1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"cmd/compile/internal/types"
"cmd/internal/src"
"fmt"
"math/big"
"strings"
)
// Ctype describes the constant kind of an "ideal" (untyped) constant.
type Ctype uint8
const (
CTxxx Ctype = iota
CTINT
CTRUNE
CTFLT
CTCPLX
CTSTR
CTBOOL
CTNIL
)
type Val struct {
// U contains one of:
// bool bool when Ctype() == CTBOOL
// *Mpint int when Ctype() == CTINT, rune when Ctype() == CTRUNE
// *Mpflt float when Ctype() == CTFLT
// *Mpcplx pair of floats when Ctype() == CTCPLX
// string string when Ctype() == CTSTR
// *Nilval when Ctype() == CTNIL
U interface{}
}
func (v Val) Ctype() Ctype {
switch x := v.U.(type) {
default:
Fatalf("unexpected Ctype for %T", v.U)
panic("unreachable")
case nil:
return CTxxx
case *NilVal:
return CTNIL
case bool:
return CTBOOL
case *Mpint:
if x.Rune {
return CTRUNE
}
return CTINT
case *Mpflt:
return CTFLT
case *Mpcplx:
return CTCPLX
case string:
return CTSTR
}
}
func eqval(a, b Val) bool {
if a.Ctype() != b.Ctype() {
return false
}
switch x := a.U.(type) {
default:
Fatalf("unexpected Ctype for %T", a.U)
panic("unreachable")
case *NilVal:
return true
case bool:
y := b.U.(bool)
return x == y
case *Mpint:
y := b.U.(*Mpint)
return x.Cmp(y) == 0
case *Mpflt:
y := b.U.(*Mpflt)
return x.Cmp(y) == 0
case *Mpcplx:
y := b.U.(*Mpcplx)
return x.Real.Cmp(&y.Real) == 0 && x.Imag.Cmp(&y.Imag) == 0
case string:
y := b.U.(string)
return x == y
}
}
// Interface returns the constant value stored in v as an interface{}.
// It returns int64s for ints and runes, float64s for floats,
// complex128s for complex values, and nil for constant nils.
func (v Val) Interface() interface{} {
switch x := v.U.(type) {
default:
Fatalf("unexpected Interface for %T", v.U)
panic("unreachable")
case *NilVal:
return nil
case bool, string:
return x
case *Mpint:
return x.Int64()
case *Mpflt:
return x.Float64()
case *Mpcplx:
return complex(x.Real.Float64(), x.Imag.Float64())
}
}
type NilVal struct{}
// Int64Val returns n as an int64.
// n must be an integer or rune constant.
func (n *Node) Int64Val() int64 {
if !Isconst(n, CTINT) {
Fatalf("Int64Val(%v)", n)
}
return n.Val().U.(*Mpint).Int64()
}
// CanInt64 reports whether it is safe to call Int64Val() on n.
func (n *Node) CanInt64() bool {
if !Isconst(n, CTINT) {
return false
}
// if the value inside n cannot be represented as an int64, the
// return value of Int64 is undefined
return n.Val().U.(*Mpint).CmpInt64(n.Int64Val()) == 0
}
// BoolVal returns n as a bool.
// n must be a boolean constant.
func (n *Node) BoolVal() bool {
if !Isconst(n, CTBOOL) {
Fatalf("BoolVal(%v)", n)
}
return n.Val().U.(bool)
}
// StringVal returns the value of a literal string Node as a string.
// n must be a string constant.
func (n *Node) StringVal() string {
if !Isconst(n, CTSTR) {
Fatalf("StringVal(%v)", n)
}
return n.Val().U.(string)
}
// truncate float literal fv to 32-bit or 64-bit precision
// according to type; return truncated value.
func truncfltlit(oldv *Mpflt, t *types.Type) *Mpflt {
if t == nil {
return oldv
}
if overflow(Val{oldv}, t) {
// If there was overflow, simply continuing would set the
// value to Inf which in turn would lead to spurious follow-on
// errors. Avoid this by returning the existing value.
