1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"cmd/internal/src"
"fmt"
"math"
)
type branch int
const (
unknown branch = iota
positive
negative
)
// relation represents the set of possible relations between
// pairs of variables (v, w). Without a priori knowledge the
// mask is lt | eq | gt meaning v can be less than, equal to or
// greater than w. When the execution path branches on the condition
// `v op w` the set of relations is updated to exclude any
// relation not possible due to `v op w` being true (or false).
//
// E.g.
//
// r := relation(...)
//
// if v < w {
// newR := r & lt
// }
// if v >= w {
// newR := r & (eq|gt)
// }
// if v != w {
// newR := r & (lt|gt)
// }
type relation uint
const (
lt relation = 1 << iota
eq
gt
)
var relationStrings = [...]string{
0: "none", lt: "<", eq: "==", lt | eq: "<=",
gt: ">", gt | lt: "!=", gt | eq: ">=", gt | eq | lt: "any",
}
func (r relation) String() string {
if r < relation(len(relationStrings)) {
return relationStrings[r]
}
return fmt.Sprintf("relation(%d)", uint(r))
}
// domain represents the domain of a variable pair in which a set
// of relations is known. For example, relations learned for unsigned
// pairs cannot be transferred to signed pairs because the same bit
// representation can mean something else.
type domain uint
const (
signed domain = 1 << iota
unsigned
pointer
boolean
)
var domainStrings = [...]string{
"signed", "unsigned", "pointer", "boolean",
}
func (d domain) String() string {
s := ""
for i, ds := range domainStrings {
if d&(1<<uint(i)) != 0 {
if len(s) != 0 {
s += "|"
}
s += ds
d &^= 1 << uint(i)
}
}
if d != 0 {
if len(s) != 0 {
s += "|"
}
s += fmt.Sprintf("0x%x", uint(d))
}
return s
}
type pair struct {
v, w *Value // a pair of values, ordered by ID.
// v can be nil, to mean the zero value.
// for booleans the zero value (v == nil) is false.
d domain
}
// fact is a pair plus a relation for that pair.
type fact struct {
p pair
r relation
}
// a limit records known upper and lower bounds for a value.
type limit struct {
min, max int64 // min <= value <= max, signed
umin, umax uint64 // umin <= value <= umax, unsigned
}
func (l limit) String() string {
return fmt.Sprintf("sm,SM,um,UM=%d,%d,%d,%d", l.min, l.max, l.umin, l.umax)
}
func (l limit) intersect(l2 limit) limit {
if l.min < l2.min {
l.min = l2.min
}
if l.umin < l2.umin {
l.umin = l2.umin
}
if l.max > l2.max {
l.max = l2.max
}
if l.umax > l2.umax {
l.umax = l2.umax
}
return l
}
var noLimit = limit{math.MinInt64, math.MaxInt64, 0, math.MaxUint64}
// a limitFact is a limit known for a particular value.
type limitFact struct {
vid ID
limit limit
}
// factsTable keeps track of relations between pairs of values.
//
// The fact table logic is sound, but incomplete. Outside of a few
// special cases, it performs no deduction or arithmetic. While there
// are known decision procedures for this, the ad hoc approach taken
// by the facts table is effective for real code while remaining very
// efficient.
type factsTable struct {
// unsat is true if facts contains a contradiction.
//
// Note that the factsTable logic is incomplete, so if unsat
// is false, the assertions in factsTable could be satisfiable
// *or* unsatisfiable.
unsat bool // true if facts contains a contradiction
unsatDepth int // number of unsat checkpoints
facts map[pair]relation // current known set of relation
stack []fact // previous sets of relations
// order is a couple of partial order sets that record information
// about relations between SSA values in the signed and unsigned
// domain.
orderS *poset
orderU *poset
// known lower and upper bounds on individual values.
limits map[ID]limit
limitStack []limitFact // previous entries
// For each slice s, a map from s to a len(s)/cap(s) value (if any)
// TODO: check if there are cases that matter where we have
// more than one len(s) for a slice. We could keep a list if necessary.
lens map[ID]*Value
caps map[ID]*Value
// zero is a zero-valued constant
zero *Value
}
// checkpointFact is an invalid value used for checkpointing
// and restoring factsTable.
