diff options
Diffstat (limited to 'src/math/big/rat_test.go')
-rw-r--r-- | src/math/big/rat_test.go | 728 |
1 files changed, 728 insertions, 0 deletions
diff --git a/src/math/big/rat_test.go b/src/math/big/rat_test.go new file mode 100644 index 0000000..02569c1 --- /dev/null +++ b/src/math/big/rat_test.go @@ -0,0 +1,728 @@ +// Copyright 2010 The Go Authors. All rights reserved. +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +package big + +import ( + "math" + "testing" +) + +func TestZeroRat(t *testing.T) { + var x, y, z Rat + y.SetFrac64(0, 42) + + if x.Cmp(&y) != 0 { + t.Errorf("x and y should be both equal and zero") + } + + if s := x.String(); s != "0/1" { + t.Errorf("got x = %s, want 0/1", s) + } + + if s := x.RatString(); s != "0" { + t.Errorf("got x = %s, want 0", s) + } + + z.Add(&x, &y) + if s := z.RatString(); s != "0" { + t.Errorf("got x+y = %s, want 0", s) + } + + z.Sub(&x, &y) + if s := z.RatString(); s != "0" { + t.Errorf("got x-y = %s, want 0", s) + } + + z.Mul(&x, &y) + if s := z.RatString(); s != "0" { + t.Errorf("got x*y = %s, want 0", s) + } + + // check for division by zero + defer func() { + if s := recover(); s == nil || s.(string) != "division by zero" { + panic(s) + } + }() + z.Quo(&x, &y) +} + +func TestRatSign(t *testing.T) { + zero := NewRat(0, 1) + for _, a := range setStringTests { + x, ok := new(Rat).SetString(a.in) + if !ok { + continue + } + s := x.Sign() + e := x.Cmp(zero) + if s != e { + t.Errorf("got %d; want %d for z = %v", s, e, &x) + } + } +} + +var ratCmpTests = []struct { + rat1, rat2 string + out int +}{ + {"0", "0/1", 0}, + {"1/1", "1", 0}, + {"-1", "-2/2", 0}, + {"1", "0", 1}, + {"0/1", "1/1", -1}, + {"-5/1434770811533343057144", "-5/1434770811533343057145", -1}, + {"49832350382626108453/8964749413", "49832350382626108454/8964749413", -1}, + {"-37414950961700930/7204075375675961", "37414950961700930/7204075375675961", -1}, + {"37414950961700930/7204075375675961", "74829901923401860/14408150751351922", 0}, +} + +func TestRatCmp(t *testing.T) { + for i, test := range ratCmpTests { + x, _ := new(Rat).SetString(test.rat1) + y, _ := new(Rat).SetString(test.rat2) + + out := x.Cmp(y) + if out != test.out { + t.Errorf("#%d got out = %v; want %v", i, out, test.out) + } + } +} + +func TestIsInt(t *testing.T) { + one := NewInt(1) + for _, a := range setStringTests { + x, ok := new(Rat).SetString(a.in) + if !ok { + continue + } + i := x.IsInt() + e := x.Denom().Cmp(one) == 0 + if i != e { + t.Errorf("got IsInt(%v) == %v; want %v", x, i, e) + } + } +} + +func TestRatAbs(t *testing.T) { + zero := new(Rat) + for _, a := range setStringTests { + x, ok := new(Rat).SetString(a.in) + if !ok { + continue + } + e := new(Rat).Set(x) + if e.Cmp(zero) < 0 { + e.Sub(zero, e) + } + z := new(Rat).Abs(x) + if z.Cmp(e) != 0 { + t.Errorf("got Abs(%v) = %v; want %v", x, z, e) + } + } +} + +func TestRatNeg(t *testing.T) { + zero := new(Rat) + for _, a := range setStringTests { + x, ok := new(Rat).SetString(a.in) + if !ok { + continue + } + e := new(Rat).Sub(zero, x) + z := new(Rat).Neg(x) + if z.Cmp(e) != 0 { + t.Errorf("got Neg(%v) = %v; want %v", x, z, e) + } + } +} + +func TestRatInv(t *testing.T) { + zero := new(Rat) + for _, a := range