return oldv
}
fv := newMpflt()
// convert large precision literal floating
// into limited precision (float64 or float32)
switch t.Etype {
case types.TFLOAT32:
fv.SetFloat64(oldv.Float32())
case types.TFLOAT64:
fv.SetFloat64(oldv.Float64())
default:
Fatalf("truncfltlit: unexpected Etype %v", t.Etype)
}
return fv
}
// truncate Real and Imag parts of Mpcplx to 32-bit or 64-bit
// precision, according to type; return truncated value. In case of
// overflow, calls yyerror but does not truncate the input value.
func trunccmplxlit(oldv *Mpcplx, t *types.Type) *Mpcplx {
if t == nil {
return oldv
}
if overflow(Val{oldv}, t) {
// If there was overflow, simply continuing would set the
// value to Inf which in turn would lead to spurious follow-on
// errors. Avoid this by returning the existing value.
return oldv
}
cv := newMpcmplx()
switch t.Etype {
case types.TCOMPLEX64:
cv.Real.SetFloat64(oldv.Real.Float32())
cv.Imag.SetFloat64(oldv.Imag.Float32())
case types.TCOMPLEX128:
cv.Real.SetFloat64(oldv.Real.Float64())
cv.Imag.SetFloat64(oldv.Imag.Float64())
default:
Fatalf("trunccplxlit: unexpected Etype %v", t.Etype)
}
return cv
}
// TODO(mdempsky): Replace these with better APIs.
func convlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
func defaultlit(n *Node, t *types.Type) *Node { return convlit1(n, t, false, nil) }
// convlit1 converts an untyped expression n to type t. If n already
// has a type, convlit1 has no effect.
//
// For explicit conversions, t must be non-nil, and integer-to-string
// conversions are allowed.
//
// For implicit conversions (e.g., assignments), t may be nil; if so,
// n is converted to its default type.
//
// If there's an error converting n to t, context is used in the error
// message.
func convlit1(n *Node, t *types.Type, explicit bool, context func() string) *Node {
if explicit && t == nil {
Fatalf("explicit conversion missing type")
}
if t != nil && t.IsUntyped() {
Fatalf("bad conversion to untyped: %v", t)
}
if n == nil || n.Type == nil {
// Allow sloppy callers.
return n
}
if !n.Type.IsUntyped() {
// Already typed; nothing to do.
return n
}
if n.Op == OLITERAL {
// Can't always set n.Type directly on OLITERAL nodes.
// See discussion on CL 20813.
n = n.rawcopy()
}
// Nil is technically not a constant, so handle it specially.
if n.Type.Etype == TNIL {
if t == nil {
yyerror("use of untyped nil")
n.SetDiag(true)
n.Type = nil
return n
}
if !t.HasNil() {
// Leave for caller to handle.
return n
}
n.Type = t
return n
}
if t == nil || !okforconst[t.Etype] {
t = defaultType(n.Type)
}
switch n.Op {
default:
Fatalf("unexpected untyped expression: %v", n)
case OLITERAL:
v := convertVal(n.Val(), t, explicit)
if v.U == nil {
break
}
n.SetVal(v)
n.Type = t
return n
case OPLUS, ONEG, OBITNOT, ONOT, OREAL, OIMAG:
ot := operandType(n.Op, t)
if ot == nil {
n = defaultlit(n, nil)
break
}
n.Left = convlit(n.Left, ot)
if n.Left.Type == nil {
n.Type = nil
return n
}
n.Type = t
return n
case OADD, OSUB, OMUL, ODIV, OMOD, OOR, OXOR, OAND, OANDNOT, OOROR, OANDAND, OCOMPLEX:
ot := operandType(n.Op, t)
if ot == nil {
n = defaultlit(n, nil)
break
}
n.Left = convlit(n.Left, ot)
n.Right = convlit(n.Right, ot)
if n.Left.Type == nil || n.Right.Type == nil {
n.Type = nil
return n
}
if !types.Identical(n.Left.Type, n.Right.Type) {
yyerror("invalid operation: %v (mismatched types %v and %v)", n, n.Left.Type, n.Right.Type)
n.Type = nil
return n
}
n.Type = t
return n
case OEQ, ONE, OLT, OLE, OGT, OGE:
if !t.IsBoolean() {
break
}
n.Type = t
return n
case OLSH, ORSH:
n.Left = convlit1(n.Left, t, explicit, nil)
n.Type = n.Left.Type
if n.Type != nil && !n.Type.IsInteger() {
yyerror("invalid operation: %v (shift of type %v)", n, n.Type)
n.Type = nil
}
return n
}
if !n.Diag() {
if !t.Broke() {
if explicit {
yyerror("cannot convert %L to type %v", n, t)
} else if context != nil {
yyerror("cannot use %L as type %v in %s", n, t, context())
} else {
yyerror("cannot use %L as type %v", n, t)
}
}
n.SetDiag(true)
}
n.Type = nil
return n
}
func operandType(op Op, t *types.Type) *types.Type {
switch op {
case OCOMPLEX:
if t.IsComplex() {
return floatForComplex(t)
}
case OREAL, OIMAG:
if t.IsFloat() {
return complexForFloat(t)
}
default:
if okfor[op][t.Etype] {
return t
}
}
return nil
}
// convertVal converts v into a representation appropriate for t. If
// no such representation exists, it returns Val{} instead.
//
// If explicit is true, then conversions from integer to string are
// also allowed.
func convertVal(v Val, t *types.Type, explicit bool) Val {
switch ct := v.Ctype(); ct {
case CTBOOL:
if t.IsBoolean() {
return v
}
case CTSTR:
if t.IsString() {
return v
}
case CTINT, CTRUNE:
if explicit && t.IsString() {
return tostr(v)
}
fallthrough
case CTFLT, CTCPLX:
switch {
case t.IsInteger():
v = toint(v)
overflow(v, t)
return v
case t.IsFloat():
v = toflt(v)
v = Val{truncfltlit(v.U.(*Mpflt), t)}
return v
case t.IsComplex():
v = tocplx(v)
v = Val{trunccmplxlit(v.U.(*Mpcplx), t)}
return v
}
}
return Val{}
}
func tocplx(v Val) Val {
switch u := v.U.(type) {
case *Mpint:
c := newMpcmplx()
c.Real.SetInt(u)
c.Imag.SetFloat64(0.0)
v.U = c
case *Mpflt:
c := newMpcmplx()
c.Real.Set(u)
c.Imag.SetFloat64(0.0)
v.U = c
}
return v
}
func toflt(v Val) Val {
switch u := v.U.(type) {
case *Mpint:
f := newMpflt()
f.SetInt(u)
v.U = f
case *Mpcplx:
f := newMpflt()
f.Set(&u.Real)
if u.Imag.CmpFloat64(0) != 0 {
yyerror("constant %v truncated to real", u.GoString())
}
v.U = f
}
return v
}
func toint(v Val) Val {
switch u := v.U.(type) {
case *Mpint:
if u.Rune {
i := new(Mpint)
i.Set(u)
v.U = i
}
case *Mpflt:
i := new(Mpint)
if !i.SetFloat(u) {
if i.checkOverflow(0) {
yyerror("integer too large")
} else {
// The value of u cannot be represented as an integer;
// so we need to print an error message.
// Unfortunately some float values cannot be
// reasonably formatted for inclusion in an error
// message (example: 1 + 1e-100), so first we try to
// format the float; if the truncation resulted in
// something that looks like an integer we omit the
// value from the error message.
// (See issue #11371).
