66, 0x62, 0xb5, 0x95, 0x2b, 0xa3, 0x93, 0x9a,
+ 0x66, 0x64, 0x25, 0xe0, 0x74, 0x66, 0x8c, 0x3e, 0x92, 0xeb,
+ 0xc6, 0xe6, 0xc0, 0x44, 0xf3, 0xb4, 0xb4, 0x2e, 0x8c, 0x66,
+ 0x0a, 0x37, 0x9c, 0x69,
+ }
+
+ if err := VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, nil); err != nil {
+ t.Error(err)
+ }
+}
+
+func TestPSSNilOpts(t *testing.T) {
+ hash := crypto.SHA256
+ h := hash.New()
+ h.Write([]byte("testing"))
+ hashed := h.Sum(nil)
+
+ SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, nil)
+}
+
+func TestPSSSigning(t *testing.T) {
+ var saltLengthCombinations = []struct {
+ signSaltLength, verifySaltLength int
+ good bool
+ }{
+ {PSSSaltLengthAuto, PSSSaltLengthAuto, true},
+ {PSSSaltLengthEqualsHash, PSSSaltLengthAuto, true},
+ {PSSSaltLengthEqualsHash, PSSSaltLengthEqualsHash, true},
+ {PSSSaltLengthEqualsHash, 8, false},
+ {PSSSaltLengthAuto, PSSSaltLengthEqualsHash, false},
+ {8, 8, true},
+ }
+
+ hash := crypto.MD5
+ h := hash.New()
+ h.Write([]byte("testing"))
+ hashed := h.Sum(nil)
+ var opts PSSOptions
+
+ for i, test := range saltLengthCombinations {
+ opts.SaltLength = test.signSaltLength
+ sig, err := SignPSS(rand.Reader, rsaPrivateKey, hash, hashed, &opts)
+ if err != nil {
+ t.Errorf("#%d: error while signing: %s", i, err)
+ continue
+ }
+
+ opts.SaltLength = test.verifySaltLength
+ err = VerifyPSS(&rsaPrivateKey.PublicKey, hash, hashed, sig, &opts)
+ if (err == nil) != test.good {
+ t.Errorf("#%d: bad result, wanted: %t, got: %s", i, test.good, err)
+ }
+ }
+}
+
+func bigFromHex(hex string) *big.Int {
+ n, ok := new(big.Int).SetString(hex, 16)
+ if !ok {
+ panic("bad hex: " + hex)
+ }
+ return n
+}
+
+func intFromHex(hex string) int {
+ i, err := strconv.ParseInt(hex, 16, 32)
+ if err != nil {
+ panic(err)
+ }
+ return int(i)
+}
+
+func fromHex(hexStr string) []byte {
+ s, err := hex.DecodeString(hexStr)
+ if err != nil {
+ panic(err)
+ }
+ return s
+}
diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go
new file mode 100644
index 0000000..178ade6
--- /dev/null
+++ b/src/crypto/rsa/rsa.go
@@ -0,0 +1,659 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package rsa implements RSA encryption as specified in PKCS #1 and RFC 8017.
+//
+// RSA is a single, fundamental operation that is used in this package to
+// implement either public-key encryption or public-key signatures.
+//
+// The original specification for encryption and signatures with RSA is PKCS #1
+// and the terms "RSA encryption" and "RSA signatures" by default refer to
+// PKCS #1 version 1.5. However, that specification has flaws and new designs
+// should use version 2, usually called by just OAEP and PSS, where
+// possible.
+//
+// Two sets of interfaces are included in this package. When a more abstract
+// interface isn't necessary, there are functions for encrypting/decrypting
+// with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract
+// over the public key primitive, the PrivateKey type implements the
+// Decrypter and Signer interfaces from the crypto package.
+//
+// The RSA operations in this package are not implemented using constant-time algorithms.
+package rsa
+
+import (
+ "crypto"
+ "crypto/rand"
+ "crypto/subtle"
+ "errors"
+ "hash"
+ "io"
+ "math"
+ "math/big"
+
+ "crypto/internal/randutil"
+)
+
+var bigZero = big.NewInt(0)
+var bigOne = big.NewInt(1)
+
+// A PublicKey represents the public part of an RSA key.
+type PublicKey struct {
+ N *big.Int // modulus
+ E int // public exponent
+}
+
+// Any methods implemented on PublicKey might need to also be implemented on
+// PrivateKey, as the latter embeds the former and will expose its methods.
+
+// Size returns the modulus size in bytes. Raw signatures and ciphertexts
+// for or by this public key will have the same size.
+func (pub *PublicKey) Size() int {
+ return (pub.N.BitLen() + 7) / 8
+}
+
+// Equal reports whether pub and x have the same value.
+func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
+ xx, ok := x.(*PublicKey)
+ if !ok {
+ return false
+ }
+ return pub.N.Cmp(xx.N) == 0 && pub.E == xx.E
+}
+
+// OAEPOptions is an interface for passing options to OAEP decryption using the
+// crypto.Decrypter interface.
+type OAEPOptions struct {
+ // Hash is the hash function that will be used when generating the mask.
+ Hash crypto.Hash
+ // Label is an arbitrary byte string that must be equal to the value
+ // used when encrypting.
+ Label []byte
+}
+
+var (
+ errPublicModulus = errors.New("crypto/rsa: missing public modulus")
+ errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
+ errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
+)
+
+// checkPub sanity checks the public key before we use it.
+// We require pub.E to fit into a 32-bit integer so that we
+// do not have different behavior depending on whether
+// int is 32 or 64 bits. See also
+// https://www.imperialviolet.org/2012/03/16/rsae.html.
+func checkPub(pub *PublicKey) error {
+ if pub.N == nil {
+ return errPublicModulus
+ }
+ if pub.E < 2 {
+ return errPublicExponentSmall
+ }
+ if pub.E > 1<<31-1 {
+ return errPublicExponentLarge
+ }
+ return nil
+}
+
+// A PrivateKey represents an RSA key
+type PrivateKey struct {
+ PublicKey // public part.
+ D *big.Int // private exponent
+ Primes []*big.Int // prime factors of N, has >= 2 elements.
+
+ // Precomputed contains precomputed values that speed up private
+ // operations, if available.
+ Precomputed PrecomputedValues
+}
+
+// Public returns the public key corresponding to priv.
