1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/src"
"fmt"
)
// Block represents a basic block in the control flow graph of a function.
type Block struct {
// A unique identifier for the block. The system will attempt to allocate
// these IDs densely, but no guarantees.
ID ID
// Source position for block's control operation
Pos src.XPos
// The kind of block this is.
Kind BlockKind
// Likely direction for branches.
// If BranchLikely, Succs[0] is the most likely branch taken.
// If BranchUnlikely, Succs[1] is the most likely branch taken.
// Ignored if len(Succs) < 2.
// Fatal if not BranchUnknown and len(Succs) > 2.
Likely BranchPrediction
// After flagalloc, records whether flags are live at the end of the block.
FlagsLiveAtEnd bool
// Subsequent blocks, if any. The number and order depend on the block kind.
Succs []Edge
// Inverse of successors.
// The order is significant to Phi nodes in the block.
// TODO: predecessors is a pain to maintain. Can we somehow order phi
// arguments by block id and have this field computed explicitly when needed?
Preds []Edge
// A list of values that determine how the block is exited. The number
// and type of control values depends on the Kind of the block. For
// instance, a BlockIf has a single boolean control value and BlockExit
// has a single memory control value.
//
// The ControlValues() method may be used to get a slice with the non-nil
// control values that can be ranged over.
//
// Controls[1] must be nil if Controls[0] is nil.
Controls [2]*Value
// Auxiliary info for the block. Its value depends on the Kind.
Aux interface{}
AuxInt int64
// The unordered set of Values that define the operation of this block.
// After the scheduling pass, this list is ordered.
Values []*Value
// The containing function
Func *Func
// Storage for Succs, Preds and Values.
succstorage [2]Edge
predstorage [4]Edge
valstorage [9]*Value
}
// Edge represents a CFG edge.
// Example edges for b branching to either c or d.
// (c and d have other predecessors.)
// b.Succs = [{c,3}, {d,1}]
// c.Preds = [?, ?, ?, {b,0}]
// d.Preds = [?, {b,1}, ?]
// These indexes allow us to edit the CFG in constant time.
// In addition, it informs phi ops in degenerate cases like:
// b:
// if k then c else c
// c:
// v = Phi(x, y)
// Then the indexes tell you whether x is chosen from
// the if or else branch from b.
// b.Succs = [{c,0},{c,1}]
// c.Preds = [{b,0},{b,1}]
// means x is chosen if k is true.
type Edge struct {
// block edge goes to (in a Succs list) or from (in a Preds list)
b *Block
// index of reverse edge. Invariant:
// e := x.Succs[idx]
// e.b.Preds[e.i] = Edge{x,idx}
// and similarly for predecessors.
i int
}
func (e Edge) Block() *Block {
return e.b
}
func (e Edge) Index() int {
return e.i
}
func (e Edge) String() string {
return fmt.Sprintf("{%v,%d}", e.b, e.i)
}
// kind controls successors
// ------------------------------------------
// Exit [return mem] []
// Plain [] [next]
// If [boolean Value] [then, else]
// Defer [mem] [nopanic, panic] (control opcode should be OpStaticCall to runtime.deferproc)
type BlockKind int8
// short form print
func (b *Block) String() string {
return fmt.Sprintf("b%d", b.ID)
}
// long form print
func (b *Block) LongString() string {
s := b.Kind.String()
if b.Aux != nil {
s += fmt.Sprintf(" {%s}", b.Aux)
}
if t := b.AuxIntString(); t != "" {
s += fmt.Sprintf(" [%s]", t)
}
for _, c := range b.ControlValues() {
s += fmt.Sprintf(" %s", c)
}
if len(b.Succs) > 0 {
s += " ->"
for _, c := range b.Succs {
s += " " + c.b.String()
}
}
switch b.Likely {
case BranchUnlikely:
s += " (unlikely)"
case BranchLikely:
s += " (likely)"
}
return s
}
// NumControls returns the number of non-nil control values the
// block has.
func (b *Block) NumControls() int {
if b.Controls[0] == nil {
return 0
}
if b.Controls[1] == nil {
return 1
}
return 2
}
// ControlValues returns a slice containing the non-nil control
// values of the block. The index of each control value will be
// the same as it is in the Controls property and can be used
// in ReplaceControl calls.
func (b *Block) ControlValues() []*Value {
if b.Controls[0] == nil {
return b.Controls[:0]
}
if b.Controls[1] == nil {
return b.Controls[:1]
}
return b.Controls[:2]
}
// SetControl removes all existing control values and then adds
// the control value provided. The number of control values after
// a call to SetControl will always be 1.
func (b *Block) SetControl(v *Value) {
b.ResetControls()
b.Controls[0] = v
v.Uses++
}
// ResetControls sets the number of controls for the block to 0.
func (b *Block) ResetControls() {
if b.Controls[0] != nil {
b.Controls[0].Uses--
}
if b.Controls[1] != nil {
b.Controls[1].Uses--
}
b.Controls = [2]*Value{} // reset both controls to nil
}
// AddControl appends a control value to the existing list of control values.
func (b *Block) AddControl(v *Value) {
i := b.NumControls()
b.Controls[i] = v // panics if array is full
v.Uses++
}
// ReplaceControl exchanges the existing control value at the index provided
// for the new value. The index must refer to a valid control value.