var checkpointFact = fact{}
var checkpointBound = limitFact{}
func newFactsTable(f *Func) *factsTable {
ft := &factsTable{}
ft.orderS = f.newPoset()
ft.orderU = f.newPoset()
ft.orderS.SetUnsigned(false)
ft.orderU.SetUnsigned(true)
ft.facts = make(map[pair]relation)
ft.stack = make([]fact, 4)
ft.limits = make(map[ID]limit)
ft.limitStack = make([]limitFact, 4)
ft.zero = f.ConstInt64(f.Config.Types.Int64, 0)
return ft
}
// update updates the set of relations between v and w in domain d
// restricting it to r.
func (ft *factsTable) update(parent *Block, v, w *Value, d domain, r relation) {
if parent.Func.pass.debug > 2 {
parent.Func.Warnl(parent.Pos, "parent=%s, update %s %s %s", parent, v, w, r)
}
// No need to do anything else if we already found unsat.
if ft.unsat {
return
}
// Self-fact. It's wasteful to register it into the facts
// table, so just note whether it's satisfiable
if v == w {
if r&eq == 0 {
ft.unsat = true
}
return
}
if d == signed || d == unsigned {
var ok bool
order := ft.orderS
if d == unsigned {
order = ft.orderU
}
switch r {
case lt:
ok = order.SetOrder(v, w)
case gt:
ok = order.SetOrder(w, v)
case lt | eq:
ok = order.SetOrderOrEqual(v, w)
case gt | eq:
ok = order.SetOrderOrEqual(w, v)
case eq:
ok = order.SetEqual(v, w)
case lt | gt:
ok = order.SetNonEqual(v, w)
default:
panic("unknown relation")
}
if !ok {
if parent.Func.pass.debug > 2 {
parent.Func.Warnl(parent.Pos, "unsat %s %s %s", v, w, r)
}
ft.unsat = true
return
}
} else {
if lessByID(w, v) {
v, w = w, v
r = reverseBits[r]
}
p := pair{v, w, d}
oldR, ok := ft.facts[p]
if !ok {
if v == w {
oldR = eq
} else {
oldR = lt | eq | gt
}
}
// No changes compared to information already in facts table.
if oldR == r {
return
}
ft.stack = append(ft.stack, fact{p, oldR})
ft.facts[p] = oldR & r
// If this relation is not satisfiable, mark it and exit right away
if oldR&r == 0 {
if parent.Func.pass.debug > 2 {
parent.Func.Warnl(parent.Pos, "unsat %s %s %s", v, w, r)
}
ft.unsat = true
return
}
}
// Extract bounds when comparing against constants
if v.isGenericIntConst() {
v, w = w, v
r = reverseBits[r]
}
if v != nil && w.isGenericIntConst() {
// Note: all the +1/-1 below could overflow/underflow. Either will
// still generate correct results, it will just lead to imprecision.
// In fact if there is overflow/underflow, the corresponding
// code is unreachable because the known range is outside the range
// of the value's type.
old, ok := ft.limits[v.ID]
if !ok {
old = noLimit
if v.isGenericIntConst() {
switch d {
case signed:
old.min, old.max = v.AuxInt, v.AuxInt
if v.AuxInt >= 0 {
old.umin, old.umax = uint64(v.AuxInt), uint64(v.AuxInt)
}
case unsigned:
old.umin = v.AuxUnsigned()
old.umax = old.umin
if int64(old.umin) >= 0 {
old.min, old.max = int64(old.umin), int64(old.umin)
}
}
}
}
lim := noLimit
switch d {
case signed:
c := w.AuxInt
switch r {
case lt:
lim.max = c - 1
case lt | eq:
lim.max = c
case gt | eq:
lim.min = c
case gt:
lim.min = c + 1
case lt | gt:
lim = old
if c == lim.min {
lim.min++
}
if c == lim.max {
lim.max--
}
case eq:
lim.min = c
lim.max = c
}
if lim.min >= 0 {
// int(x) >= 0 && int(x) >= N ⇒ uint(x) >= N
lim.umin = uint64(lim.min)
}
if lim.max != noLimit.max && old.min >= 0 && lim.max >= 0 {
// 0 <= int(x) <= N ⇒ 0 <= uint(x) <= N
// This is for a max update, so the lower bound
// comes from what we already know (old).