setStringTests { + x, ok := new(Rat).SetString(a.in) + if !ok { + continue + } + if x.Cmp(zero) == 0 { + continue // avoid division by zero + } + e := new(Rat).SetFrac(x.Denom(), x.Num()) + z := new(Rat).Inv(x) + if z.Cmp(e) != 0 { + t.Errorf("got Inv(%v) = %v; want %v", x, z, e) + } + } +} + +type ratBinFun func(z, x, y *Rat) *Rat +type ratBinArg struct { + x, y, z string +} + +func testRatBin(t *testing.T, i int, name string, f ratBinFun, a ratBinArg) { + x, _ := new(Rat).SetString(a.x) + y, _ := new(Rat).SetString(a.y) + z, _ := new(Rat).SetString(a.z) + out := f(new(Rat), x, y) + + if out.Cmp(z) != 0 { + t.Errorf("%s #%d got %s want %s", name, i, out, z) + } +} + +var ratBinTests = []struct { + x, y string + sum, prod string +}{ + {"0", "0", "0", "0"}, + {"0", "1", "1", "0"}, + {"-1", "0", "-1", "0"}, + {"-1", "1", "0", "-1"}, + {"1", "1", "2", "1"}, + {"1/2", "1/2", "1", "1/4"}, + {"1/4", "1/3", "7/12", "1/12"}, + {"2/5", "-14/3", "-64/15", "-28/15"}, + {"4707/49292519774798173060", "-3367/70976135186689855734", "84058377121001851123459/1749296273614329067191168098769082663020", "-1760941/388732505247628681598037355282018369560"}, + {"-61204110018146728334/3", "-31052192278051565633/2", "-215564796870448153567/6", "950260896245257153059642991192710872711/3"}, + {"-854857841473707320655/4237645934602118692642972629634714039", "-18/31750379913563777419", "-27/133467566250814981", "15387441146526731771790/134546868362786310073779084329032722548987800600710485341"}, + {"618575745270541348005638912139/19198433543745179392300736", "-19948846211000086/637313996471", "27674141753240653/30123979153216", "-6169936206128396568797607742807090270137721977/6117715203873571641674006593837351328"}, + {"-3/26206484091896184128", "5/2848423294177090248", "15310893822118706237/9330894968229805033368778458685147968", "-5/24882386581946146755650075889827061248"}, + {"26946729/330400702820", "41563965/225583428284", "1238218672302860271/4658307703098666660055", "224002580204097/14906584649915733312176"}, + {"-8259900599013409474/7", "-84829337473700364773/56707961321161574960", "-468402123685491748914621885145127724451/396955729248131024720", "350340947706464153265156004876107029701/198477864624065512360"}, + {"575775209696864/1320203974639986246357", "29/712593081308", "410331716733912717985762465/940768218243776489278275419794956", "808/45524274987585732633"}, + {"1786597389946320496771/2066653520653241", "6269770/1992362624741777", "3559549865190272133656109052308126637/4117523232840525481453983149257", "8967230/3296219033"}, + {"-36459180403360509753/32150500941194292113930", "9381566963714/9633539", "301622077145533298008420642898530153/309723104686531919656937098270", "-3784609207827/3426986245"}, +} + +func TestRatBin(t *testing.T) { + for i, test := range ratBinTests { + arg := ratBinArg{test.x, test.y, test.sum} + testRatBin(t, i, "Add", (*Rat).Add, arg) + + arg = ratBinArg{test.y, test.x, test.sum} + testRatBin(t, i, "Add symmetric", (*Rat).Add, arg) + + arg = ratBinArg{test.sum, test.x, test.y} + testRatBin(t, i, "Sub", (*Rat).Sub, arg) + + arg = ratBinArg{test.sum, test.y, test.x} + testRatBin(t, i, "Sub symmetric", (*Rat).Sub, arg) + + arg = ratBinArg{test.x, test.y, test.prod} + testRatBin(t, i, "Mul", (*Rat).Mul, arg) + + arg = ratBinArg{test.y, test.x, test.prod} + testRatBin(t, i, "Mul symmetric", (*Rat).Mul, arg) + + if test.x != "0" { + arg = ratBinArg{test.prod, test.x, test.y} + testRatBin(t, i, "Quo", (*Rat).Quo, arg) + } + + if test.y != "0" { + arg = ratBinArg{test.prod, test.y, test.x} + testRatBin(t, i, "Quo symmetric", (*Rat).Quo, arg) + } + } +} + +func TestIssue820(t *testing.T) { + x := NewRat(3, 1) + y := NewRat(2, 1) + z := y.Quo(x, y) + q := NewRat(3, 2) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } + + y = NewRat(3, 1) + x = NewRat(2, 1) + z = y.Quo(x, y) + q = NewRat(2, 3) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } + + x = NewRat(3, 1) + z = x.Quo(x, x) + q = NewRat(3, 3) + if z.Cmp(q) != 0 { + t.Errorf("got %s want %s", z, q) + } +} + +var setFrac64Tests = []struct { + a, b int64 + out string +}{ + {0, 1, "0"}, + {0, -1, "0"}, + {1, 1, "1"}, + {-1, 1, "-1"}, + {1, -1, "-1"}, + {-1, -1, "1"}, + {-9223372036854775808, -9223372036854775808, "1"}, +} + +func TestRatSetFrac64Rat(t *testing.T) { + for i, test := range setFrac64Tests { + x := new(Rat).SetFrac64(test.a, test.b) + if x.RatString() != test.out { + t.Errorf("#%d got %s want %s", i, x.RatString(), test.out) + } + } +} + +func TestIssue2379(t *testing.T) { + // 1) no aliasing + q := NewRat(3, 2) + x := new(Rat) + x.SetFrac(NewInt(3), NewInt(2)) + if x.Cmp(q) != 0 { + t.Errorf("1) got %s want %s", x, q) + } + + // 2) aliasing of numerator + x = NewRat(2, 3) + x.SetFrac(NewInt(3), x.Num()) + if x.Cmp(q) != 0 { + t.Errorf("2) got %s want %s", x, q) + } + + // 3) aliasing of denominator + x = NewRat(2, 3) + x.SetFrac(x.Denom(), NewInt(2)) + if x.Cmp(q) != 0 { + t.Errorf("3) got %s want %s", x, q) + } + + // 4) aliasing of numerator and denominator + x = NewRat(2, 3) + x.SetFrac(x.Denom(), x.Num()) + if x.Cmp(q) != 0 { + t.Errorf("4) got %s want %s", x, q) + } + + // 5) numerator and denominator are the same + q = NewRat(1, 1) + x = new(Rat) + n := NewInt(7) + x.SetFrac(n, n) + if x.Cmp(q) != 0 { + t.Errorf("5) got %s want %s", x, q) + } +} + +func TestIssue3521(t *testing.T) { + a := new(Int) + b := new(Int) + a.SetString("64375784358435883458348587", 0) + b.SetString("4789759874531", 0) + + // 0) a raw zero value has 1 as denominator + zero := new(Rat) + one := NewInt(1) + if zero.Denom().Cmp(one) != 0 { + t.Errorf("0) got %s want %s", zero.Denom(), one) + } + + // 1a) the denominator of an (uninitialized) zero value is not shared with the value + s := &zero.b + d := zero.Denom() + if d == s { + t.Errorf("1a) got %s (%p) == %s (%p) want different *Int values", d, d, s, s) + } + + // 1b) the denominator of an (uninitialized) value is a new 1 each time + d1 := zero.Denom() + d2 := zero.Denom() + if d1 == d2 { + t.Errorf("1b) got %s (%p) == %s (%p) want different *Int values", d1, d1, d2, d2) + } + + // 1c) the denominator of an initialized zero value is shared with the value + x := new(Rat) + x.Set(x) // initialize x (any operation that sets x explicitly will do) + s = &x.b + d = x.Denom() + if d != s { + t.Errorf("1c) got %s (%p) != %s (%p) want identical *Int values", d, d, s, s) + } + + // 1d) a zero value remains zero independent of denominator + x.Denom().Set(new(Int).Neg(b)) + if x.Cmp(zero) != 0 { + t.Errorf("1d) got %s want %s", x, zero) + } + + // 1e) a zero value may have a denominator != 0 and != 1 + x.Num().Set(a) + qab := new(Rat).SetFrac(a, b) + if x.Cmp(qab) != 0 { + t.Errorf("1e) got %s want %s", x, qab) + } + + // 2a) an integral value becomes a fraction depending on denominator + x.SetFrac64(10, 2) + x.Denom().SetInt64(3) + q53 := NewRat(5, 3) + if x.Cmp(q53) != 0 { + t.Errorf("2a) got %s want %s", x, q53) + } + + // 2b) an integral value becomes a fraction depending on denominator + x = NewRat(10, 2) + x.Denom().SetInt64(3) + if x.Cmp(q53) != 0 { + t.Errorf("2b) got %s want %s", x, q53) + } + + // 3) changing the numerator/denominator of a Rat changes the Rat + x.SetFrac(a, b) + a = x.Num() + b = x.Denom() + a.SetInt64(5) + b.SetInt64(3) + if x.Cmp(q53) != 0 { + t.Errorf("3) got %s want %s", x, q53) + } +} + +func TestFloat32Distribution(t *testing.T) { + // Generate a distribution of (sign, mantissa, exp) values + // broader than the float32 range, and check Rat.Float32() + // always picks the closest float32 approximation. + var add = []int64{ + 0, + 1, + 3, + 5, + 7, + 9, + 11, + } + var winc, einc = uint64(5), 15 // quick test (~60ms on x86-64) + if *long { + winc, einc = uint64(1), 1 // soak test (~1.5s on x86-64) + } + + for _, sign := range "+-" { + for _, a := range add { + for wid := uint64(0); wid < 30; wid += winc { + b := 1<<wid + a + if sign == '-' { + b = -b + } + for exp := -150; exp < 150; exp += einc { + num, den := NewInt(b), NewInt(1) + if exp > 0 { + num.Lsh(num, uint(exp)) + } else { + den.Lsh(den, uint(-exp)) + } + r := new(Rat).SetFrac(num, den) + f, _ := r.Float32() + + if !checkIsBestApprox32(t, f, r) { + // Append context information. + t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", + b, exp, f, f, math.Ldexp(float64(b), exp), r) + } + + checkNonLossyRoundtrip32(t, f) + } + } + } + } +} + +func TestFloat64Distribution(t *testing.T) { + // Generate a distribution of (sign, mantissa, exp) values + // broader than the float64 range, and check Rat.Float64() + // always picks the closest float64 approximation. + var add = []int64{ + 0, + 1, + 3, + 5, + 7, + 9, + 11, + } + var winc, einc = uint64(10), 500 // quick test (~12ms on x86-64) + if *long { + winc, einc = uint64(1), 1 // soak test (~75s on x86-64) + } + + for _, sign := range "+-" { + for _, a := range add { + for wid := uint64(0); wid < 60; wid += winc { + b := 1<<wid + a + if sign == '-' { + b = -b + } + for exp := -1100; exp < 1100; exp += einc { + num, den := NewInt(b), NewInt(1) + if exp > 0 { + num.Lsh(num, uint(exp)) + } else { + den.Lsh(den, uint(-exp)) + } + r := new(Rat).SetFrac(num, den) + f, _ := r.Float64() + + if !checkIsBestApprox64(t, f, r) { + // Append context information. + t.Errorf("(input was mantissa %#x, exp %d; f = %g (%b); f ~ %g; r = %v)", + b, exp, f, f, math.Ldexp(float64(b), exp), r) + } + + checkNonLossyRoundtrip64(t, f) + } + } + } + } +} + +// TestSetFloat64NonFinite checks that SetFloat64 of a non-finite value +// returns nil. +func TestSetFloat64NonFinite(t *testing.T) { + for _, f := range []float64{math.NaN(), math.Inf(+1), math.Inf(-1)} { + var r Rat + if r2 := r.SetFloat64(f); r2 != nil { + t.Errorf("SetFloat64(%g) was %v, want nil", f, r2) + } + } +} + +// checkNonLossyRoundtrip32 checks that a float->Rat->float roundtrip is +// non-lossy for finite f. +func checkNonLossyRoundtrip32(t *testing.T, f float32) { + if !isFinite(float64(f)) { + return + } + r := new(Rat).SetFloat64(float64(f)) + if r == nil { + t.Errorf("Rat.SetFloat64(float64(%g) (%b)) == nil", f, f) + return + } + f2, exact := r.Float32() + if f != f2 || !exact { + t.Errorf("Rat.SetFloat64(float64(%g)).Float32() = %g (%b), %v, want %g (%b), %v; delta = %b", + f, f2, f2, exact, f, f, true, f2-f) + } +} + +// checkNonLossyRoundtrip64 checks that a float->Rat->float roundtrip is +// non-lossy for finite f. +func checkNonLossyRoundtrip64(t *testing.T, f float64) { + if !isFinite(f) { + return + } + r := new(Rat).SetFloat64(f) + if r == nil { + t.Errorf("Rat.SetFloat64(%g (%b)) == nil", f, f) + return + } + f2, exact := r.Float64() + if f != f2 || !exact { + t.Errorf("Rat.SetFloat64(%g).Float64() = %g (%b), %v, want %g (%b), %v; delta = %b", + f, f2, f2, exact, f, f, true, f2-f) + } +} + +// delta returns the absolute difference between r and f. +func delta(r *Rat, f float64) *Rat { + d := new(Rat).Sub(r, new(Rat).SetFloat64(f)) + return d.Abs(d) +} + +// checkIsBestApprox32 checks that f is the best possible float32 +// approximation of r. +// Returns true on success. +func checkIsBestApprox32(t *testing.T, f float32, r *Rat) bool { + if math.Abs(float64(f)) >= math.MaxFloat32 { + // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat32). + // But we have tests for these special cases. + return true + } + + // r must be strictly between f0 and f1, the floats bracketing f. + f0 := math.Nextafter32(f, float32(math.Inf(-1))) + f1 := math.Nextafter32(f, float32(math.Inf(+1))) + + // For f to be correct, r must be closer to f than to f0 or f1. + df := delta(r, float64(f)) + df0 := delta(r, float64(f0)) + df1 := delta(r, float64(f1)) + if df.Cmp(df0) > 0 { + t.Errorf("Rat(%v).Float32() = %g (%b), but previous float32 %g (%b) is closer", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) > 0 { + t.Errorf("Rat(%v).Float32() = %g (%b), but next float32 %g (%b) is closer", r, f, f, f1, f1) + return false + } + if df.Cmp(df0) == 0 && !isEven32(f) { + t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) == 0 && !isEven32(f) { + t.Errorf("Rat(%v).Float32() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) + return false + } + return true +} + +// checkIsBestApprox64 checks that f is the best possible float64 +// approximation of r. +// Returns true on success. +func checkIsBestApprox64(t *testing.T, f float64, r *Rat) bool { + if math.Abs(f) >= math.MaxFloat64 { + // Cannot check +Inf, -Inf, nor the float next to them (MaxFloat64). + // But we have tests for these special cases. + return true + } + + // r must be strictly between f0 and f1, the floats bracketing f. + f0 := math.Nextafter(f, math.Inf(-1)) + f1 := math.Nextafter(f, math.Inf(+1)) + + // For f to be correct, r must be closer to f than to f0 or f1. + df := delta(r, f) + df0 := delta(r, f0) + df1 := delta(r, f1) + if df.Cmp(df0) > 0 { + t.Errorf("Rat(%v).Float64() = %g (%b), but previous float64 %g (%b) is