summaryrefslogtreecommitdiffstats
path: root/src/internal/trace/gc.go
diff options
context:
space:
mode:
Diffstat (limited to 'src/internal/trace/gc.go')
-rw-r--r--src/internal/trace/gc.go825
1 files changed, 825 insertions, 0 deletions
diff --git a/src/internal/trace/gc.go b/src/internal/trace/gc.go
new file mode 100644
index 0000000..cc19fdf
--- /dev/null
+++ b/src/internal/trace/gc.go
@@ -0,0 +1,825 @@
+// Copyright 2017 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package trace
+
+import (
+ "container/heap"
+ "math"
+ "sort"
+ "strings"
+ "time"
+)
+
+// MutatorUtil is a change in mutator utilization at a particular
+// time. Mutator utilization functions are represented as a
+// time-ordered []MutatorUtil.
+type MutatorUtil struct {
+ Time int64
+ // Util is the mean mutator utilization starting at Time. This
+ // is in the range [0, 1].
+ Util float64
+}
+
+// UtilFlags controls the behavior of MutatorUtilization.
+type UtilFlags int
+
+const (
+ // UtilSTW means utilization should account for STW events.
+ UtilSTW UtilFlags = 1 << iota
+ // UtilBackground means utilization should account for
+ // background mark workers.
+ UtilBackground
+ // UtilAssist means utilization should account for mark
+ // assists.
+ UtilAssist
+ // UtilSweep means utilization should account for sweeping.
+ UtilSweep
+
+ // UtilPerProc means each P should be given a separate
+ // utilization function. Otherwise, there is a single function
+ // and each P is given a fraction of the utilization.
+ UtilPerProc
+)
+
+// MutatorUtilization returns a set of mutator utilization functions
+// for the given trace. Each function will always end with 0
+// utilization. The bounds of each function are implicit in the first
+// and last event; outside of these bounds each function is undefined.
+//
+// If the UtilPerProc flag is not given, this always returns a single
+// utilization function. Otherwise, it returns one function per P.
+func MutatorUtilization(events []*Event, flags UtilFlags) [][]MutatorUtil {
+ if len(events) == 0 {
+ return nil
+ }
+
+ type perP struct {
+ // gc > 0 indicates that GC is active on this P.
+ gc int
+ // series the logical series number for this P. This
+ // is necessary because Ps may be removed and then
+ // re-added, and then the new P needs a new series.
+ series int
+ }
+ ps := []perP{}
+ stw := 0
+
+ out := [][]MutatorUtil{}
+ assists := map[uint64]bool{}
+ block := map[uint64]*Event{}
+ bgMark := map[uint64]bool{}
+
+ for _, ev := range events {
+ switch ev.Type {
+ case EvGomaxprocs:
+ gomaxprocs := int(ev.Args[0])
+ if len(ps) > gomaxprocs {
+ if flags&UtilPerProc != 0 {
+ // End each P's series.
+ for _, p := range ps[gomaxprocs:] {
+ out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, 0})
+ }
+ }
+ ps = ps[:gomaxprocs]
+ }
+ for len(ps) < gomaxprocs {
+ // Start new P's series.
+ series := 0
+ if flags&UtilPerProc != 0 || len(out) == 0 {
+ series = len(out)
+ out = append(out, []MutatorUtil{{ev.Ts, 1}})
+ }
+ ps = append(ps, perP{series: series})
+ }
+ case EvGCSTWStart:
+ if flags&UtilSTW != 0 {
+ stw++
+ }
+ case EvGCSTWDone:
+ if flags&UtilSTW != 0 {
+ stw--
+ }
+ case EvGCMarkAssistStart:
+ if flags&UtilAssist != 0 {
+ ps[ev.P].gc++
+ assists[ev.G] = true
+ }
+ case EvGCMarkAssistDone:
+ if flags&UtilAssist != 0 {
+ ps[ev.P].gc--
+ delete(assists, ev.G)
+ }
+ case EvGCSweepStart:
+ if flags&UtilSweep != 0 {
+ ps[ev.P].gc++
+ }
+ case EvGCSweepDone:
+ if flags&UtilSweep != 0 {
+ ps[ev.P].gc--
+ }
+ case EvGoStartLabel:
+ if flags&UtilBackground != 0 && strings.HasPrefix(ev.SArgs[0], "GC ") && ev.SArgs[0] != "GC (idle)" {
+ // Background mark worker.