var t big.Float
t.Parse(u.GoString(), 10)
if t.IsInt() {
yyerror("constant truncated to integer")
} else {
yyerror("constant %v truncated to integer", u.GoString())
}
}
}
v.U = i
case *Mpcplx:
i := new(Mpint)
if !i.SetFloat(&u.Real) || u.Imag.CmpFloat64(0) != 0 {
yyerror("constant %v truncated to integer", u.GoString())
}
v.U = i
}
return v
}
func doesoverflow(v Val, t *types.Type) bool {
switch u := v.U.(type) {
case *Mpint:
if !t.IsInteger() {
Fatalf("overflow: %v integer constant", t)
}
return u.Cmp(minintval[t.Etype]) < 0 || u.Cmp(maxintval[t.Etype]) > 0
case *Mpflt:
if !t.IsFloat() {
Fatalf("overflow: %v floating-point constant", t)
}
return u.Cmp(minfltval[t.Etype]) <= 0 || u.Cmp(maxfltval[t.Etype]) >= 0
case *Mpcplx:
if !t.IsComplex() {
Fatalf("overflow: %v complex constant", t)
}
return u.Real.Cmp(minfltval[t.Etype]) <= 0 || u.Real.Cmp(maxfltval[t.Etype]) >= 0 ||
u.Imag.Cmp(minfltval[t.Etype]) <= 0 || u.Imag.Cmp(maxfltval[t.Etype]) >= 0
}
return false
}
func overflow(v Val, t *types.Type) bool {
// v has already been converted
// to appropriate form for t.
if t == nil || t.Etype == TIDEAL {
return false
}
// Only uintptrs may be converted to pointers, which cannot overflow.
if t.IsPtr() || t.IsUnsafePtr() {
return false
}
if doesoverflow(v, t) {
yyerror("constant %v overflows %v", v, t)
return true
}
return false
}
func tostr(v Val) Val {
switch u := v.U.(type) {
case *Mpint:
var r rune = 0xFFFD
if u.Cmp(minintval[TINT32]) >= 0 && u.Cmp(maxintval[TINT32]) <= 0 {
r = rune(u.Int64())
}
v.U = string(r)
}
return v
}
func consttype(n *Node) Ctype {
if n == nil || n.Op != OLITERAL {
return CTxxx
}
return n.Val().Ctype()
}
func Isconst(n *Node, ct Ctype) bool {
t := consttype(n)
// If the caller is asking for CTINT, allow CTRUNE too.
// Makes life easier for back ends.
return t == ct || (ct == CTINT && t == CTRUNE)
}
// evconst rewrites constant expressions into OLITERAL nodes.
func evconst(n *Node) {
nl, nr := n.Left, n.Right
// Pick off just the opcodes that can be constant evaluated.
switch op := n.Op; op {
case OPLUS, ONEG, OBITNOT, ONOT:
if nl.Op == OLITERAL {
setconst(n, unaryOp(op, nl.Val(), n.Type))
}
case OADD, OSUB, OMUL, ODIV, OMOD, OOR, OXOR, OAND, OANDNOT, OOROR, OANDAND:
if nl.Op == OLITERAL && nr.Op == OLITERAL {
setconst(n, binaryOp(nl.Val(), op, nr.Val()))
}
case OEQ, ONE, OLT, OLE, OGT, OGE:
if nl.Op == OLITERAL && nr.Op == OLITERAL {
setboolconst(n, compareOp(nl.Val(), op, nr.Val()))
}
case OLSH, ORSH:
if nl.Op == OLITERAL && nr.Op == OLITERAL {
setconst(n, shiftOp(nl.Val(), op, nr.Val()))
}
case OCONV, ORUNESTR:
if okforconst[n.Type.Etype] && nl.Op == OLITERAL {
setconst(n, convertVal(nl.Val(), n.Type, true))
}
case OCONVNOP:
if okforconst[n.Type.Etype] && nl.Op == OLITERAL {
// set so n.Orig gets OCONV instead of OCONVNOP
n.Op = OCONV
setconst(n, nl.Val())
}
case OADDSTR:
// Merge adjacent constants in the argument list.
s := n.List.Slice()
for i1 := 0; i1 < len(s); i1++ {
if Isconst(s[i1], CTSTR) && i1+1 < len(s) && Isconst(s[i1+1], CTSTR) {
// merge from i1 up to but not including i2
var strs []string
i2 := i1
for i2 < len(s) && Isconst(s[i2], CTSTR) {
strs = append(strs, s[i2].StringVal())
i2++
}
nl := *s[i1]
nl.Orig = &nl
nl.SetVal(Val{strings.Join(strs, "")})
s[i1] = &nl
s = append(s[:i1+1], s[i2:]...)