func (b *Block) ReplaceControl(i int, v *Value) {
b.Controls[i].Uses--
b.Controls[i] = v
v.Uses++
}
// CopyControls replaces the controls for this block with those from the
// provided block. The provided block is not modified.
func (b *Block) CopyControls(from *Block) {
if b == from {
return
}
b.ResetControls()
for _, c := range from.ControlValues() {
b.AddControl(c)
}
}
// Reset sets the block to the provided kind and clears all the blocks control
// and auxiliary values. Other properties of the block, such as its successors,
// predecessors and values are left unmodified.
func (b *Block) Reset(kind BlockKind) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
}
// resetWithControl resets b and adds control v.
// It is equivalent to b.Reset(kind); b.AddControl(v),
// except that it is one call instead of two and avoids a bounds check.
// It is intended for use by rewrite rules, where this matters.
func (b *Block) resetWithControl(kind BlockKind, v *Value) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
b.Controls[0] = v
v.Uses++
}
// resetWithControl2 resets b and adds controls v and w.
// It is equivalent to b.Reset(kind); b.AddControl(v); b.AddControl(w),
// except that it is one call instead of three and avoids two bounds checks.
// It is intended for use by rewrite rules, where this matters.
func (b *Block) resetWithControl2(kind BlockKind, v, w *Value) {
b.Kind = kind
b.ResetControls()
b.Aux = nil
b.AuxInt = 0
b.Controls[0] = v
b.Controls[1] = w
v.Uses++
w.Uses++
}
// truncateValues truncates b.Values at the ith element, zeroing subsequent elements.
// The values in b.Values after i must already have had their args reset,
// to maintain correct value uses counts.
func (b *Block) truncateValues(i int) {
tail := b.Values[i:]
for j := range tail {
tail[j] = nil
}
b.Values = b.Values[:i]
}
// AddEdgeTo adds an edge from block b to block c. Used during building of the
// SSA graph; do not use on an already-completed SSA graph.
func (b *Block) AddEdgeTo(c *Block) {
i := len(b.Succs)
j := len(c.Preds)
b.Succs = append(b.Succs, Edge{c, j})
c.Preds = append(c.Preds, Edge{b, i})
b.Func.invalidateCFG()
}
// removePred removes the ith input edge from b.
// It is the responsibility of the caller to remove
// the corresponding successor edge.
func (b *Block) removePred(i int) {
n := len(b.Preds) - 1
if i != n {
e := b.Preds[n]
b.Preds[i] = e
// Update the other end of the edge we moved.
e.b.Succs[e.i].i = i
}
b.Preds[n] = Edge{}
b.Preds = b.Preds[:n]
b.Func.invalidateCFG()
}
// removeSucc removes the ith output edge from b.
// It is the responsibility of the caller to remove
// the corresponding predecessor edge.
func (b *Block) removeSucc(i int) {
n := len(b.Succs) - 1
if i != n {
e := b.Succs[n]
b.Succs[i] = e
// Update the other end of the edge we moved.
e.b.Preds[e.i].i = i
}
b.Succs[n] = Edge{}
b.Succs = b.Succs[:n]
b.Func.invalidateCFG()
}
func (b *Block) swapSuccessors() {
if len(b.Succs) != 2 {
b.Fatalf("swapSuccessors with len(Succs)=%d", len(b.Succs))
}
e0 := b.Succs[0]
e1 := b.Succs[1]
b.Succs[0] = e1
b.Succs[1] = e0
e0.b.Preds[e0.i].i = 1
e1.b.Preds[e1.i].i = 0
b.Likely *= -1
}
// LackingPos indicates whether b is a block whose position should be inherited
// from its successors. This is true if all the values within it have unreliable positions
// and if it is "plain", meaning that there is no control flow that is also very likely
// to correspond to a well-understood source position.
func (b *Block) LackingPos() bool {
// Non-plain predecessors are If or Defer, which both (1) have two successors,
// which might have different line numbers and (2) correspond to statements
// in the source code that have positions, so this case ought not occur anyway.
if b.Kind != BlockPlain {
return false
}
if b.Pos != src.NoXPos {
return false
}
for _, v := range b.Values {
if v.LackingPos() {
continue
}
return false
}
return true
}
func (b *Block) AuxIntString() string {
switch b.Kind.AuxIntType() {
case "int8":
return fmt.Sprintf("%v", int8(b.AuxInt))
case "uint8":
return fmt.Sprintf("%v", uint8(b.AuxInt))
default: // type specified but not implemented - print as int64
return fmt.Sprintf("%v", b.AuxInt)
case "": // no aux int type
return ""
}
}
func (b *Block) Logf(msg string, args ...interface{}) { b.Func.Logf(msg, args...) }
func (b *Block) Log() bool { return b.Func.Log() }
func (b *Block) Fatalf(msg string, args ...interface{}) { b.Func.Fatalf(msg, args...) }
type BranchPrediction int8
const (
BranchUnlikely = BranchPrediction(-1)
BranchUnknown = BranchPrediction(0)
BranchLikely = BranchPrediction(+1)
)
|