+ //
+ // If we're in per-proc mode, we don't
+ // count dedicated workers because
+ // they kick all of the goroutines off
+ // that P, so don't directly
+ // contribute to goroutine latency.
+ if !(flags&UtilPerProc != 0 && ev.SArgs[0] == "GC (dedicated)") {
+ bgMark[ev.G] = true
+ ps[ev.P].gc++
+ }
+ }
+ fallthrough
+ case EvGoStart:
+ if assists[ev.G] {
+ // Unblocked during assist.
+ ps[ev.P].gc++
+ }
+ block[ev.G] = ev.Link
+ default:
+ if ev != block[ev.G] {
+ continue
+ }
+
+ if assists[ev.G] {
+ // Blocked during assist.
+ ps[ev.P].gc--
+ }
+ if bgMark[ev.G] {
+ // Background mark worker done.
+ ps[ev.P].gc--
+ delete(bgMark, ev.G)
+ }
+ delete(block, ev.G)
+ }
+
+ if flags&UtilPerProc == 0 {
+ // Compute the current average utilization.
+ if len(ps) == 0 {
+ continue
+ }
+ gcPs := 0
+ if stw > 0 {
+ gcPs = len(ps)
+ } else {
+ for i := range ps {
+ if ps[i].gc > 0 {
+ gcPs++
+ }
+ }
+ }
+ mu := MutatorUtil{ev.Ts, 1 - float64(gcPs)/float64(len(ps))}
+
+ // Record the utilization change. (Since
+ // len(ps) == len(out), we know len(out) > 0.)
+ out[0] = addUtil(out[0], mu)
+ } else {
+ // Check for per-P utilization changes.
+ for i := range ps {
+ p := &ps[i]
+ util := 1.0
+ if stw > 0 || p.gc > 0 {
+ util = 0.0
+ }
+ out[p.series] = addUtil(out[p.series], MutatorUtil{ev.Ts, util})
+ }
+ }
+ }
+
+ // Add final 0 utilization event to any remaining series. This
+ // is important to mark the end of the trace. The exact value
+ // shouldn't matter since no window should extend beyond this,
+ // but using 0 is symmetric with the start of the trace.
+ mu := MutatorUtil{events[len(events)-1].Ts, 0}
+ for i := range ps {
+ out[ps[i].series] = addUtil(out[ps[i].series], mu)
+ }
+ return out
+}
+
+func addUtil(util []MutatorUtil, mu MutatorUtil) []MutatorUtil {
+ if len(util) > 0 {
+ if mu.Util == util[len(util)-1].Util {
+ // No change.
+ return util
+ }
+ if mu.Time == util[len(util)-1].Time {
+ // Take the lowest utilization at a time stamp.
+ if mu.Util < util[len(util)-1].Util {
+ util[len(util)-1] = mu
+ }
+ return util
+ }
+ }
+ return append(util, mu)
+}
+
+// totalUtil is total utilization, measured in nanoseconds. This is a
+// separate type primarily to distinguish it from mean utilization,
+// which is also a float64.
+type totalUtil float64
+
+func totalUtilOf(meanUtil float64, dur int64) totalUtil {
+ return totalUtil(meanUtil * float64(dur))
+}
+
+// mean returns the mean utilization over dur.
+func (u totalUtil) mean(dur time.Duration) float64 {
+ return float64(u) / float64(dur)
+}
+
+// An MMUCurve is the minimum mutator utilization curve across
+// multiple window sizes.
+type MMUCurve struct {
+ series []mmuSeries
+}
+
+type mmuSeries struct {
+ util []MutatorUtil
+ // sums[j] is the cumulative sum of util[:j].