+func (priv *PrivateKey) Public() crypto.PublicKey {
+ return &priv.PublicKey
+}
+
+// Equal reports whether priv and x have equivalent values. It ignores
+// Precomputed values.
+func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
+ xx, ok := x.(*PrivateKey)
+ if !ok {
+ return false
+ }
+ if !priv.PublicKey.Equal(&xx.PublicKey) || priv.D.Cmp(xx.D) != 0 {
+ return false
+ }
+ if len(priv.Primes) != len(xx.Primes) {
+ return false
+ }
+ for i := range priv.Primes {
+ if priv.Primes[i].Cmp(xx.Primes[i]) != 0 {
+ return false
+ }
+ }
+ return true
+}
+
+// Sign signs digest with priv, reading randomness from rand. If opts is a
+// *PSSOptions then the PSS algorithm will be used, otherwise PKCS #1 v1.5 will
+// be used. digest must be the result of hashing the input message using
+// opts.HashFunc().
+//
+// This method implements crypto.Signer, which is an interface to support keys
+// where the private part is kept in, for example, a hardware module. Common
+// uses should use the Sign* functions in this package directly.
+func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
+ if pssOpts, ok := opts.(*PSSOptions); ok {
+ return SignPSS(rand, priv, pssOpts.Hash, digest, pssOpts)
+ }
+
+ return SignPKCS1v15(rand, priv, opts.HashFunc(), digest)
+}
+
+// Decrypt decrypts ciphertext with priv. If opts is nil or of type
+// *PKCS1v15DecryptOptions then PKCS #1 v1.5 decryption is performed. Otherwise
+// opts must have type *OAEPOptions and OAEP decryption is done.
+func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) {
+ if opts == nil {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ switch opts := opts.(type) {
+ case *OAEPOptions:
+ return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label)
+
+ case *PKCS1v15DecryptOptions:
+ if l := opts.SessionKeyLen; l > 0 {
+ plaintext = make([]byte, l)
+ if _, err := io.ReadFull(rand, plaintext); err != nil {
+ return nil, err
+ }
+ if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil {
+ return nil, err
+ }
+ return plaintext, nil
+ } else {
+ return DecryptPKCS1v15(rand, priv, ciphertext)
+ }
+
+ default:
+ return nil, errors.New("crypto/rsa: invalid options for Decrypt")
+ }
+}
+
+type PrecomputedValues struct {
+ Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
+ Qinv *big.Int // Q^-1 mod P
+
+ // CRTValues is used for the 3rd and subsequent primes. Due to a
+ // historical accident, the CRT for the first two primes is handled
+ // differently in PKCS #1 and interoperability is sufficiently
+ // important that we mirror this.
+ CRTValues []CRTValue
+}
+
+// CRTValue contains the precomputed Chinese remainder theorem values.
+type CRTValue struct {
+ Exp *big.Int // D mod (prime-1).
+ Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
+ R *big.Int // product of primes prior to this (inc p and q).
+}
+
+// Validate performs basic sanity checks on the key.
+// It returns nil if the key is valid, or else an error describing a problem.
+func (priv *PrivateKey) Validate() error {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return err
+ }
+
+ // Check that Πprimes == n.
+ modulus := new(big.Int).Set(bigOne)
+ for _, prime := range priv.Primes {
+ // Any primes ≤ 1 will cause divide-by-zero panics later.
+ if prime.Cmp(bigOne) <= 0 {
+ return errors.New("crypto/rsa: invalid prime value")
+ }
+ modulus.Mul(modulus, prime)
+ }
+ if modulus.Cmp(priv.N) != 0 {
+ return errors.New("crypto/rsa: invalid modulus")
+ }
+
+ // Check that de ≡ 1 mod p-1, for each prime.
+ // This implies that e is coprime to each p-1 as e has a multiplicative
+ // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
+ // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
+ // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
+ congruence := new(big.Int)
+ de := new(big.Int).SetInt64(int64(priv.E))
+ de.Mul(de, priv.D)
+ for _, prime := range priv.Primes {
+ pminus1 := new(big.Int).Sub(prime, bigOne)
+ congruence.Mod(de, pminus1)
+ if congruence.Cmp(bigOne) != 0 {
+ return errors.New("crypto/rsa: invalid exponents")
+ }
+ }
+ return nil
+}
+
+// GenerateKey generates an RSA keypair of the given bit size using the
+// random source random (for example, crypto/rand.Reader).
+func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) {
+ return GenerateMultiPrimeKey(random, 2, bits)
+}
+
+// GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
+// size and the given random source, as suggested in [1]. Although the public
+// keys are compatible (actually, indistinguishable) from the 2-prime case,
+// the private keys are not. Thus it may not be possible to export multi-prime
+// private keys in certain formats or to subsequently import them into other
+// code.
+//
+// Table 1 in [2] suggests maximum numbers of primes for a given size.
+//
+// [1] US patent 4405829 (1972, expired)
+// [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
+func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) {
+ randutil.MaybeReadByte(random)
+
+ priv := new(PrivateKey)
+ priv.E = 65537
+
+ if nprimes < 2 {
+ return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
+ }
+
+ if bits < 64 {
+ primeLimit := float64(uint64(1) << uint(bits/nprimes))
+ // pi approximates the number of primes less than primeLimit
+ pi := primeLimit / (math.Log(primeLimit) - 1)
+ // Generated primes start with 11 (in binary) so we can only
+ // use a quarter of them.
+ pi /= 4
+ // Use a factor of two to ensure that key generation terminates
+ // in a reasonable amount of time.
+ pi /= 2
+ if pi <= float64(nprimes) {
+ return nil, errors.New("crypto/rsa: too few primes of given length to generate an RSA key")
+ }
+ }
+
+ primes := make([]*big.Int, nprimes)
+
+NextSetOfPrimes:
+ for {
+ todo := bits
+ // crypto/rand should set the top two bits in each prime.
+ // Thus each prime has the form
+ // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
+ // And the product is:
+ // P = 2^todo × α
+ // where α is the product of nprimes numbers of the form 0.11...
+ //
+ // If α < 1/2 (which can happen for nprimes > 2), we need to
+ // shift todo to compensate for lost bits: the mean value of 0.11...
+ // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
+ // will give good results.
+ if nprimes >= 7 {
+ todo += (nprimes - 2) / 5
+ }
+ for i := 0; i < nprimes; i++ {
+ var err error
+ primes[i], err = rand.Prime(random, todo/(nprimes-i))
+ if err != nil {
+ return nil, err
+ }
+ todo -= primes[i].BitLen()
+ }
+
+ // Make sure that primes is pairwise unequal.