lim.umax = uint64(lim.max)
}
case unsigned:
uc := w.AuxUnsigned()
switch r {
case lt:
lim.umax = uc - 1
case lt | eq:
lim.umax = uc
case gt | eq:
lim.umin = uc
case gt:
lim.umin = uc + 1
case lt | gt:
lim = old
if uc == lim.umin {
lim.umin++
}
if uc == lim.umax {
lim.umax--
}
case eq:
lim.umin = uc
lim.umax = uc
}
// We could use the contrapositives of the
// signed implications to derive signed facts,
// but it turns out not to matter.
}
ft.limitStack = append(ft.limitStack, limitFact{v.ID, old})
lim = old.intersect(lim)
ft.limits[v.ID] = lim
if v.Block.Func.pass.debug > 2 {
v.Block.Func.Warnl(parent.Pos, "parent=%s, new limits %s %s %s %s", parent, v, w, r, lim.String())
}
if lim.min > lim.max || lim.umin > lim.umax {
ft.unsat = true
return
}
}
// Derived facts below here are only about numbers.
if d != signed && d != unsigned {
return
}
// Additional facts we know given the relationship between len and cap.
//
// TODO: Since prove now derives transitive relations, it
// should be sufficient to learn that len(w) <= cap(w) at the
// beginning of prove where we look for all len/cap ops.
if v.Op == OpSliceLen && r< == 0 && ft.caps[v.Args[0].ID] != nil {
// len(s) > w implies cap(s) > w
// len(s) >= w implies cap(s) >= w
// len(s) == w implies cap(s) >= w
ft.update(parent, ft.caps[v.Args[0].ID], w, d, r|gt)
}
if w.Op == OpSliceLen && r> == 0 && ft.caps[w.Args[0].ID] != nil {
// same, length on the RHS.
ft.update(parent, v, ft.caps[w.Args[0].ID], d, r|lt)
}
if v.Op == OpSliceCap && r> == 0 && ft.lens[v.Args[0].ID] != nil {
// cap(s) < w implies len(s) < w
// cap(s) <= w implies len(s) <= w
// cap(s) == w implies len(s) <= w
ft.update(parent, ft.lens[v.Args[0].ID], w, d, r|lt)
}
if w.Op == OpSliceCap && r< == 0 && ft.lens[w.Args[0].ID] != nil {
// same, capacity on the RHS.
ft.update(parent, v, ft.lens[w.Args[0].ID], d, r|gt)
}
// Process fence-post implications.
//
// First, make the condition > or >=.
if r == lt || r == lt|eq {
v, w = w, v
r = reverseBits[r]
}
switch r {
case gt:
if x, delta := isConstDelta(v); x != nil && delta == 1 {
// x+1 > w ⇒ x >= w
//
// This is useful for eliminating the
// growslice branch of append.
ft.update(parent, x, w, d, gt|eq)
} else if x, delta := isConstDelta(w); x != nil && delta == -1 {
// v > x-1 ⇒ v >= x
ft.update(parent, v, x, d, gt|eq)
}
case gt | eq:
if x, delta := isConstDelta(v); x != nil && delta == -1 {
// x-1 >= w && x > min ⇒ x > w
//
// Useful for i > 0; s[i-1].
lim, ok := ft.limits[x.ID]
if ok && ((d == signed && lim.min > opMin[v.Op]) || (d == unsigned && lim.umin > 0)) {
ft.update(parent, x, w, d, gt)
}
} else if x, delta := isConstDelta(w); x != nil && delta == 1 {
// v >= x+1 && x < max ⇒ v > x
lim, ok := ft.limits[x.ID]
if ok && ((d == signed && lim.max < opMax[w.Op]) || (d == unsigned && lim.umax < opUMax[w.Op])) {
ft.update(parent, v, x, d, gt)
}
}
}
// Process: x+delta > w (with delta constant)
// Only signed domain for now (useful for accesses to slices in loops).