+ sums []totalUtil
+ // bands summarizes util in non-overlapping bands of duration
+ // bandDur.
+ bands []mmuBand
+ // bandDur is the duration of each band.
+ bandDur int64
+}
+
+type mmuBand struct {
+ // minUtil is the minimum instantaneous mutator utilization in
+ // this band.
+ minUtil float64
+ // cumUtil is the cumulative total mutator utilization between
+ // time 0 and the left edge of this band.
+ cumUtil totalUtil
+
+ // integrator is the integrator for the left edge of this
+ // band.
+ integrator integrator
+}
+
+// NewMMUCurve returns an MMU curve for the given mutator utilization
+// function.
+func NewMMUCurve(utils [][]MutatorUtil) *MMUCurve {
+ series := make([]mmuSeries, len(utils))
+ for i, util := range utils {
+ series[i] = newMMUSeries(util)
+ }
+ return &MMUCurve{series}
+}
+
+// bandsPerSeries is the number of bands to divide each series into.
+// This is only changed by tests.
+var bandsPerSeries = 1000
+
+func newMMUSeries(util []MutatorUtil) mmuSeries {
+ // Compute cumulative sum.
+ sums := make([]totalUtil, len(util))
+ var prev MutatorUtil
+ var sum totalUtil
+ for j, u := range util {
+ sum += totalUtilOf(prev.Util, u.Time-prev.Time)
+ sums[j] = sum
+ prev = u
+ }
+
+ // Divide the utilization curve up into equal size
+ // non-overlapping "bands" and compute a summary for each of
+ // these bands.
+ //
+ // Compute the duration of each band.
+ numBands := bandsPerSeries
+ if numBands > len(util) {
+ // There's no point in having lots of bands if there
+ // aren't many events.
+ numBands = len(util)
+ }
+ dur := util[len(util)-1].Time - util[0].Time
+ bandDur := (dur + int64(numBands) - 1) / int64(numBands)
+ if bandDur < 1 {
+ bandDur = 1
+ }
+ // Compute the bands. There are numBands+1 bands in order to
+ // record the final cumulative sum.
+ bands := make([]mmuBand, numBands+1)
+ s := mmuSeries{util, sums, bands, bandDur}
+ leftSum := integrator{&s, 0}
+ for i := range bands {
+ startTime, endTime := s.bandTime(i)
+ cumUtil := leftSum.advance(startTime)
+ predIdx := leftSum.pos
+ minUtil := 1.0
+ for i := predIdx; i < len(util) && util[i].Time < endTime; i++ {
+ minUtil = math.Min(minUtil, util[i].Util)
+ }
+ bands[i] = mmuBand{minUtil, cumUtil, leftSum}
+ }
+
+ return s
+}
+
+func (s *mmuSeries) bandTime(i int) (start, end int64) {
+ start = int64(i)*s.bandDur + s.util[0].Time
+ end = start + s.bandDur
+ return
+}
+
+type bandUtil struct {
+ // Utilization series index
+ series int
+ // Band index
+ i int
+ // Lower bound of mutator utilization for all windows
+ // with a left edge in this band.
+ utilBound float64
+}
+
+type bandUtilHeap []bandUtil
+
+func (h bandUtilHeap) Len() int {
+ return len(h)
+}
+
+func (h bandUtilHeap) Less(i, j int) bool {
+ return h[i].utilBound < h[j].utilBound
+}
+
+func (h bandUtilHeap) Swap(i, j int) {
+ h[i], h[j] = h[j], h[i]
+}
+
+func (h *bandUtilHeap) Push(x interface{}) {
+ *h = append(*h, x.(bandUtil))
+}
+
+func (h *bandUtilHeap) Pop() interface{} {
+ x := (*h)[len(*h)-1]
+ *h = (*h)[:len(*h)-1]
+ return x
+}
+
+// UtilWindow is a specific window at Time.
