summaryrefslogtreecommitdiffstats
path: root/src/cmd/compile/internal/ssa/cse.go
blob: 3b4f2be37e7beabe44ec6e569be52d4660604056 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package ssa

import (
	"cmd/compile/internal/types"
	"cmd/internal/src"
	"fmt"
	"sort"
)

// cse does common-subexpression elimination on the Function.
// Values are just relinked, nothing is deleted. A subsequent deadcode
// pass is required to actually remove duplicate expressions.
func cse(f *Func) {
	// Two values are equivalent if they satisfy the following definition:
	// equivalent(v, w):
	//   v.op == w.op
	//   v.type == w.type
	//   v.aux == w.aux
	//   v.auxint == w.auxint
	//   len(v.args) == len(w.args)
	//   v.block == w.block if v.op == OpPhi
	//   equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1

	// The algorithm searches for a partition of f's values into
	// equivalence classes using the above definition.
	// It starts with a coarse partition and iteratively refines it
	// until it reaches a fixed point.

	// Make initial coarse partitions by using a subset of the conditions above.
	a := make([]*Value, 0, f.NumValues())
	if f.auxmap == nil {
		f.auxmap = auxmap{}
	}
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			if v.Type.IsMemory() {
				continue // memory values can never cse
			}
			if f.auxmap[v.Aux] == 0 {
				f.auxmap[v.Aux] = int32(len(f.auxmap)) + 1
			}
			a = append(a, v)
		}
	}
	partition := partitionValues(a, f.auxmap)

	// map from value id back to eqclass id
	valueEqClass := make([]ID, f.NumValues())
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			// Use negative equivalence class #s for unique values.
			valueEqClass[v.ID] = -v.ID
		}
	}
	var pNum ID = 1
	for _, e := range partition {
		if f.pass.debug > 1 && len(e) > 500 {
			fmt.Printf("CSE.large partition (%d): ", len(e))
			for j := 0; j < 3; j++ {
				fmt.Printf("%s ", e[j].LongString())
			}
			fmt.Println()
		}

		for _, v := range e {
			valueEqClass[v.ID] = pNum
		}
		if f.pass.debug > 2 && len(e) > 1 {
			fmt.Printf("CSE.partition #%d:", pNum)
			for _, v := range e {
				fmt.Printf(" %s", v.String())
			}
			fmt.Printf("\n")
		}
		pNum++
	}

	// Split equivalence classes at points where they have
	// non-equivalent arguments.  Repeat until we can't find any
	// more splits.
	var splitPoints []int
	byArgClass := new(partitionByArgClass) // reuseable partitionByArgClass to reduce allocations
	for {
		changed := false

		// partition can grow in the loop. By not using a range loop here,
		// we process new additions as they arrive, avoiding O(n^2) behavior.
		for i := 0; i < len(partition); i++ {
			e := partition[i]

			if opcodeTable[e[0].Op].commutative {
				// Order the first two args before comparison.
				for _, v := range e {
					if valueEqClass[v.Args[0].ID] > valueEqClass[v.Args[1].ID] {
						v.Args[0], v.Args[1] = v.Args[1], v.Args[0]
					}
				}
			}

			// Sort by eq class of arguments.
			byArgClass.a = e
			byArgClass.eqClass = valueEqClass
			sort.Sort(byArgClass)

			// Find split points.
			splitPoints = append(splitPoints[:0], 0)
			for j := 1; j < len(e); j++ {
				v, w := e[j-1], e[j]
				// Note: commutative args already correctly ordered by byArgClass.
				eqArgs := true
				for k, a := range v.Args {
					b := w.Args[k]
					if valueEqClass[a.ID] != valueEqClass[b.ID] {
						eqArgs = false
						break
					}
				}
				if !eqArgs {
					splitPoints = append(splitPoints, j)
				}
			}
			if len(splitPoints) == 1 {
				continue // no splits, leave equivalence class alone.
			}

			// Move another equivalence class down in place of e.
			partition[i] = partition[len(partition)-1]
			partition = partition[:len(partition)-1]
			i--

			// Add new equivalence classes for the parts of e we found.
			splitPoints = append(splitPoints, len(e))
			for j := 0; j < len(splitPoints)-1; j++ {
				f := e[splitPoints[j]:splitPoints[j+1]]
				if len(f) == 1 {
					// Don't add singletons.
					valueEqClass[f[0].ID] = -f[0].ID
					continue
				}
				for _, v := range f {
					valueEqClass[v.ID] = pNum
				}
				pNum++
				partition = append(partition, f)
			}
			changed = true
		}

		if !changed {
			break
		}
	}

	sdom := f.Sdom()

	// Compute substitutions we would like to do. We substitute v for w
	// if v and w are in the same equivalence class and v dominates w.
	rewrite := make([]*Value, f.NumValues())
	byDom := new(partitionByDom) // reusable partitionByDom to reduce allocs
	for _, e := range partition {
		byDom.a = e
		byDom.sdom = sdom
		sort.Sort(byDom)
		for i := 0; i < len(e)-1; i++ {
			// e is sorted by domorder, so a maximal dominant element is first in the slice
			v := e[i]
			if v == nil {
				continue
			}

			e[i] = nil
			// Replace all elements of e which v dominates
			for j := i + 1; j < len(e); j++ {
				w := e[j]
				if w == nil {
					continue
				}
				if sdom.IsAncestorEq(v.Block, w.Block) {
					rewrite[w.ID] = v
					e[j] = nil
				} else {
					// e is sorted by domorder, so v.Block doesn't dominate any subsequent blocks in e
					break
				}
			}
		}
	}

	rewrites := int64(0)