if r == gt || r == gt|eq {
if x, delta := isConstDelta(v); x != nil && d == signed {
if parent.Func.pass.debug > 1 {
parent.Func.Warnl(parent.Pos, "x+d %s w; x:%v %v delta:%v w:%v d:%v", r, x, parent.String(), delta, w.AuxInt, d)
}
if !w.isGenericIntConst() {
// If we know that x+delta > w but w is not constant, we can derive:
// if delta < 0 and x > MinInt - delta, then x > w (because x+delta cannot underflow)
// This is useful for loops with bounds "len(slice)-K" (delta = -K)
if l, has := ft.limits[x.ID]; has && delta < 0 {
if (x.Type.Size() == 8 && l.min >= math.MinInt64-delta) ||
(x.Type.Size() == 4 && l.min >= math.MinInt32-delta) {
ft.update(parent, x, w, signed, r)
}
}
} else {
// With w,delta constants, we want to derive: x+delta > w ⇒ x > w-delta
//
// We compute (using integers of the correct size):
// min = w - delta
// max = MaxInt - delta
//
// And we prove that:
// if min<max: min < x AND x <= max
// if min>max: min < x OR x <= max
//
// This is always correct, even in case of overflow.
//
// If the initial fact is x+delta >= w instead, the derived conditions are:
// if min<max: min <= x AND x <= max
// if min>max: min <= x OR x <= max
//
// Notice the conditions for max are still <=, as they handle overflows.
var min, max int64
var vmin, vmax *Value
switch x.Type.Size() {
case 8:
min = w.AuxInt - delta
max = int64(^uint64(0)>>1) - delta
vmin = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, min)
vmax = parent.NewValue0I(parent.Pos, OpConst64, parent.Func.Config.Types.Int64, max)
case 4:
min = int64(int32(w.AuxInt) - int32(delta))
max = int64(int32(^uint32(0)>>1) - int32(delta))
vmin = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, min)
vmax = parent.NewValue0I(parent.Pos, OpConst32, parent.Func.Config.Types.Int32, max)
default:
panic("unimplemented")
}
if min < max {
// Record that x > min and max >= x
ft.update(parent, x, vmin, d, r)
ft.update(parent, vmax, x, d, r|eq)
} else {
// We know that either x>min OR x<=max. factsTable cannot record OR conditions,
// so let's see if we can already prove that one of them is false, in which case
// the other must be true
if l, has := ft.limits[x.ID]; has {
if l.max <= min {
if r&eq == 0 || l.max < min {
// x>min (x>=min) is impossible, so it must be x<=max
ft.update(parent, vmax, x, d, r|eq)
}
} else if l.min > max {
// x<=max is impossible, so it must be x>min
ft.update(parent, x, vmin, d, r)
}
}
}
}
}
}
// Look through value-preserving extensions.
// If the domain is appropriate for the pre-extension Type,
// repeat the update with the pre-extension Value.
if isCleanExt(v) {
switch {
case d == signed && v.Args[0].Type.IsSigned():
fallthrough
case d == unsigned && !v.Args[0].Type.IsSigned():
ft.update(parent, v.Args[0], w, d, r)
}
}
if isCleanExt(w) {
switch {
case d == signed && w.Args[0].Type.IsSigned():
fallthrough
case d == unsigned && !w.Args[0].Type.IsSigned():
ft.update(parent, v, w.Args[0], d, r)
}
}
}
var opMin = map[Op]int64{
OpAdd64: math.MinInt64, OpSub64: math.MinInt64,
OpAdd32: math.MinInt32, OpSub32: math.MinInt32,
}
var opMax = map[Op]int64{
OpAdd64: math.MaxInt64, OpSub64: math.MaxInt64,
OpAdd32: math.MaxInt32, OpSub32: math.MaxInt32,
}
var opUMax = map[Op]uint64{
OpAdd64: math.MaxUint64, OpSub64: math.MaxUint64,
OpAdd32: math.MaxUint32, OpSub32: math.MaxUint32,
}
// isNonNegative reports whether v is known to be non-negative.