+type UtilWindow struct {
+ Time int64
+ // MutatorUtil is the mean mutator utilization in this window.
+ MutatorUtil float64
+}
+
+type utilHeap []UtilWindow
+
+func (h utilHeap) Len() int {
+ return len(h)
+}
+
+func (h utilHeap) Less(i, j int) bool {
+ if h[i].MutatorUtil != h[j].MutatorUtil {
+ return h[i].MutatorUtil > h[j].MutatorUtil
+ }
+ return h[i].Time > h[j].Time
+}
+
+func (h utilHeap) Swap(i, j int) {
+ h[i], h[j] = h[j], h[i]
+}
+
+func (h *utilHeap) Push(x interface{}) {
+ *h = append(*h, x.(UtilWindow))
+}
+
+func (h *utilHeap) Pop() interface{} {
+ x := (*h)[len(*h)-1]
+ *h = (*h)[:len(*h)-1]
+ return x
+}
+
+// An accumulator takes a windowed mutator utilization function and
+// tracks various statistics for that function.
+type accumulator struct {
+ mmu float64
+
+ // bound is the mutator utilization bound where adding any
+ // mutator utilization above this bound cannot affect the
+ // accumulated statistics.
+ bound float64
+
+ // Worst N window tracking
+ nWorst int
+ wHeap utilHeap
+
+ // Mutator utilization distribution tracking
+ mud *mud
+ // preciseMass is the distribution mass that must be precise
+ // before accumulation is stopped.
+ preciseMass float64
+ // lastTime and lastMU are the previous point added to the
+ // windowed mutator utilization function.
+ lastTime int64
+ lastMU float64
+}
+
+// resetTime declares a discontinuity in the windowed mutator
+// utilization function by resetting the current time.
+func (acc *accumulator) resetTime() {
+ // This only matters for distribution collection, since that's
+ // the only thing that depends on the progression of the
+ // windowed mutator utilization function.
+ acc.lastTime = math.MaxInt64
+}
+
+// addMU adds a point to the windowed mutator utilization function at
+// (time, mu). This must be called for monotonically increasing values
+// of time.
+//
+// It returns true if further calls to addMU would be pointless.
+func (acc *accumulator) addMU(time int64, mu float64, window time.Duration) bool {
+ if mu < acc.mmu {
+ acc.mmu = mu
+ }
+ acc.bound = acc.mmu
+
+ if acc.nWorst == 0 {
+ // If the minimum has reached zero, it can't go any
+ // lower, so we can stop early.
+ return mu == 0
+ }
+
+ // Consider adding this window to the n worst.
+ if len(acc.wHeap) < acc.nWorst || mu < acc.wHeap[0].MutatorUtil {
+ // This window is lower than the K'th worst window.
+ //
+ // Check if there's any overlapping window
+ // already in the heap and keep whichever is
+ // worse.
+ for i, ui := range acc.wHeap {
+ if time+int64(window) > ui.Time && ui.Time+int64(window) > time {
+ if ui.MutatorUtil <= mu {
+ // Keep the first window.
+ goto keep
+ } else {
+ // Replace it with this window.
+ heap.Remove(&acc.wHeap, i)
+ break
+ }
+ }
+ }
+
+ heap.Push(&acc.wHeap, UtilWindow{time, mu})
+ if len(acc.wHeap) > acc.nWorst {
+ heap.Pop(&acc.wHeap)
+ }
+ keep:
+ }
+
+ if len(acc.wHeap) < acc.nWorst {
+ // We don't have N windows yet, so keep accumulating.
+ acc.bound = 1.0
+ } else {
+ // Anything above the least worst window has no effect.
+ acc.bound = math.Max(acc.bound, acc.wHeap[0].MutatorUtil)
+ }
+
+ if acc.mud != nil {
+ if acc.lastTime != math.MaxInt64 {
+ // Update distribution.