+ for i, prime := range primes {
+ for j := 0; j < i; j++ {
+ if prime.Cmp(primes[j]) == 0 {
+ continue NextSetOfPrimes
+ }
+ }
+ }
+
+ n := new(big.Int).Set(bigOne)
+ totient := new(big.Int).Set(bigOne)
+ pminus1 := new(big.Int)
+ for _, prime := range primes {
+ n.Mul(n, prime)
+ pminus1.Sub(prime, bigOne)
+ totient.Mul(totient, pminus1)
+ }
+ if n.BitLen() != bits {
+ // This should never happen for nprimes == 2 because
+ // crypto/rand should set the top two bits in each prime.
+ // For nprimes > 2 we hope it does not happen often.
+ continue NextSetOfPrimes
+ }
+
+ priv.D = new(big.Int)
+ e := big.NewInt(int64(priv.E))
+ ok := priv.D.ModInverse(e, totient)
+
+ if ok != nil {
+ priv.Primes = primes
+ priv.N = n
+ break
+ }
+ }
+
+ priv.Precompute()
+ return priv, nil
+}
+
+// incCounter increments a four byte, big-endian counter.
+func incCounter(c *[4]byte) {
+ if c[3]++; c[3] != 0 {
+ return
+ }
+ if c[2]++; c[2] != 0 {
+ return
+ }
+ if c[1]++; c[1] != 0 {
+ return
+ }
+ c[0]++
+}
+
+// mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
+// specified in PKCS #1 v2.1.
+func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
+ var counter [4]byte
+ var digest []byte
+
+ done := 0
+ for done < len(out) {
+ hash.Write(seed)
+ hash.Write(counter[0:4])
+ digest = hash.Sum(digest[:0])
+ hash.Reset()
+
+ for i := 0; i < len(digest) && done < len(out); i++ {
+ out[done] ^= digest[i]
+ done++
+ }
+ incCounter(&counter)
+ }
+}
+
+// ErrMessageTooLong is returned when attempting to encrypt a message which is
+// too large for the size of the public key.
+var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
+
+func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
+ e := big.NewInt(int64(pub.E))
+ c.Exp(m, e, pub.N)
+ return c
+}
+
+// EncryptOAEP encrypts the given message with RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter is used as a source of entropy to ensure that
+// encrypting the same message twice doesn't result in the same ciphertext.
+//
+// The label parameter may contain arbitrary data that will not be encrypted,
+// but which gives important context to the message. For example, if a given
+// public key is used to decrypt two types of messages then distinct label
+// values could be used to ensure that a ciphertext for one purpose cannot be
+// used for another by an attacker. If not required it can be empty.
+//
+// The message must be no longer than the length of the public modulus minus
+// twice the hash length, minus a further 2.
+func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) {
+ if err := checkPub(pub); err != nil {
+ return nil, err
+ }
+ hash.Reset()
+ k := pub.Size()
+ if len(msg) > k-2*hash.Size()-2 {
+ return nil, ErrMessageTooLong
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ em := make([]byte, k)
+ seed := em[1 : 1+hash.Size()]
+ db := em[1+hash.Size():]
+
+ copy(db[0:hash.Size()], lHash)
+ db[len(db)-len(msg)-1] = 1
+ copy(db[len(db)-len(msg):], msg)
+
+ _, err := io.ReadFull(random, seed)
+ if err != nil {
+ return nil, err
+ }
+
+ mgf1XOR(db, hash, seed)
+ mgf1XOR(seed, hash, db)
+
+ m := new(big.Int)
+ m.SetBytes(em)
+ c := encrypt(new(big.Int), pub, m)
+
+ out := make([]byte, k)
+ return c.FillBytes(out), nil
+}
+
+// ErrDecryption represents a failure to decrypt a message.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrDecryption = errors.New("crypto/rsa: decryption error")
+
+// ErrVerification represents a failure to verify a signature.
+// It is deliberately vague to avoid adaptive attacks.
+var ErrVerification = errors.New("crypto/rsa: verification error")
+
+// Precompute performs some calculations that speed up private key operations
+// in the future.
+func (priv *PrivateKey) Precompute() {
+ if priv.Precomputed.Dp != nil {
+ return
+ }
+
+ priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
+ priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
+
+ priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
+ priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
+
+ priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
+
+ r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
+ priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
+ for i := 2; i < len(priv.Primes); i++ {
+ prime := priv.Primes[i]
+ values := &priv.Precomputed.CRTValues[i-2]
+
+ values.Exp = new(big.Int).Sub(prime, bigOne)
+ values.Exp.Mod(priv.D, values.Exp)
+
+ values.R = new(big.Int).Set(r)
+ values.Coeff = new(big.Int).ModInverse(r, prime)
+
+ r.Mul(r, prime)
+ }
+}
+
+// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
+// random source is given, RSA blinding is used.
+func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
+ // TODO(agl): can we get away with reusing blinds?
+ if c.Cmp(priv.N) > 0 {
+ err = ErrDecryption
+ return
+ }
+ if priv.N.Sign() == 0 {
+ return nil, ErrDecryption
+ }
+
+ var ir *big.Int
+ if random != nil {
+ randutil.MaybeReadByte(random)
+
+ // Blinding enabled. Blinding involves multiplying c by r^e.
+ // Then the decryption operation performs (m^e * r^e)^d mod n
+ // which equals mr mod n. The factor of r can then be removed
+ // by multiplying by the multiplicative inverse of r.
+
+ var r *big.Int
+ ir = new(big.Int)
+ for {
+ r, err = rand.Int(random, priv.N)
+ if err != nil {
+ return
+ }
+ if r.Cmp(bigZero) == 0 {
+ r = bigOne
+ }
+ ok := ir.ModInverse(r, priv.N)
+ if ok != nil {
+ break
+ }
+ }
+ bigE := big.NewInt(int64(priv.E))
+ rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
+ cCopy := new(big.Int).Set(c)
+ cCopy.Mul(cCopy, rpowe)
+ cCopy.Mod(cCopy, priv.N)
+ c = cCopy
+ }
+
+ if priv.Precomputed.Dp == nil {
+ m = new(big.Int).Exp(c, priv.D, priv.N)
+ } else {
+ // We have the precalculated values needed for the CRT.