func (ft *factsTable) isNonNegative(v *Value) bool {
if isNonNegative(v) {
return true
}
var max int64
switch v.Type.Size() {
case 1:
max = math.MaxInt8
case 2:
max = math.MaxInt16
case 4:
max = math.MaxInt32
case 8:
max = math.MaxInt64
default:
panic("unexpected integer size")
}
// Check if the recorded limits can prove that the value is positive
if l, has := ft.limits[v.ID]; has && (l.min >= 0 || l.umax <= uint64(max)) {
return true
}
// Check if v = x+delta, and we can use x's limits to prove that it's positive
if x, delta := isConstDelta(v); x != nil {
if l, has := ft.limits[x.ID]; has {
if delta > 0 && l.min >= -delta && l.max <= max-delta {
return true
}
if delta < 0 && l.min >= -delta {
return true
}
}
}
// Check if v is a value-preserving extension of a non-negative value.
if isCleanExt(v) && ft.isNonNegative(v.Args[0]) {
return true
}
// Check if the signed poset can prove that the value is >= 0
return ft.orderS.OrderedOrEqual(ft.zero, v)
}
// checkpoint saves the current state of known relations.
// Called when descending on a branch.
func (ft *factsTable) checkpoint() {
if ft.unsat {
ft.unsatDepth++
}
ft.stack = append(ft.stack, checkpointFact)
ft.limitStack = append(ft.limitStack, checkpointBound)
ft.orderS.Checkpoint()
ft.orderU.Checkpoint()
}
// restore restores known relation to the state just
// before the previous checkpoint.
// Called when backing up on a branch.
func (ft *factsTable) restore() {
if ft.unsatDepth > 0 {
ft.unsatDepth--
} else {
ft.unsat = false
}
for {
old := ft.stack[len(ft.stack)-1]
ft.stack = ft.stack[:len(ft.stack)-1]
if old == checkpointFact {
break
}
if old.r == lt|eq|gt {
delete(ft.facts, old.p)
} else {
ft.facts[old.p] = old.r
}
}
for {
old := ft.limitStack[len(ft.limitStack)-1]
ft.limitStack = ft.limitStack[:len(ft.limitStack)-1]
if old.vid == 0 { // checkpointBound
break
}
if old.limit == noLimit {
delete(ft.limits, old.vid)
} else {
ft.limits[old.vid] = old.limit
}
}
ft.orderS.Undo()
ft.orderU.Undo()
}
func lessByID(v, w *Value) bool {
if v == nil && w == nil {
// Should not happen, but just in case.
return false
}
if v == nil {
return true
}
return w != nil && v.ID < w.ID
}
var (
reverseBits = [...]relation{0, 4, 2, 6, 1, 5, 3, 7}
// maps what we learn when the positive branch is taken.
// For example:
// OpLess8: {signed, lt},
// v1 = (OpLess8 v2 v3).
// If v1 branch is taken then we learn that the rangeMask
// can be at most lt.
domainRelationTable = map[Op]struct {
d domain
r relation
}{
OpEq8: {signed | unsigned, eq},
OpEq16: {signed | unsigned, eq},
OpEq32: {signed | unsigned, eq},
OpEq64: {signed | unsigned, eq},
OpEqPtr: {pointer, eq},
OpNeq8: {signed | unsigned, lt | gt},
OpNeq16: {signed | unsigned, lt | gt},
OpNeq32: {signed | unsigned, lt | gt},
OpNeq64: {signed | unsigned, lt | gt},
OpNeqPtr: {pointer, lt | gt},
OpLess8: {signed, lt},
OpLess8U: {unsigned, lt},
OpLess16: {signed, lt},
OpLess16U: {unsigned, lt},
OpLess32: {signed, lt},
OpLess32U: {unsigned, lt},
OpLess64: {signed, lt},
OpLess64U: {unsigned, lt},
OpLeq8: {signed, lt | eq},
OpLeq8U: {unsigned, lt | eq},
OpLeq16: {signed, lt | eq},
OpLeq16U: {unsigned, lt | eq},
OpLeq32: {signed, lt | eq},
OpLeq32U: {unsigned, lt | eq},
OpLeq64: {signed, lt | eq},
OpLeq64U: {unsigned, lt | eq},
// For these ops, the negative branch is different: we can only
// prove signed/GE (signed/GT) if we can prove that arg0 is non-negative.
// See the special case in addBranchRestrictions.
OpIsInBounds: {signed | unsigned, lt}, // 0 <= arg0 < arg1
OpIsSliceInBounds: {signed | unsigned, lt | eq}, // 0 <= arg0 <= arg1
}
)
// prove removes redundant BlockIf branches that can be inferred
// from previous dominating comparisons.