+ acc.mud.add(acc.lastMU, mu, float64(time-acc.lastTime))
+ }
+ acc.lastTime, acc.lastMU = time, mu
+ if _, mudBound, ok := acc.mud.approxInvCumulativeSum(); ok {
+ acc.bound = math.Max(acc.bound, mudBound)
+ } else {
+ // We haven't accumulated enough total precise
+ // mass yet to even reach our goal, so keep
+ // accumulating.
+ acc.bound = 1
+ }
+ // It's not worth checking percentiles every time, so
+ // just keep accumulating this band.
+ return false
+ }
+
+ // If we've found enough 0 utilizations, we can stop immediately.
+ return len(acc.wHeap) == acc.nWorst && acc.wHeap[0].MutatorUtil == 0
+}
+
+// MMU returns the minimum mutator utilization for the given time
+// window. This is the minimum utilization for all windows of this
+// duration across the execution. The returned value is in the range
+// [0, 1].
+func (c *MMUCurve) MMU(window time.Duration) (mmu float64) {
+ acc := accumulator{mmu: 1.0, bound: 1.0}
+ c.mmu(window, &acc)
+ return acc.mmu
+}
+
+// Examples returns n specific examples of the lowest mutator
+// utilization for the given window size. The returned windows will be
+// disjoint (otherwise there would be a huge number of
+// mostly-overlapping windows at the single lowest point). There are
+// no guarantees on which set of disjoint windows this returns.
+func (c *MMUCurve) Examples(window time.Duration, n int) (worst []UtilWindow) {
+ acc := accumulator{mmu: 1.0, bound: 1.0, nWorst: n}
+ c.mmu(window, &acc)
+ sort.Sort(sort.Reverse(acc.wHeap))
+ return ([]UtilWindow)(acc.wHeap)
+}
+
+// MUD returns mutator utilization distribution quantiles for the
+// given window size.
+//
+// The mutator utilization distribution is the distribution of mean
+// mutator utilization across all windows of the given window size in
+// the trace.
+//
+// The minimum mutator utilization is the minimum (0th percentile) of
+// this distribution. (However, if only the minimum is desired, it's
+// more efficient to use the MMU method.)
+func (c *MMUCurve) MUD(window time.Duration, quantiles []float64) []float64 {
+ if len(quantiles) == 0 {
+ return []float64{}
+ }
+
+ // Each unrefined band contributes a known total mass to the
+ // distribution (bandDur except at the end), but in an unknown
+ // way. However, we know that all the mass it contributes must
+ // be at or above its worst-case mean mutator utilization.
+ //
+ // Hence, we refine bands until the highest desired
+ // distribution quantile is less than the next worst-case mean
+ // mutator utilization. At this point, all further
+ // contributions to the distribution must be beyond the
+ // desired quantile and hence cannot affect it.
+ //
+ // First, find the highest desired distribution quantile.
+ maxQ := quantiles[0]
+ for _, q := range quantiles {
+ if q > maxQ {
+ maxQ = q
+ }
+ }
+ // The distribution's mass is in units of time (it's not
+ // normalized because this would make it more annoying to
+ // account for future contributions of unrefined bands). The
+ // total final mass will be the duration of the trace itself
+ // minus the window size. Using this, we can compute the mass
+ // corresponding to quantile maxQ.
+ var duration int64
+ for _, s := range c.series {
+ duration1 := s.util[len(s.util)-1].Time - s.util[0].Time
+ if duration1 >= int64(window) {
+ duration += duration1 - int64(window)
+ }
+ }
+ qMass := float64(duration) * maxQ
+
+ // Accumulate the MUD until we have precise information for
+ // everything to the left of qMass.
+ acc := accumulator{mmu: 1.0, bound: 1.0, preciseMass: qMass, mud: new(mud)}
+ acc.mud.setTrackMass(qMass)
+ c.mmu(window, &acc)
+
+ // Evaluate the quantiles on the accumulated MUD.