+ m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
+ m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
+ m.Sub(m, m2)
+ if m.Sign() < 0 {
+ m.Add(m, priv.Primes[0])
+ }
+ m.Mul(m, priv.Precomputed.Qinv)
+ m.Mod(m, priv.Primes[0])
+ m.Mul(m, priv.Primes[1])
+ m.Add(m, m2)
+
+ for i, values := range priv.Precomputed.CRTValues {
+ prime := priv.Primes[2+i]
+ m2.Exp(c, values.Exp, prime)
+ m2.Sub(m2, m)
+ m2.Mul(m2, values.Coeff)
+ m2.Mod(m2, prime)
+ if m2.Sign() < 0 {
+ m2.Add(m2, prime)
+ }
+ m2.Mul(m2, values.R)
+ m.Add(m, m2)
+ }
+ }
+
+ if ir != nil {
+ // Unblind.
+ m.Mul(m, ir)
+ m.Mod(m, priv.N)
+ }
+
+ return
+}
+
+func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
+ m, err = decrypt(random, priv, c)
+ if err != nil {
+ return nil, err
+ }
+
+ // In order to defend against errors in the CRT computation, m^e is
+ // calculated, which should match the original ciphertext.
+ check := encrypt(new(big.Int), &priv.PublicKey, m)
+ if c.Cmp(check) != 0 {
+ return nil, errors.New("rsa: internal error")
+ }
+ return m, nil
+}
+
+// DecryptOAEP decrypts ciphertext using RSA-OAEP.
+//
+// OAEP is parameterised by a hash function that is used as a random oracle.
+// Encryption and decryption of a given message must use the same hash function
+// and sha256.New() is a reasonable choice.
+//
+// The random parameter, if not nil, is used to blind the private-key operation
+// and avoid timing side-channel attacks. Blinding is purely internal to this
+// function – the random data need not match that used when encrypting.
+//
+// The label parameter must match the value given when encrypting. See
+// EncryptOAEP for details.
+func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) {
+ if err := checkPub(&priv.PublicKey); err != nil {
+ return nil, err
+ }
+ k := priv.Size()
+ if len(ciphertext) > k ||
+ k < hash.Size()*2+2 {
+ return nil, ErrDecryption
+ }
+
+ c := new(big.Int).SetBytes(ciphertext)
+
+ m, err := decrypt(random, priv, c)
+ if err != nil {
+ return nil, err
+ }
+
+ hash.Write(label)
+ lHash := hash.Sum(nil)
+ hash.Reset()
+
+ // We probably leak the number of leading zeros.
+ // It's not clear that we can do anything about this.
+ em := m.FillBytes(make([]byte, k))
+
+ firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
+
+ seed := em[1 : hash.Size()+1]
+ db := em[hash.Size()+1:]
+
+ mgf1XOR(seed, hash, db)
+ mgf1XOR(db, hash, seed)
+
+ lHash2 := db[0:hash.Size()]
+
+ // We have to validate the plaintext in constant time in order to avoid
+ // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
+ // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
+ // v2.0. In J. Kilian, editor, Advances in Cryptology.
+ lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
+
+ // The remainder of the plaintext must be zero or more 0x00, followed
+ // by 0x01, followed by the message.
+ // lookingForIndex: 1 iff we are still looking for the 0x01
+ // index: the offset of the first 0x01 byte
+ // invalid: 1 iff we saw a non-zero byte before the 0x01.
+ var lookingForIndex, index, invalid int
+ lookingForIndex = 1
+ rest := db[hash.Size():]
+
+ for i := 0; i < len(rest); i++ {
+ equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
+ equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
+ index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
+ lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
+ invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
+ }
+
+ if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
+ return nil, ErrDecryption
+ }
+
+ return rest[index+1:], nil
+}
diff --git a/src/crypto/rsa/rsa_test.go b/src/crypto/rsa/rsa_test.go
new file mode 100644
index 0000000..84b1674
--- /dev/null
+++ b/src/crypto/rsa/rsa_test.go
@@ -0,0 +1,420 @@
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+ "bytes"
+ "crypto"
+ "crypto/rand"
+ "crypto/sha1"
+ "crypto/sha256"
+ "math/big"
+ "testing"
+)
+
+func TestKeyGeneration(t *testing.T) {
+ size := 1024
+ if testing.Short() {
+ size = 128
+ }
+ priv, err := GenerateKey(rand.Reader, size)
+ if err != nil {
+ t.Errorf("failed to generate key")
+ }
+ if bits := priv.N.BitLen(); bits != size {
+ t.Errorf("key too short (%d vs %d)", bits, size)
+ }
+ testKeyBasics(t, priv)
+}
+
+func Test3PrimeKeyGeneration(t *testing.T) {
+ size := 768
+ if testing.Short() {
+ size = 256
+ }
+
+ priv, err := GenerateMultiPrimeKey(rand.Reader, 3, size)
+ if err != nil {
+ t.Errorf("failed to generate key")
+ }
+ testKeyBasics(t, priv)
+}
+
+func Test4PrimeKeyGeneration(t *testing.T) {
+ size := 768
+ if testing.Short() {
+ size = 256
+ }
+
+ priv, err := GenerateMultiPrimeKey(rand.Reader, 4, size)
+ if err != nil {
+ t.Errorf("failed to generate key")
+ }
+ testKeyBasics(t, priv)
+}
+
+func TestNPrimeKeyGeneration(t *testing.T) {
+ primeSize := 64
+ maxN := 24
+ if testing.Short() {
+ primeSize = 16
+ maxN = 16
+ }
+ // Test that generation of N-prime keys works for N > 4.
+ for n := 5; n < maxN; n++ {
+ priv, err := GenerateMultiPrimeKey(rand.Reader, n, 64+n*primeSize)
+ if err == nil {
+ testKeyBasics(t, priv)
+ } else {
+ t.Errorf("failed to generate %d-prime key", n)
+ }
+ }
+}
+
+func TestImpossibleKeyGeneration(t *testing.T) {
+ // This test ensures that trying to generate toy RSA keys doesn't enter
+ // an infinite loop.
+ for i := 0; i < 32; i++ {
+ GenerateKey(rand.Reader, i)
+ GenerateMultiPrimeKey(rand.Reader, 3, i)
+ GenerateMultiPrimeKey(rand.Reader, 4, i)
+ GenerateMultiPrimeKey(rand.Reader, 5, i)
+ }
+}
+
+func TestGnuTLSKey(t *testing.T) {
+ // This is a key generated by `certtool --generate-privkey --bits 128`.