	// Apply substitutions
	for _, b := range f.Blocks {
		for _, v := range b.Values {
			for i, w := range v.Args {
				if x := rewrite[w.ID]; x != nil {
					if w.Pos.IsStmt() == src.PosIsStmt {
						// about to lose a statement marker, w
						// w is an input to v; if they're in the same block
						// and the same line, v is a good-enough new statement boundary.
						if w.Block == v.Block && w.Pos.Line() == v.Pos.Line() {
							v.Pos = v.Pos.WithIsStmt()
							w.Pos = w.Pos.WithNotStmt()
						} // TODO and if this fails?
					}
					v.SetArg(i, x)
					rewrites++
				}
			}
		}
		for i, v := range b.ControlValues() {
			if x := rewrite[v.ID]; x != nil {
				if v.Op == OpNilCheck {
					// nilcheck pass will remove the nil checks and log
					// them appropriately, so don't mess with them here.
					continue
				}
				b.ReplaceControl(i, x)
			}
		}
	}

	if f.pass.stats > 0 {
		f.LogStat("CSE REWRITES", rewrites)
	}
}

// An eqclass approximates an equivalence class. During the
// algorithm it may represent the union of several of the
// final equivalence classes.
type eqclass []*Value

// partitionValues partitions the values into equivalence classes
// based on having all the following features match:
//  - opcode
//  - type
//  - auxint
//  - aux
//  - nargs
//  - block # if a phi op
//  - first two arg's opcodes and auxint
//  - NOT first two arg's aux; that can break CSE.
// partitionValues returns a list of equivalence classes, each
// being a sorted by ID list of *Values. The eqclass slices are
// backed by the same storage as the input slice.
// Equivalence classes of size 1 are ignored.
func partitionValues(a []*Value, auxIDs auxmap) []eqclass {
	sort.Sort(sortvalues{a, auxIDs})

	var partition []eqclass
	for len(a) > 0 {
		v := a[0]
		j := 1
		for ; j < len(a); j++ {
			w := a[j]
			if cmpVal(v, w, auxIDs) != types.CMPeq {
				break
			}
		}
		if j > 1 {
			partition = append(partition, a[:j])
		}
		a = a[j:]
	}

	return partition
}
func lt2Cmp(isLt bool) types.Cmp {
	if isLt {
		return types.CMPlt
	}
	return types.CMPgt
}

type auxmap map[interface{}]int32

func cmpVal(v, w *Value, auxIDs auxmap) types.Cmp {
	// Try to order these comparison by cost (cheaper first)
	if v.Op != w.Op {
		return lt2Cmp(v.Op < w.Op)
	}
	if v.AuxInt != w.AuxInt {
		return lt2Cmp(v.AuxInt < w.AuxInt)
	}
	if len(v.Args) != len(w.Args) {
		return lt2Cmp(len(v.Args) < len(w.Args))
	}
	if v.Op == OpPhi && v.Block != w.Block {
		return lt2Cmp(v.Block.ID < w.Block.ID)
	}
	if v.Type.IsMemory() {
		// We will never be able to CSE two values
		// that generate memory.
		return lt2Cmp(v.ID < w.ID)
	}
	// OpSelect is a pseudo-op. We need to be more aggressive
	// regarding CSE to keep multiple OpSelect's of the same
	// argument from existing.
	if v.Op != OpSelect0 && v.Op != OpSelect1 {
		if tc := v.Type.Compare(w.Type); tc != types.CMPeq {
			return tc
		}
	}

	if v.Aux != w.Aux {
		if v.Aux == nil {
			return types.CMPlt
		}
		if w.Aux == nil {
			return types.CMPgt
		}
		return lt2Cmp(auxIDs[v.Aux] < auxIDs[w.Aux])
	}

	return types.CMPeq
}

// Sort values to make the initial partition.
type sortvalues struct {
	a      []*Value // array of values
	auxIDs auxmap   // aux -> aux ID map
}

func (sv sortvalues) Len() int      { return len(sv.a) }
func (sv sortvalues) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
func (sv sortvalues) Less(i, j int) bool {
	v := sv.a[i]
	w := sv.a[j]
	if cmp := cmpVal(v, w, sv.auxIDs); cmp != types.CMPeq {
		return cmp == types.CMPlt
	}

	// Sort by value ID last to keep the sort result deterministic.
	return v.ID < w.ID
}

type partitionByDom struct {
	a    []*Value // array of values
	sdom SparseTree
}

func (sv partitionByDom) Len() int      { return len(sv.a) }
func (sv partitionByDom) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
func (sv partitionByDom) Less(i, j int) bool {
	v := sv.a[i]
	w := sv.a[j]
	return sv.sdom.domorder(v.Block) < sv.sdom.domorder(w.Block)
}

type partitionByArgClass struct {
	a       []*Value // array of values
	eqClass []ID     // equivalence class IDs of values
}

func (sv partitionByArgClass) Len() int      { return len(sv.a) }
func (sv partitionByArgClass) Swap(i, j int) { sv.a[i], sv.a[j] = sv.a[j], sv.a[i] }
func (sv partitionByArgClass) Less(i, j int) bool {
	v := sv.a[i]
	w := sv.a[j]
	for i, a := range v.Args {
		b := w.Args[i]
		if sv.eqClass[a.ID] < sv.eqClass[b.ID] {
			return true
		}
		if sv.eqClass[a.ID] > sv.eqClass[b.ID] {
			return false
		}
	}
	return false
}