//
// By far, the most common redundant pair are generated by bounds checking.
// For example for the code:
//
// a[i] = 4
// foo(a[i])
//
// The compiler will generate the following code:
//
// if i >= len(a) {
// panic("not in bounds")
// }
// a[i] = 4
// if i >= len(a) {
// panic("not in bounds")
// }
// foo(a[i])
//
// The second comparison i >= len(a) is clearly redundant because if the
// else branch of the first comparison is executed, we already know that i < len(a).
// The code for the second panic can be removed.
//
// prove works by finding contradictions and trimming branches whose
// conditions are unsatisfiable given the branches leading up to them.
// It tracks a "fact table" of branch conditions. For each branching
// block, it asserts the branch conditions that uniquely dominate that
// block, and then separately asserts the block's branch condition and
// its negation. If either leads to a contradiction, it can trim that
// successor.
func prove(f *Func) {
ft := newFactsTable(f)
ft.checkpoint()
var lensVars map[*Block][]*Value
// Find length and capacity ops.
for _, b := range f.Blocks {
for _, v := range b.Values {
if v.Uses == 0 {
// We don't care about dead values.
// (There can be some that are CSEd but not removed yet.)
continue
}
switch v.Op {
case OpStringLen:
ft.update(b, v, ft.zero, signed, gt|eq)
case OpSliceLen:
if ft.lens == nil {
ft.lens = map[ID]*Value{}
}
ft.lens[v.Args[0].ID] = v
ft.update(b, v, ft.zero, signed, gt|eq)
if v.Args[0].Op == OpSliceMake {
if lensVars == nil {
lensVars = make(map[*Block][]*Value)
}
lensVars[b] = append(lensVars[b], v)
}
case OpSliceCap:
if ft.caps == nil {
ft.caps = map[ID]*Value{}
}
ft.caps[v.Args[0].ID] = v
ft.update(b, v, ft.zero, signed, gt|eq)
if v.Args[0].Op == OpSliceMake {
if lensVars == nil {
lensVars = make(map[*Block][]*Value)
}
lensVars[b] = append(lensVars[b], v)
}
}
}
}
// Find induction variables. Currently, findIndVars
// is limited to one induction variable per block.
var indVars map[*Block]indVar
for _, v := range findIndVar(f) {
if indVars == nil {
indVars = make(map[*Block]indVar)
}
indVars[v.entry] = v
}
// current node state
type walkState int
const (
descend walkState = iota
simplify
)
// work maintains the DFS stack.
type bp struct {
block *Block // current handled block
state walkState // what's to do
}
work := make([]bp, 0, 256)
work = append(work, bp{
block: f.Entry,
state: descend,
})
idom := f.Idom()
sdom := f.Sdom()
// DFS on the dominator tree.
//
// For efficiency, we consider only the dominator tree rather
// than the entire flow graph. On the way down, we consider
// incoming branches and accumulate conditions that uniquely
// dominate the current block. If we discover a contradiction,
// we can eliminate the entire block and all of its children.
// On the way back up, we consider outgoing branches that
// haven't already been considered. This way we consider each
// branch condition only once.
for len(work) > 0 {
node := work[len(work)-1]
work = work[:len(work)-1]
parent := idom[node.block.ID]
branch := getBranch(sdom, parent, node.block)
switch node.state {
case descend:
ft.checkpoint()
// Entering the block, add the block-depending facts that we collected
// at the beginning: induction variables and lens/caps of slices.
if iv, ok := indVars[node.block]; ok {
addIndVarRestrictions(ft, parent, iv)
}
if lens, ok := lensVars[node.block]; ok {
for _, v := range lens {
switch v.Op {
case OpSliceLen:
ft.update(node.block, v, v.Args[0].Args[1], signed, eq)
case OpSliceCap:
ft.update(node.block, v, v.Args[0].Args[2], signed, eq)
}
}
}
if branch != unknown {
addBranchRestrictions(ft, parent, branch)
if ft.unsat {
// node.block is unreachable.
// Remove it and don't visit
// its children.
removeBranch(parent, branch)
ft.restore()
break
}
// Otherwise, we can now commit to
// taking this branch. We'll restore
// ft when we unwind.