+ // It's such that de ≢ 1 mod φ(n), but is congruent mod the order of
+ // the group.
+ priv := &PrivateKey{
+ PublicKey: PublicKey{
+ N: fromBase10("290684273230919398108010081414538931343"),
+ E: 65537,
+ },
+ D: fromBase10("31877380284581499213530787347443987241"),
+ Primes: []*big.Int{
+ fromBase10("16775196964030542637"),
+ fromBase10("17328218193455850539"),
+ },
+ }
+ testKeyBasics(t, priv)
+}
+
+func testKeyBasics(t *testing.T, priv *PrivateKey) {
+ if err := priv.Validate(); err != nil {
+ t.Errorf("Validate() failed: %s", err)
+ }
+ if priv.D.Cmp(priv.N) > 0 {
+ t.Errorf("private exponent too large")
+ }
+
+ pub := &priv.PublicKey
+ m := big.NewInt(42)
+ c := encrypt(new(big.Int), pub, m)
+
+ m2, err := decrypt(nil, priv, c)
+ if err != nil {
+ t.Errorf("error while decrypting: %s", err)
+ return
+ }
+ if m.Cmp(m2) != 0 {
+ t.Errorf("got:%v, want:%v (%+v)", m2, m, priv)
+ }
+
+ m3, err := decrypt(rand.Reader, priv, c)
+ if err != nil {
+ t.Errorf("error while decrypting (blind): %s", err)
+ }
+ if m.Cmp(m3) != 0 {
+ t.Errorf("(blind) got:%v, want:%v (%#v)", m3, m, priv)
+ }
+}
+
+func fromBase10(base10 string) *big.Int {
+ i, ok := new(big.Int).SetString(base10, 10)
+ if !ok {
+ panic("bad number: " + base10)
+ }
+ return i
+}
+
+var test2048Key *PrivateKey
+
+func init() {
+ test2048Key = &PrivateKey{
+ PublicKey: PublicKey{
+ N: fromBase10("14314132931241006650998084889274020608918049032671858325988396851334124245188214251956198731333464217832226406088020736932173064754214329009979944037640912127943488972644697423190955557435910767690712778463524983667852819010259499695177313115447116110358524558307947613422897787329221478860907963827160223559690523660574329011927531289655711860504630573766609239332569210831325633840174683944553667352219670930408593321661375473885147973879086994006440025257225431977751512374815915392249179976902953721486040787792801849818254465486633791826766873076617116727073077821584676715609985777563958286637185868165868520557"),
+ E: 3,
+ },
+ D: fromBase10("9542755287494004433998723259516013739278699355114572217325597900889416163458809501304132487555642811888150937392013824621448709836142886006653296025093941418628992648429798282127303704957273845127141852309016655778568546006839666463451542076964744073572349705538631742281931858219480985907271975884773482372966847639853897890615456605598071088189838676728836833012254065983259638538107719766738032720239892094196108713378822882383694456030043492571063441943847195939549773271694647657549658603365629458610273821292232646334717612674519997533901052790334279661754176490593041941863932308687197618671528035670452762731"),
+ Primes: []*big.Int{
+ fromBase10("130903255182996722426771613606077755295583329135067340152947172868415809027537376306193179624298874215608270802054347609836776473930072411958753044562214537013874103802006369634761074377213995983876788718033850153719421695468704276694983032644416930879093914927146648402139231293035971427838068945045019075433"),
+ fromBase10("109348945610485453577574767652527472924289229538286649661240938988020367005475727988253438647560958573506159449538793540472829815903949343191091817779240101054552748665267574271163617694640513549693841337820602726596756351006149518830932261246698766355347898158548465400674856021497190430791824869615170301029"),
+ },
+ }
+ test2048Key.Precompute()
+}
+
+func BenchmarkRSA2048Decrypt(b *testing.B) {
+ b.StopTimer()
+
+ c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313")
+
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ decrypt(nil, test2048Key, c)
+ }
+}
+
+func BenchmarkRSA2048Sign(b *testing.B) {
+ b.StopTimer()
+ hashed := sha256.Sum256([]byte("testing"))
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ SignPKCS1v15(rand.Reader, test2048Key, crypto.SHA256, hashed[:])
+ }
+}
+
+func Benchmark3PrimeRSA2048Decrypt(b *testing.B) {
+ b.StopTimer()
+ priv := &PrivateKey{
+ PublicKey: PublicKey{