+ out := make([]float64, len(quantiles))
+ for i := range out {
+ mu, _ := acc.mud.invCumulativeSum(float64(duration) * quantiles[i])
+ if math.IsNaN(mu) {
+ // There are a few legitimate ways this can
+ // happen:
+ //
+ // 1. If the window is the full trace
+ // duration, then the windowed MU function is
+ // only defined at a single point, so the MU
+ // distribution is not well-defined.
+ //
+ // 2. If there are no events, then the MU
+ // distribution has no mass.
+ //
+ // Either way, all of the quantiles will have
+ // converged toward the MMU at this point.
+ mu = acc.mmu
+ }
+ out[i] = mu
+ }
+ return out
+}
+
+func (c *MMUCurve) mmu(window time.Duration, acc *accumulator) {
+ if window <= 0 {
+ acc.mmu = 0
+ return
+ }
+
+ var bandU bandUtilHeap
+ windows := make([]time.Duration, len(c.series))
+ for i, s := range c.series {
+ windows[i] = window
+ if max := time.Duration(s.util[len(s.util)-1].Time - s.util[0].Time); window > max {
+ windows[i] = max
+ }
+
+ bandU1 := bandUtilHeap(s.mkBandUtil(i, windows[i]))
+ if bandU == nil {
+ bandU = bandU1
+ } else {
+ bandU = append(bandU, bandU1...)
+ }
+ }
+
+ // Process bands from lowest utilization bound to highest.
+ heap.Init(&bandU)
+
+ // Refine each band into a precise window and MMU until
+ // refining the next lowest band can no longer affect the MMU
+ // or windows.
+ for len(bandU) > 0 && bandU[0].utilBound < acc.bound {
+ i := bandU[0].series
+ c.series[i].bandMMU(bandU[0].i, windows[i], acc)
+ heap.Pop(&bandU)
+ }
+}
+
+func (c *mmuSeries) mkBandUtil(series int, window time.Duration) []bandUtil {
+ // For each band, compute the worst-possible total mutator
+ // utilization for all windows that start in that band.
+
+ // minBands is the minimum number of bands a window can span
+ // and maxBands is the maximum number of bands a window can
+ // span in any alignment.
+ minBands := int((int64(window) + c.bandDur - 1) / c.bandDur)
+ maxBands := int((int64(window) + 2*(c.bandDur-1)) / c.bandDur)
+ if window > 1 && maxBands < 2 {
+ panic("maxBands < 2")
+ }
+ tailDur := int64(window) % c.bandDur
+ nUtil := len(c.bands) - maxBands + 1
+ if nUtil < 0 {
+ nUtil = 0
+ }
+ bandU := make([]bandUtil, nUtil)
+ for i := range bandU {
+ // To compute the worst-case MU, we assume the minimum
+ // for any bands that are only partially overlapped by
+ // some window and the mean for any bands that are
+ // completely covered by all windows.
+ var util totalUtil
+
+ // Find the lowest and second lowest of the partial
+ // bands.
+ l := c.bands[i].minUtil
+ r1 := c.bands[i+minBands-1].minUtil
+ r2 := c.bands[i+maxBands-1].minUtil
+ minBand := math.Min(l, math.Min(r1, r2))
+ // Assume the worst window maximally overlaps the
+ // worst minimum and then the rest overlaps the second
+ // worst minimum.
+ if minBands == 1 {
+ util += totalUtilOf(minBand, int64(window))
+ } else {
+ util += totalUtilOf(minBand, c.bandDur)
+ midBand := 0.0
+ switch {
+ case minBand == l:
+ midBand = math.Min(r1, r2)
+ case minBand == r1:
+ midBand = math.Min(l, r2)
+ case minBand == r2:
+ midBand = math.Min(l, r1)
+ }
+ util += totalUtilOf(midBand, tailDur)
+ }
+
+ // Add the total mean MU of bands that are completely
+ // overlapped by all windows.
+ if minBands > 2 {
+ util += c.bands[i+minBands-1].cumUtil - c.bands[i+1].cumUtil
+ }
+
+ bandU[i] = bandUtil{series, i, util.mean(window)}
+ }
+
+ return bandU
+}
+
+// bandMMU computes the precise minimum mutator utilization for
+// windows with a left edge in band bandIdx.