}
}
if len(s) == 1 && Isconst(s[0], CTSTR) {
n.Op = OLITERAL
n.SetVal(s[0].Val())
} else {
n.List.Set(s)
}
case OCAP, OLEN:
switch nl.Type.Etype {
case TSTRING:
if Isconst(nl, CTSTR) {
setintconst(n, int64(len(nl.StringVal())))
}
case TARRAY:
if !hascallchan(nl) {
setintconst(n, nl.Type.NumElem())
}
}
case OALIGNOF, OOFFSETOF, OSIZEOF:
setintconst(n, evalunsafe(n))
case OREAL, OIMAG:
if nl.Op == OLITERAL {
var re, im *Mpflt
switch u := nl.Val().U.(type) {
case *Mpint:
re = newMpflt()
re.SetInt(u)
// im = 0
case *Mpflt:
re = u
// im = 0
case *Mpcplx:
re = &u.Real
im = &u.Imag
default:
Fatalf("impossible")
}
if n.Op == OIMAG {
if im == nil {
im = newMpflt()
}
re = im
}
setconst(n, Val{re})
}
case OCOMPLEX:
if nl.Op == OLITERAL && nr.Op == OLITERAL {
// make it a complex literal
c := newMpcmplx()
c.Real.Set(toflt(nl.Val()).U.(*Mpflt))
c.Imag.Set(toflt(nr.Val()).U.(*Mpflt))
setconst(n, Val{c})
}
}
}
func match(x, y Val) (Val, Val) {
switch {
case x.Ctype() == CTCPLX || y.Ctype() == CTCPLX:
return tocplx(x), tocplx(y)
case x.Ctype() == CTFLT || y.Ctype() == CTFLT:
return toflt(x), toflt(y)
}
// Mixed int/rune are fine.
return x, y
}
func compareOp(x Val, op Op, y Val) bool {
x, y = match(x, y)
switch x.Ctype() {
case CTBOOL:
x, y := x.U.(bool), y.U.(bool)
switch op {
case OEQ:
return x == y
case ONE:
return x != y
}
case CTINT, CTRUNE:
x, y := x.U.(*Mpint), y.U.(*Mpint)
return cmpZero(x.Cmp(y), op)
case CTFLT:
x, y := x.U.(*Mpflt), y.U.(*Mpflt)
return cmpZero(x.Cmp(y), op)
case CTCPLX:
x, y := x.U.(*Mpcplx), y.U.(*Mpcplx)
eq := x.Real.Cmp(&y.Real) == 0 && x.Imag.Cmp(&y.Imag) == 0
switch op {
case OEQ:
return eq
case ONE:
return !eq
}
case CTSTR:
x, y := x.U.(string), y.U.(string)
switch op {
case OEQ:
return x == y
case ONE:
return x != y
case OLT:
return x < y
case OLE:
return x <= y
case OGT:
return x > y
case OGE:
return x >= y
}
}
Fatalf("compareOp: bad comparison: %v %v %v", x, op, y)
panic("unreachable")
}
func cmpZero(x int, op Op) bool {
switch op {
case OEQ:
return x == 0
case ONE:
return x != 0
case OLT:
return x < 0
case OLE:
return x <= 0
case OGT:
return x > 0
case OGE:
return x >= 0
}
Fatalf("cmpZero: want comparison operator, got %v", op)
panic("unreachable")
}
func binaryOp(x Val, op Op, y Val) Val {
x, y = match(x, y)
Outer:
switch x.Ctype() {
case CTBOOL:
x, y := x.U.(bool), y.U.(bool)
switch op {
case OANDAND:
return Val{U: x && y}
case OOROR:
return Val{U: x || y}
}
case CTINT, CTRUNE:
x, y := x.U.(*Mpint), y.U.(*Mpint)
u := new(Mpint)
u.Rune = x.Rune || y.Rune
u.Set(x)
switch op {
case OADD:
u.Add(y)
case OSUB:
u.Sub(y)
case OMUL:
u.Mul(y)
case ODIV:
if y.CmpInt64(0) == 0 {
yyerror("division by zero")
return Val{}
}
u.Quo(y)
case OMOD:
if y.CmpInt64(0) == 0 {
yyerror("division by zero")
return Val{}
}
u.Rem(y)
case OOR:
u.Or(y)
case OAND:
u.And(y)
case OANDNOT:
u.AndNot(y)
case OXOR:
u.Xor(y)
default:
break Outer
}
return Val{U: u}
case CTFLT:
x, y := x.U.(*Mpflt), y.U.(*Mpflt)
u := newMpflt()
u.Set(x)
switch op {
case OADD:
u.Add(y)
case OSUB:
u.Sub(y)
case OMUL:
u.Mul(y)
case ODIV:
if y.CmpFloat64(0) == 0 {
yyerror("division by zero")
return Val{}
}
u.Quo(y)
default:
break Outer
}
return Val{U: u}
case CTCPLX:
x, y := x.U.(*Mpcplx), y.U.(*Mpcplx)
u := newMpcmplx()
u.Real.Set(&x.Real)
u.Imag.Set(&x.Imag)
switch op {
case OADD:
u.Real.Add(&y.Real)
u.Imag.Add(&y.Imag)
case OSUB:
u.Real.Sub(&y.Real)
u.Imag.Sub(&y.Imag)
case OMUL:
u.Mul(y)
case ODIV:
if !u.Div(y) {
yyerror("complex division by zero")
return Val{}
}
default:
break Outer
}
return Val{U: u}
}
Fatalf("binaryOp: bad operation: %v %v %v", x, op, y)
panic("unreachable")
}
func unaryOp(op Op, x Val, t *types.Type) Val {
switch op {
case OPLUS:
switch x.Ctype() {
case CTINT, CTRUNE, CTFLT, CTCPLX:
return x
}
case ONEG:
switch x.Ctype() {
case CTINT, CTRUNE:
x := x.U.(*Mpint)
u := new(Mpint)
u.Rune = x.Rune
u.Set(x)
u.Neg()
return Val{U: u}
case CTFLT:
x := x.U.(*Mpflt)
u := newMpflt()
u.Set(x)
u.Neg()
return Val{U: u}
case CTCPLX:
x := x.U.(*Mpcplx)
u := newMpcmplx()
u.Real.Set(&x.Real)
u.Imag.Set(&x.Imag)
u.Real.Neg()
u.Imag.Neg()
return Val{U: u}
}
case OBITNOT:
switch x.Ctype() {
case CTINT, CTRUNE:
x := x.U.(*Mpint)
u := new(Mpint)
u.Rune = x.Rune
if t.IsSigned() || t.IsUntyped() {
// Signed values change sign.
u.SetInt64(-1)
} else {
// Unsigned values invert their bits.
u.Set(maxintval[t.Etype])
}
u.Xor(x)
return Val{U: u}
}
case ONOT:
return Val{U: !x.U.(bool)}
}
Fatalf("unaryOp: bad operation: %v %v", op, x)
panic("unreachable")
}
func shiftOp(x Val, op Op, y Val) Val {
if x.Ctype() != CTRUNE {
x = toint(x)
}
y = toint(y)
u := new(Mpint)
u.Set(x.U.(*Mpint))
u.Rune = x.U.(*Mpint).Rune
switch op {
case OLSH:
u.Lsh(y.U.(*Mpint))
case ORSH:
u.Rsh(y.U.(*Mpint))
default:
Fatalf("shiftOp: bad operator: %v", op)
panic("unreachable")
}
return Val{U: u}
}
// setconst rewrites n as an OLITERAL with value v.
func setconst(n *Node, v Val) {
// If constant folding failed, mark n as broken and give up.
if v.U == nil {
n.Type = nil
return
}
// Ensure n.Orig still points to a semantically-equivalent
// expression after we rewrite n into a constant.
if n.Orig == n {
n.Orig = n.sepcopy()
}
*n = Node{
Op: OLITERAL,
Pos: n.Pos,
Orig: n.Orig,
Type: n.Type,
Xoffset: BADWIDTH,
}
n.SetVal(v)
if vt := idealType(v.Ctype()); n.Type.IsUntyped() && n.Type != vt {
Fatalf("untyped type mismatch, have: %v, want: %v", n.Type, vt)
}
// Check range.