}
// Add inductive facts for phis in this block.
addLocalInductiveFacts(ft, node.block)
work = append(work, bp{
block: node.block,
state: simplify,
})
for s := sdom.Child(node.block); s != nil; s = sdom.Sibling(s) {
work = append(work, bp{
block: s,
state: descend,
})
}
case simplify:
simplifyBlock(sdom, ft, node.block)
ft.restore()
}
}
ft.restore()
// Return the posets to the free list
for _, po := range []*poset{ft.orderS, ft.orderU} {
// Make sure it's empty as it should be. A non-empty poset
// might cause errors and miscompilations if reused.
if checkEnabled {
if err := po.CheckEmpty(); err != nil {
f.Fatalf("prove poset not empty after function %s: %v", f.Name, err)
}
}
f.retPoset(po)
}
}
// getBranch returns the range restrictions added by p
// when reaching b. p is the immediate dominator of b.
func getBranch(sdom SparseTree, p *Block, b *Block) branch {
if p == nil || p.Kind != BlockIf {
return unknown
}
// If p and p.Succs[0] are dominators it means that every path
// from entry to b passes through p and p.Succs[0]. We care that
// no path from entry to b passes through p.Succs[1]. If p.Succs[0]
// has one predecessor then (apart from the degenerate case),
// there is no path from entry that can reach b through p.Succs[1].
// TODO: how about p->yes->b->yes, i.e. a loop in yes.
if sdom.IsAncestorEq(p.Succs[0].b, b) && len(p.Succs[0].b.Preds) == 1 {
return positive
}
if sdom.IsAncestorEq(p.Succs[1].b, b) && len(p.Succs[1].b.Preds) == 1 {
return negative
}
return unknown
}
// addIndVarRestrictions updates the factsTables ft with the facts
// learned from the induction variable indVar which drives the loop
// starting in Block b.
func addIndVarRestrictions(ft *factsTable, b *Block, iv indVar) {
d := signed
if ft.isNonNegative(iv.min) && ft.isNonNegative(iv.max) {
d |= unsigned
}
if iv.flags&indVarMinExc == 0 {
addRestrictions(b, ft, d, iv.min, iv.ind, lt|eq)
} else {
addRestrictions(b, ft, d, iv.min, iv.ind, lt)
}
if iv.flags&indVarMaxInc == 0 {
addRestrictions(b, ft, d, iv.ind, iv.max, lt)
} else {
addRestrictions(b, ft, d, iv.ind, iv.max, lt|eq)
}
}
// addBranchRestrictions updates the factsTables ft with the facts learned when
// branching from Block b in direction br.
func addBranchRestrictions(ft *factsTable, b *Block, br branch) {
c := b.Controls[0]
switch br {
case negative:
addRestrictions(b, ft, boolean, nil, c, eq)
case positive:
addRestrictions(b, ft, boolean, nil, c, lt|gt)
default:
panic("unknown branch")
}
if tr, has := domainRelationTable[c.Op]; has {
// When we branched from parent we learned a new set of
// restrictions. Update the factsTable accordingly.
d := tr.d
if d == signed && ft.isNonNegative(c.Args[0]) && ft.isNonNegative(c.Args[1]) {
d |= unsigned
}
switch c.Op {
case OpIsInBounds, OpIsSliceInBounds:
// 0 <= a0 < a1 (or 0 <= a0 <= a1)
//
// On the positive branch, we learn:
// signed: 0 <= a0 < a1 (or 0 <= a0 <= a1)
// unsigned: a0 < a1 (or a0 <= a1)
//
// On the negative branch, we learn (0 > a0 ||
// a0 >= a1). In the unsigned domain, this is
// simply a0 >= a1 (which is the reverse of the
// positive branch, so nothing surprising).
// But in the signed domain, we can't express the ||
// condition, so check if a0 is non-negative instead,
// to be able to learn something.
switch br {
case negative:
d = unsigned
if ft.isNonNegative(c.Args[0]) {
d |= signed
}
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
case positive:
addRestrictions(b, ft, signed, ft.zero, c.Args[0], lt|eq)
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
}
default:
switch br {
case negative:
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r^(lt|gt|eq))
case positive:
addRestrictions(b, ft, d, c.Args[0], c.Args[1], tr.r)
}
}
}
}
// addRestrictions updates restrictions from the immediate
// dominating block (p) using r.
func addRestrictions(parent *Block, ft *factsTable, t domain, v, w *Value, r relation) {
if t == 0 {
// Trivial case: nothing to do.