+ N: fromBase10("16346378922382193400538269749936049106320265317511766357599732575277382844051791096569333808598921852351577762718529818072849191122419410612033592401403764925096136759934497687765453905884149505175426053037420486697072448609022753683683718057795566811401938833367954642951433473337066311978821180526439641496973296037000052546108507805269279414789035461158073156772151892452251106173507240488993608650881929629163465099476849643165682709047462010581308719577053905787496296934240246311806555924593059995202856826239801816771116902778517096212527979497399966526283516447337775509777558018145573127308919204297111496233"),
+ E: 3,
+ },
+ D: fromBase10("10897585948254795600358846499957366070880176878341177571733155050184921896034527397712889205732614568234385175145686545381899460748279607074689061600935843283397424506622998458510302603922766336783617368686090042765718290914099334449154829375179958369993407724946186243249568928237086215759259909861748642124071874879861299389874230489928271621259294894142840428407196932444474088857746123104978617098858619445675532587787023228852383149557470077802718705420275739737958953794088728369933811184572620857678792001136676902250566845618813972833750098806496641114644760255910789397593428910198080271317419213080834885003"),
+ Primes: []*big.Int{
+ fromBase10("1025363189502892836833747188838978207017355117492483312747347695538428729137306368764177201532277413433182799108299960196606011786562992097313508180436744488171474690412562218914213688661311117337381958560443"),
+ fromBase10("3467903426626310123395340254094941045497208049900750380025518552334536945536837294961497712862519984786362199788654739924501424784631315081391467293694361474867825728031147665777546570788493758372218019373"),
+ fromBase10("4597024781409332673052708605078359346966325141767460991205742124888960305710298765592730135879076084498363772408626791576005136245060321874472727132746643162385746062759369754202494417496879741537284589047"),
+ },
+ }
+ priv.Precompute()
+
+ c := fromBase10("8472002792838218989464636159316973636630013835787202418124758118372358261975764365740026024610403138425986214991379012696600761514742817632790916315594342398720903716529235119816755589383377471752116975374952783629225022962092351886861518911824745188989071172097120352727368980275252089141512321893536744324822590480751098257559766328893767334861211872318961900897793874075248286439689249972315699410830094164386544311554704755110361048571142336148077772023880664786019636334369759624917224888206329520528064315309519262325023881707530002540634660750469137117568199824615333883758410040459705787022909848740188613313")
+
+ b.StartTimer()
+
+ for i := 0; i < b.N; i++ {
+ decrypt(nil, priv, c)
+ }
+}
+
+type testEncryptOAEPMessage struct {
+ in []byte
+ seed []byte
+ out []byte
+}
+
+type testEncryptOAEPStruct struct {
+ modulus string
+ e int
+ d string
+ msgs []testEncryptOAEPMessage
+}
+
+func TestEncryptOAEP(t *testing.T) {
+ sha1 := sha1.New()
+ n := new(big.Int)
+ for i, test := range testEncryptOAEPData {
+ n.SetString(test.modulus, 16)
+ public := PublicKey{n, test.e}
+
+ for j, message := range test.msgs {
+ randomSource := bytes.NewReader(message.seed)
+ out, err := EncryptOAEP(sha1, randomSource, &public, message.in, nil)
+ if err != nil {
+ t.Errorf("#%d,%d error: %s", i, j, err)
+ }
+ if !bytes.Equal(out, message.out) {
+ t.Errorf("#%d,%d bad result: %x (want %x)", i, j, out, message.out)
+ }
+ }
+ }
+}
+
+func TestDecryptOAEP(t *testing.T) {
+ random := rand.Reader
+
+ sha1 := sha1.New()
+ n := new(big.Int)
+ d := new(big.Int)
+ for i, test := range testEncryptOAEPData {
+ n.SetString(test.modulus, 16)
+ d.SetString(test.d, 16)
+ private := new(PrivateKey)
+ private.PublicKey = PublicKey{n, test.e}
+ private.D = d
+
+ for j, message := range test.msgs {
+ out, err := DecryptOAEP(sha1, nil, private, message.out, nil)
+ if err != nil {
+ t.Errorf("#%d,%d error: %s", i, j, err)
+ } else if !bytes.Equal(out, message.in) {
+ t.Errorf("#%d,%d bad result: %#v (want %#v)", i, j, out, message.in)
+ }
+