lno := setlineno(n)
overflow(v, n.Type)
lineno = lno
if !n.Type.IsUntyped() {
switch v.Ctype() {
// Truncate precision for non-ideal float.
case CTFLT:
n.SetVal(Val{truncfltlit(v.U.(*Mpflt), n.Type)})
// Truncate precision for non-ideal complex.
case CTCPLX:
n.SetVal(Val{trunccmplxlit(v.U.(*Mpcplx), n.Type)})
}
}
}
func setboolconst(n *Node, v bool) {
setconst(n, Val{U: v})
}
func setintconst(n *Node, v int64) {
u := new(Mpint)
u.SetInt64(v)
setconst(n, Val{u})
}
// nodlit returns a new untyped constant with value v.
func nodlit(v Val) *Node {
n := nod(OLITERAL, nil, nil)
n.SetVal(v)
n.Type = idealType(v.Ctype())
return n
}
func idealType(ct Ctype) *types.Type {
switch ct {
case CTSTR:
return types.UntypedString
case CTBOOL:
return types.UntypedBool
case CTINT:
return types.UntypedInt
case CTRUNE:
return types.UntypedRune
case CTFLT:
return types.UntypedFloat
case CTCPLX:
return types.UntypedComplex
case CTNIL:
return types.Types[TNIL]
}
Fatalf("unexpected Ctype: %v", ct)
return nil
}
// defaultlit on both nodes simultaneously;
// if they're both ideal going in they better
// get the same type going out.
// force means must assign concrete (non-ideal) type.
// The results of defaultlit2 MUST be assigned back to l and r, e.g.
// n.Left, n.Right = defaultlit2(n.Left, n.Right, force)
func defaultlit2(l *Node, r *Node, force bool) (*Node, *Node) {
if l.Type == nil || r.Type == nil {
return l, r
}
if !l.Type.IsUntyped() {
r = convlit(r, l.Type)
return l, r
}
if !r.Type.IsUntyped() {
l = convlit(l, r.Type)
return l, r
}
if !force {
return l, r
}
// Can't mix bool with non-bool, string with non-string, or nil with anything (untyped).
if l.Type.IsBoolean() != r.Type.IsBoolean() {
return l, r
}
if l.Type.IsString() != r.Type.IsString() {
return l, r
}
if l.isNil() || r.isNil() {
return l, r
}
t := defaultType(mixUntyped(l.Type, r.Type))
l = convlit(l, t)
r = convlit(r, t)
return l, r
}
func ctype(t *types.Type) Ctype {
switch t {
case types.UntypedBool:
return CTBOOL
case types.UntypedString:
return CTSTR
case types.UntypedInt:
return CTINT
case types.UntypedRune:
return CTRUNE
case types.UntypedFloat:
return CTFLT
case types.UntypedComplex:
return CTCPLX
}
Fatalf("bad type %v", t)
panic("unreachable")
}
func mixUntyped(t1, t2 *types.Type) *types.Type {
t := t1
if ctype(t2) > ctype(t1) {
t = t2
}
return t
}
func defaultType(t *types.Type) *types.Type {
if !t.IsUntyped() || t.Etype == TNIL {
return t
}
switch t {
case types.UntypedBool:
return types.Types[TBOOL]
case types.UntypedString:
return types.Types[TSTRING]
case types.UntypedInt:
return types.Types[TINT]
case types.UntypedRune:
return types.Runetype
case types.UntypedFloat:
return types.Types[TFLOAT64]
case types.UntypedComplex:
return types.Types[TCOMPLEX128]
}
Fatalf("bad type %v", t)
return nil
}
func smallintconst(n *Node) bool {
if n.Op == OLITERAL && Isconst(n, CTINT) && n.Type != nil {
switch simtype[n.Type.Etype] {
case TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TBOOL:
return true
case TIDEAL, TINT64, TUINT64, TPTR:
v, ok := n.Val().U.(*Mpint)
if ok && v.Cmp(minintval[TINT32]) >= 0 && v.Cmp(maxintval[TINT32]) <= 0 {
return true
}
}
}
return false
}
// indexconst checks if Node n contains a constant expression
// representable as a non-negative int and returns its value.