+func (c *mmuSeries) bandMMU(bandIdx int, window time.Duration, acc *accumulator) {
+ util := c.util
+
+ // We think of the mutator utilization over time as the
+ // box-filtered utilization function, which we call the
+ // "windowed mutator utilization function". The resulting
+ // function is continuous and piecewise linear (unless
+ // window==0, which we handle elsewhere), where the boundaries
+ // between segments occur when either edge of the window
+ // encounters a change in the instantaneous mutator
+ // utilization function. Hence, the minimum of this function
+ // will always occur when one of the edges of the window
+ // aligns with a utilization change, so these are the only
+ // points we need to consider.
+ //
+ // We compute the mutator utilization function incrementally
+ // by tracking the integral from t=0 to the left edge of the
+ // window and to the right edge of the window.
+ left := c.bands[bandIdx].integrator
+ right := left
+ time, endTime := c.bandTime(bandIdx)
+ if utilEnd := util[len(util)-1].Time - int64(window); utilEnd < endTime {
+ endTime = utilEnd
+ }
+ acc.resetTime()
+ for {
+ // Advance edges to time and time+window.
+ mu := (right.advance(time+int64(window)) - left.advance(time)).mean(window)
+ if acc.addMU(time, mu, window) {
+ break
+ }
+ if time == endTime {
+ break
+ }
+
+ // The maximum slope of the windowed mutator
+ // utilization function is 1/window, so we can always
+ // advance the time by at least (mu - mmu) * window
+ // without dropping below mmu.
+ minTime := time + int64((mu-acc.bound)*float64(window))
+
+ // Advance the window to the next time where either
+ // the left or right edge of the window encounters a
+ // change in the utilization curve.
+ if t1, t2 := left.next(time), right.next(time+int64(window))-int64(window); t1 < t2 {
+ time = t1
+ } else {
+ time = t2
+ }
+ if time < minTime {
+ time = minTime
+ }
+ if time >= endTime {
+ // For MMUs we could stop here, but for MUDs
+ // it's important that we span the entire
+ // band.
+ time = endTime
+ }
+ }
+}
+
+// An integrator tracks a position in a utilization function and
+// integrates it.
+type integrator struct {
+ u *mmuSeries
+ // pos is the index in u.util of the current time's non-strict
+ // predecessor.
+ pos int
+}
+
+// advance returns the integral of the utilization function from 0 to
+// time. advance must be called on monotonically increasing values of
+// times.
+func (in *integrator) advance(time int64) totalUtil {
+ util, pos := in.u.util, in.pos
+ // Advance pos until pos+1 is time's strict successor (making
+ // pos time's non-strict predecessor).
+ //
+ // Very often, this will be nearby, so we optimize that case,
+ // but it may be arbitrarily far away, so we handled that
+ // efficiently, too.
+ const maxSeq = 8
+ if pos+maxSeq < len(util) && util[pos+maxSeq].Time > time {
+ // Nearby. Use a linear scan.
+ for pos+1 < len(util) && util[pos+1].Time <= time {
+ pos++
+ }
+ } else {
+ // Far. Binary search for time's strict successor.
+ l, r := pos, len(util)
+ for l < r {
+ h := int(uint(l+r) >> 1)
+ if util[h].Time <= time {
+ l = h + 1
+ } else {
+ r = h
+ }
+ }
+ pos = l - 1 // Non-strict predecessor.
+ }
+ in.pos = pos
+ var partial totalUtil
+ if time != util[pos].Time {
+ partial = totalUtilOf(util[pos].Util, time-util[pos].Time)
+ }
+ return in.u.sums[pos] + partial
+}
+
+// next returns the smallest time t' > time of a change in the
+// utilization function.
+func (in *integrator) next(time int64) int64 {
+ for _, u := range in.u.util[in.pos:] {
+ if u.Time > time {
+ return u.Time
+ }
+ }
+ return 1<<63 - 1
+}