+ // Decrypt with blinding.
+ out, err = DecryptOAEP(sha1, random, private, message.out, nil)
+ if err != nil {
+ t.Errorf("#%d,%d (blind) error: %s", i, j, err)
+ } else if !bytes.Equal(out, message.in) {
+ t.Errorf("#%d,%d (blind) bad result: %#v (want %#v)", i, j, out, message.in)
+ }
+ }
+ if testing.Short() {
+ break
+ }
+ }
+}
+
+// testEncryptOAEPData contains a subset of the vectors from RSA's "Test vectors for RSA-OAEP".
+var testEncryptOAEPData = []testEncryptOAEPStruct{
+ // Key 1
+ {"a8b3b284af8eb50b387034a860f146c4919f318763cd6c5598c8ae4811a1e0abc4c7e0b082d693a5e7fced675cf4668512772c0cbc64a742c6c630f533c8cc72f62ae833c40bf25842e984bb78bdbf97c0107d55bdb662f5c4e0fab9845cb5148ef7392dd3aaff93ae1e6b667bb3d4247616d4f5ba10d4cfd226de88d39f16fb",
+ 65537,
+ "53339cfdb79fc8466a655c7316aca85c55fd8f6dd898fdaf119517ef4f52e8fd8e258df93fee180fa0e4ab29693cd83b152a553d4ac4d1812b8b9fa5af0e7f55fe7304df41570926f3311f15c4d65a732c483116ee3d3d2d0af3549ad9bf7cbfb78ad884f84d5beb04724dc7369b31def37d0cf539e9cfcdd3de653729ead5d1",
+ []testEncryptOAEPMessage{
+ // Example 1.1
+ {
+ []byte{0x66, 0x28, 0x19, 0x4e, 0x12, 0x07, 0x3d, 0xb0,
+ 0x3b, 0xa9, 0x4c, 0xda, 0x9e, 0xf9, 0x53, 0x23, 0x97,
+ 0xd5, 0x0d, 0xba, 0x79, 0xb9, 0x87, 0x00, 0x4a, 0xfe,
+ 0xfe, 0x34,
+ },
+ []byte{0x18, 0xb7, 0x76, 0xea, 0x21, 0x06, 0x9d, 0x69,
+ 0x77, 0x6a, 0x33, 0xe9, 0x6b, 0xad, 0x48, 0xe1, 0xdd,
+ 0xa0, 0xa5, 0xef,
+ },
+ []byte{0x35, 0x4f, 0xe6, 0x7b, 0x4a, 0x12, 0x6d, 0x5d,
+ 0x35, 0xfe, 0x36, 0xc7, 0x77, 0x79, 0x1a, 0x3f, 0x7b,
+ 0xa1, 0x3d, 0xef, 0x48, 0x4e, 0x2d, 0x39, 0x08, 0xaf,
+ 0xf7, 0x22, 0xfa, 0xd4, 0x68, 0xfb, 0x21, 0x69, 0x6d,
+ 0xe9, 0x5d, 0x0b, 0xe9, 0x11, 0xc2, 0xd3, 0x17, 0x4f,
+ 0x8a, 0xfc, 0xc2, 0x01, 0x03, 0x5f, 0x7b, 0x6d, 0x8e,
+ 0x69, 0x40, 0x2d, 0xe5, 0x45, 0x16, 0x18, 0xc2, 0x1a,
+ 0x53, 0x5f, 0xa9, 0xd7, 0xbf, 0xc5, 0xb8, 0xdd, 0x9f,
+ 0xc2, 0x43, 0xf8, 0xcf, 0x92, 0x7d, 0xb3, 0x13, 0x22,
+ 0xd6, 0xe8, 0x81, 0xea, 0xa9, 0x1a, 0x99, 0x61, 0x70,
+ 0xe6, 0x57, 0xa0, 0x5a, 0x26, 0x64, 0x26, 0xd9, 0x8c,
+ 0x88, 0x00, 0x3f, 0x84, 0x77, 0xc1, 0x22, 0x70, 0x94,
+ 0xa0, 0xd9, 0xfa, 0x1e, 0x8c, 0x40, 0x24, 0x30, 0x9c,
+ 0xe1, 0xec, 0xcc, 0xb5, 0x21, 0x00, 0x35, 0xd4, 0x7a,
+ 0xc7, 0x2e, 0x8a,
+ },
+ },
+ // Example 1.2
+ {
+ []byte{0x75, 0x0c, 0x40, 0x47, 0xf5, 0x47, 0xe8, 0xe4,
+ 0x14, 0x11, 0x85, 0x65, 0x23, 0x29, 0x8a, 0xc9, 0xba,
+ 0xe2, 0x45, 0xef, 0xaf, 0x13, 0x97, 0xfb, 0xe5, 0x6f,
+ 0x9d, 0xd5,
+ },
+ []byte{0x0c, 0xc7, 0x42, 0xce, 0x4a, 0x9b, 0x7f, 0x32,
+ 0xf9, 0x51, 0xbc, 0xb2, 0x51, 0xef, 0xd9, 0x25, 0xfe,
+ 0x4f, 0xe3, 0x5f,
+ },
+ []byte{0x64, 0x0d, 0xb1, 0xac, 0xc5, 0x8e, 0x05, 0x68,
+ 0xfe, 0x54, 0x07, 0xe5, 0xf9, 0xb7, 0x01, 0xdf, 0xf8,
+ 0xc3, 0xc9, 0x1e, 0x71, 0x6c, 0x53, 0x6f, 0xc7, 0xfc,
+ 0xec, 0x6c, 0xb5, 0xb7, 0x1c, 0x11, 0x65, 0x98, 0x8d,
+ 0x4a, 0x27, 0x9e, 0x15, 0x77, 0xd7, 0x30, 0xfc, 0x7a,
+ 0x29, 0x93, 0x2e, 0x3f, 0x00, 0xc8, 0x15, 0x15, 0x23,
+ 0x6d, 0x8d, 0x8e, 0x31, 0x01, 0x7a, 0x7a, 0x09, 0xdf,
+ 0x43, 0x52, 0xd9, 0x04, 0xcd, 0xeb, 0x79, 0xaa, 0x58,
+ 0x3a, 0xdc, 0xc3, 0x1e, 0xa6, 0x98, 0xa4, 0xc0, 0x52,
+ 0x83, 0xda, 0xba, 0x90, 0x89, 0xbe, 0x54, 0x91, 0xf6,
+ 0x7c, 0x1a, 0x4e, 0xe4, 0x8d, 0xc7, 0x4b, 0xbb, 0xe6,
+ 0x64, 0x3a, 0xef, 0x84, 0x66, 0x79, 0xb4, 0xcb, 0x39,
+ 0x5a, 0x35, 0x2d, 0x5e, 0xd1, 0x15, 0x91, 0x2d, 0xf6,
+ 0x96, 0xff, 0xe0, 0x70, 0x29, 0x32, 0x94, 0x6d, 0x71,
+ 0x49, 0x2b, 0x44,
+ },
+ },
+ // Example 1.3
+ {
+ []byte{0xd9, 0x4a, 0xe0, 0x83, 0x2e, 0x64, 0x45, 0xce,
+ 0x42, 0x33, 0x1c, 0xb0, 0x6d, 0x53, 0x1a, 0x82, 0xb1,
+ 0xdb, 0x4b, 0xaa, 0xd3, 0x0f, 0x74, 0x6d, 0xc9, 0x16,
+ 0xdf, 0x24, 0xd4, 0xe3, 0xc2, 0x45, 0x1f, 0xff, 0x59,
+ 0xa6, 0x42, 0x3e, 0xb0, 0xe1, 0xd0, 0x2d, 0x4f, 0xe6,
+ 0x46, 0xcf, 0x69, 0x9d, 0xfd, 0x81, 0x8c, 0x6e, 0x97,
+ 0xb0, 0x51,
+ },
+ []byte{0x25, 0x14, 0xdf, 0x46, 0x95, 0x75, 0x5a, 0x67,
+ 0xb2, 0x88, 0xea, 0xf4, 0x90, 0x5c, 0x36, 0xee, 0xc6,
+ 0x6f, 0xd2, 0xfd,
+ },
+ []byte{0x42, 0x37, 0x36, 0xed, 0x03, 0x5f, 0x60, 0x26,
+ 0xaf, 0x27, 0x6c, 0x35, 0xc0, 0xb3, 0x74, 0x1b, 0x36,