// If n is not a constant expression, not representable as an
// integer, or negative, it returns -1. If n is too large, it
// returns -2.
func indexconst(n *Node) int64 {
if n.Op != OLITERAL {
return -1
}
v := toint(n.Val()) // toint returns argument unchanged if not representable as an *Mpint
vi, ok := v.U.(*Mpint)
if !ok || vi.CmpInt64(0) < 0 {
return -1
}
if vi.Cmp(maxintval[TINT]) > 0 {
return -2
}
return vi.Int64()
}
// isGoConst reports whether n is a Go language constant (as opposed to a
// compile-time constant).
//
// Expressions derived from nil, like string([]byte(nil)), while they
// may be known at compile time, are not Go language constants.
func (n *Node) isGoConst() bool {
return n.Op == OLITERAL && n.Val().Ctype() != CTNIL
}
func hascallchan(n *Node) bool {
if n == nil {
return false
}
switch n.Op {
case OAPPEND,
OCALL,
OCALLFUNC,
OCALLINTER,
OCALLMETH,
OCAP,
OCLOSE,
OCOMPLEX,
OCOPY,
ODELETE,
OIMAG,
OLEN,
OMAKE,
ONEW,
OPANIC,
OPRINT,
OPRINTN,
OREAL,
ORECOVER,
ORECV:
return true
}
if hascallchan(n.Left) || hascallchan(n.Right) {
return true
}
for _, n1 := range n.List.Slice() {
if hascallchan(n1) {
return true
}
}
for _, n2 := range n.Rlist.Slice() {
if hascallchan(n2) {
return true
}
}
return false
}
// A constSet represents a set of Go constant expressions.
type constSet struct {
m map[constSetKey]src.XPos
}
type constSetKey struct {
typ *types.Type
val interface{}
}
// add adds constant expression n to s. If a constant expression of
// equal value and identical type has already been added, then add
// reports an error about the duplicate value.
//
// pos provides position information for where expression n occurred
// (in case n does not have its own position information). what and
// where are used in the error message.
//
// n must not be an untyped constant.
func (s *constSet) add(pos src.XPos, n *Node, what, where string) {
if n.Op == OCONVIFACE && n.Implicit() {
n = n.Left
}
if !n.isGoConst() {
return
}
if n.Type.IsUntyped() {
Fatalf("%v is untyped", n)
}
// Consts are only duplicates if they have the same value and
// identical types.
//
// In general, we have to use types.Identical to test type
// identity, because == gives false negatives for anonymous
// types and the byte/uint8 and rune/int32 builtin type
// aliases. However, this is not a problem here, because
// constant expressions are always untyped or have a named
// type, and we explicitly handle the builtin type aliases
// below.
//
// This approach may need to be revisited though if we fix
// #21866 by treating all type aliases like byte/uint8 and
// rune/int32.
typ := n.Type
switch typ {
case types.Bytetype:
typ = types.Types[TUINT8]
case types.Runetype:
typ = types.Types[TINT32]
}
k := constSetKey{typ, n.Val().Interface()}
if hasUniquePos(n) {
pos = n.Pos
}
if s.m == nil {
s.m = make(map[constSetKey]src.XPos)
}
if prevPos, isDup := s.m[k]; isDup {
yyerrorl(pos, "duplicate %s %s in %s\n\tprevious %s at %v",
what, nodeAndVal(n), where,
what, linestr(prevPos))
} else {
s.m[k] = pos
}
}
// nodeAndVal reports both an expression and its constant value, if
// the latter is non-obvious.
//
// TODO(mdempsky): This could probably be a fmt.go flag.
func nodeAndVal(n *Node) string {
show := n.String()
val := n.Val().Interface()
if s := fmt.Sprintf("%#v", val); show != s {
show += " (value " + s + ")"
}
return show
}
|