closer", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) > 0 { + t.Errorf("Rat(%v).Float64() = %g (%b), but next float64 %g (%b) is closer", r, f, f, f1, f1) + return false + } + if df.Cmp(df0) == 0 && !isEven64(f) { + t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f0, f0) + return false + } + if df.Cmp(df1) == 0 && !isEven64(f) { + t.Errorf("Rat(%v).Float64() = %g (%b); halfway should have rounded to %g (%b) instead", r, f, f, f1, f1) + return false + } + return true +} + +func isEven32(f float32) bool { return math.Float32bits(f)&1 == 0 } +func isEven64(f float64) bool { return math.Float64bits(f)&1 == 0 } + +func TestIsFinite(t *testing.T) { + finites := []float64{ + 1.0 / 3, + 4891559871276714924261e+222, + math.MaxFloat64, + math.SmallestNonzeroFloat64, + -math.MaxFloat64, + -math.SmallestNonzeroFloat64, + } + for _, f := range finites { + if !isFinite(f) { + t.Errorf("!IsFinite(%g (%b))", f, f) + } + } + nonfinites := []float64{ + math.NaN(), + math.Inf(-1), + math.Inf(+1), + } + for _, f := range nonfinites { + if isFinite(f) { + t.Errorf("IsFinite(%g, (%b))", f, f) + } + } +} + +func TestRatSetInt64(t *testing.T) { + var testCases = []int64{ + 0, + 1, + -1, + 12345, + -98765, + math.MaxInt64, + math.MinInt64, + } + var r = new(Rat) + for i, want := range testCases { + r.SetInt64(want) + if !r.IsInt() { + t.Errorf("#%d: Rat.SetInt64(%d) is not an integer", i, want) + } + num := r.Num() + if !num.IsInt64() { + t.Errorf("#%d: Rat.SetInt64(%d) numerator is not an int64", i, want) + } + got := num.Int64() + if got != want { + t.Errorf("#%d: Rat.SetInt64(%d) = %d, but expected %d", i, want, got, want) + } + } +} + +func TestRatSetUint64(t *testing.T) { + var testCases = []uint64{ + 0, + 1, + 12345, + ^uint64(0), + } + var r = new(Rat) + for i, want := range testCases { + r.SetUint64(want) + if !r.IsInt() { + t.Errorf("#%d: Rat.SetUint64(%d) is not an integer", i, want) + } + num := r.Num() + if !num.IsUint64() { + t.Errorf("#%d: Rat.SetUint64(%d) numerator is not a uint64", i, want) + } + got := num.Uint64() + if got != want { + t.Errorf("#%d: Rat.SetUint64(%d) = %d, but expected %d", i, want, got, want) + } + } +} + +func BenchmarkRatCmp(b *testing.B) { + x, y := NewRat(4, 1), NewRat(7, 2) + for i := 0; i < b.N; i++ { + x.Cmp(y) + } +} + +// TestIssue34919 verifies that a Rat's denominator is not modified +// when simply accessing the Rat value. +func TestIssue34919(t *testing.T) { + for _, acc := range []struct { + name string + f func(*Rat) + }{ + {"Float32", func(x *Rat) { x.Float32() }}, + {"Float64", func(x *Rat) { x.Float64() }}, + {"Inv", func(x *Rat) { new(Rat).Inv(x) }}, + {"Sign", func(x *Rat) { x.Sign() }}, + {"IsInt", func(x *Rat) { x.IsInt() }}, + {"Num", func(x *Rat) { x.Num() }}, + // {"Denom", func(x *Rat) { x.Denom() }}, TODO(gri) should we change the API? See issue #33792. + } { + // A denominator of length 0 is interpreted as 1. Make sure that + // "materialization" of the denominator doesn't lead to setting + // the underlying array element 0 to 1. + r := &Rat{Int{abs: nat{991}}, Int{abs: make(nat, 0, 1)}} + acc.f(r) + if d := r.b.abs[:1][0]; d != 0 { + t.Errorf("%s modified denominator: got %d, want 0", acc.name, d) + } + } +} |