+ 0x5e, 0x5f, 0x76, 0xca, 0x09, 0x1b, 0x4e, 0x8c, 0x29,
+ 0xe2, 0xf0, 0xbe, 0xfe, 0xe6, 0x03, 0x59, 0x5a, 0xa8,
+ 0x32, 0x2d, 0x60, 0x2d, 0x2e, 0x62, 0x5e, 0x95, 0xeb,
+ 0x81, 0xb2, 0xf1, 0xc9, 0x72, 0x4e, 0x82, 0x2e, 0xca,
+ 0x76, 0xdb, 0x86, 0x18, 0xcf, 0x09, 0xc5, 0x34, 0x35,
+ 0x03, 0xa4, 0x36, 0x08, 0x35, 0xb5, 0x90, 0x3b, 0xc6,
+ 0x37, 0xe3, 0x87, 0x9f, 0xb0, 0x5e, 0x0e, 0xf3, 0x26,
+ 0x85, 0xd5, 0xae, 0xc5, 0x06, 0x7c, 0xd7, 0xcc, 0x96,
+ 0xfe, 0x4b, 0x26, 0x70, 0xb6, 0xea, 0xc3, 0x06, 0x6b,
+ 0x1f, 0xcf, 0x56, 0x86, 0xb6, 0x85, 0x89, 0xaa, 0xfb,
+ 0x7d, 0x62, 0x9b, 0x02, 0xd8, 0xf8, 0x62, 0x5c, 0xa3,
+ 0x83, 0x36, 0x24, 0xd4, 0x80, 0x0f, 0xb0, 0x81, 0xb1,
+ 0xcf, 0x94, 0xeb,
+ },
+ },
+ },
+ },
+ // Key 10
+ {"ae45ed5601cec6b8cc05f803935c674ddbe0d75c4c09fd7951fc6b0caec313a8df39970c518bffba5ed68f3f0d7f22a4029d413f1ae07e4ebe9e4177ce23e7f5404b569e4ee1bdcf3c1fb03ef113802d4f855eb9b5134b5a7c8085adcae6fa2fa1417ec3763be171b0c62b760ede23c12ad92b980884c641f5a8fac26bdad4a03381a22fe1b754885094c82506d4019a535a286afeb271bb9ba592de18dcf600c2aeeae56e02f7cf79fc14cf3bdc7cd84febbbf950ca90304b2219a7aa063aefa2c3c1980e560cd64afe779585b6107657b957857efde6010988ab7de417fc88d8f384c4e6e72c3f943e0c31c0c4a5cc36f879d8a3ac9d7d59860eaada6b83bb",
+ 65537,
+ "056b04216fe5f354ac77250a4b6b0c8525a85c59b0bd80c56450a22d5f438e596a333aa875e291dd43f48cb88b9d5fc0d499f9fcd1c397f9afc070cd9e398c8d19e61db7c7410a6b2675dfbf5d345b804d201add502d5ce2dfcb091ce9997bbebe57306f383e4d588103f036f7e85d1934d152a323e4a8db451d6f4a5b1b0f102cc150e02feee2b88dea4ad4c1baccb24d84072d14e1d24a6771f7408ee30564fb86d4393a34bcf0b788501d193303f13a2284b001f0f649eaf79328d4ac5c430ab4414920a9460ed1b7bc40ec653e876d09abc509ae45b525190116a0c26101848298509c1c3bf3a483e7274054e15e97075036e989f60932807b5257751e79",
+ []testEncryptOAEPMessage{
+ // Example 10.1
+ {
+ []byte{0x8b, 0xba, 0x6b, 0xf8, 0x2a, 0x6c, 0x0f, 0x86,
+ 0xd5, 0xf1, 0x75, 0x6e, 0x97, 0x95, 0x68, 0x70, 0xb0,
+ 0x89, 0x53, 0xb0, 0x6b, 0x4e, 0xb2, 0x05, 0xbc, 0x16,
+ 0x94, 0xee,
+ },
+ []byte{0x47, 0xe1, 0xab, 0x71, 0x19, 0xfe, 0xe5, 0x6c,
+ 0x95, 0xee, 0x5e, 0xaa, 0xd8, 0x6f, 0x40, 0xd0, 0xaa,
+ 0x63, 0xbd, 0x33,
+ },
+ []byte{0x53, 0xea, 0x5d, 0xc0, 0x8c, 0xd2, 0x60, 0xfb,
+ 0x3b, 0x85, 0x85, 0x67, 0x28, 0x7f, 0xa9, 0x15, 0x52,
+ 0xc3, 0x0b, 0x2f, 0xeb, 0xfb, 0xa2, 0x13, 0xf0, 0xae,
+ 0x87, 0x70, 0x2d, 0x06, 0x8d, 0x19, 0xba, 0xb0, 0x7f,
+ 0xe5, 0x74, 0x52, 0x3d, 0xfb, 0x42, 0x13, 0x9d, 0x68,
+ 0xc3, 0xc5, 0xaf, 0xee, 0xe0, 0xbf, 0xe4, 0xcb, 0x79,
+ 0x69, 0xcb, 0xf3, 0x82, 0xb8, 0x04, 0xd6, 0xe6, 0x13,
+ 0x96, 0x14, 0x4e, 0x2d, 0x0e, 0x60, 0x74, 0x1f, 0x89,
+ 0x93, 0xc3, 0x01, 0x4b, 0x58, 0xb9, 0xb1, 0x95, 0x7a,
+ 0x8b, 0xab, 0xcd, 0x23, 0xaf, 0x85, 0x4f, 0x4c, 0x35,
+ 0x6f, 0xb1, 0x66, 0x2a, 0xa7, 0x2b, 0xfc, 0xc7, 0xe5,
+ 0x86, 0x55, 0x9d, 0xc4, 0x28, 0x0d, 0x16, 0x0c, 0x12,
+ 0x67, 0x85, 0xa7, 0x23, 0xeb, 0xee, 0xbe, 0xff, 0x71,
+ 0xf1, 0x15, 0x94, 0x44, 0x0a, 0xae, 0xf8, 0x7d, 0x10,
+ 0x79, 0x3a, 0x87, 0x74, 0xa2, 0x39, 0xd4, 0xa0, 0x4c,
+ 0x87, 0xfe, 0x14, 0x67, 0xb9, 0xda, 0xf8, 0x52, 0x08,
+ 0xec, 0x6c, 0x72, 0x55, 0x79, 0x4a, 0x96, 0xcc, 0x29,
+ 0x14, 0x2f, 0x9a, 0x8b, 0xd4, 0x18, 0xe3, 0xc1, 0xfd,
+ 0x67, 0x34, 0x4b, 0x0c, 0xd0, 0x82, 0x9d, 0xf3, 0xb2,
+ 0xbe, 0xc6, 0x02, 0x53, 0x19, 0x62, 0x93, 0xc6, 0xb3,
+ 0x4d, 0x3f, 0x75, 0xd3, 0x2f, 0x21, 0x3d, 0xd4, 0x5c,
+ 0x62, 0x73, 0xd5, 0x05, 0xad, 0xf4, 0xcc, 0xed, 0x10,
+ 0x57, 0xcb, 0x75, 0x8f, 0xc2, 0x6a, 0xee, 0xfa, 0x44,
+ 0x12, 0x55, 0xed, 0x4e, 0x64, 0xc1, 0x99, 0xee, 0x07,
+ 0x5e, 0x7f, 0x16, 0x64, 0x61, 0x82, 0xfd, 0xb4, 0x64,
+ 0x73, 0x9b, 0x68, 0xab, 0x5d, 0xaf, 0xf0, 0xe6, 0x3e,
+ 0x95, 0x52, 0x01, 0x68, 0x24, 0xf0, 0x54, 0xbf, 0x4d,
+ 0x3c, 0x8c, 0x90, 0xa9, 0x7b, 0xb6, 0xb6, 0x55, 0x32,
+ 0x84, 0xeb, 0x42, 0x9f, 0xcc,
+ },
+ },
+ },
+ },
+}
diff --git a/src/crypto/rsa/testdata/pss-vect.txt.bz2 b/src/crypto/rsa/testdata/pss-vect.txt.bz2
new file mode 100644
index 0000000..ad3da1a
--- /dev/null
+++ b/src/crypto/rsa/testdata/pss-vect.txt.bz2
Binary files differ