// Shoult not happen, but just in case.
return
}
for i := domain(1); i <= t; i <<= 1 {
if t&i == 0 {
continue
}
ft.update(parent, v, w, i, r)
}
}
// addLocalInductiveFacts adds inductive facts when visiting b, where
// b is a join point in a loop. In contrast with findIndVar, this
// depends on facts established for b, which is why it happens when
// visiting b. addLocalInductiveFacts specifically targets the pattern
// created by OFORUNTIL, which isn't detected by findIndVar.
//
// TODO: It would be nice to combine this with findIndVar.
func addLocalInductiveFacts(ft *factsTable, b *Block) {
// This looks for a specific pattern of induction:
//
// 1. i1 = OpPhi(min, i2) in b
// 2. i2 = i1 + 1
// 3. i2 < max at exit from b.Preds[1]
// 4. min < max
//
// If all of these conditions are true, then i1 < max and i1 >= min.
// To ensure this is a loop header node.
if len(b.Preds) != 2 {
return
}
for _, i1 := range b.Values {
if i1.Op != OpPhi {
continue
}
// Check for conditions 1 and 2. This is easy to do
// and will throw out most phis.
min, i2 := i1.Args[0], i1.Args[1]
if i1q, delta := isConstDelta(i2); i1q != i1 || delta != 1 {
continue
}
// Try to prove condition 3. We can't just query the
// fact table for this because we don't know what the
// facts of b.Preds[1] are (in general, b.Preds[1] is
// a loop-back edge, so we haven't even been there
// yet). As a conservative approximation, we look for
// this condition in the predecessor chain until we
// hit a join point.
uniquePred := func(b *Block) *Block {
if len(b.Preds) == 1 {
return b.Preds[0].b
}
return nil
}
pred, child := b.Preds[1].b, b
for ; pred != nil; pred, child = uniquePred(pred), pred {
if pred.Kind != BlockIf {
continue
}
control := pred.Controls[0]
br := unknown
if pred.Succs[0].b == child {
br = positive
}
if pred.Succs[1].b == child {
if br != unknown {
continue
}
br = negative
}
if br == unknown {
continue
}
tr, has := domainRelationTable[control.Op]
if !has {
continue
}
r := tr.r
if br == negative {
// Negative branch taken to reach b.
// Complement the relations.
r = (lt | eq | gt) ^ r
}
// Check for i2 < max or max > i2.
var max *Value
if r == lt && control.Args[0] == i2 {
max = control.Args[1]
} else if r == gt && control.Args[1] == i2 {
max = control.Args[0]
} else {
continue
}
// Check condition 4 now that we have a
// candidate max. For this we can query the
// fact table. We "prove" min < max by showing
// that min >= max is unsat. (This may simply
// compare two constants; that's fine.)
ft.checkpoint()
ft.update(b, min, max, tr.d, gt|eq)
proved := ft.unsat
ft.restore()
if proved {
// We know that min <= i1 < max.
if b.Func.pass.debug > 0 {
printIndVar(b, i1, min, max, 1, 0)
}
ft.update(b, min, i1, tr.d, lt|eq)
ft.update(b, i1, max, tr.d, lt)
}
}
}
}
var ctzNonZeroOp = map[Op]Op{OpCtz8: OpCtz8NonZero, OpCtz16: OpCtz16NonZero, OpCtz32: OpCtz32NonZero, OpCtz64: OpCtz64NonZero}
var mostNegativeDividend = map[Op]int64{
OpDiv16: -1 << 15,
OpMod16: -1 << 15,
OpDiv32: -1 << 31,
OpMod32: -1 << 31,
OpDiv64: -1 << 63,
OpMod64: -1 << 63}
// simplifyBlock simplifies some constant values in b and evaluates
// branches to non-uniquely dominated successors of b.
func simplifyBlock(sdom SparseTree, ft *factsTable, b *Block) {
for _, v := range b.Values {
switch v.Op {
case OpSlicemask:
// Replace OpSlicemask operations in b with constants where possible.
x, delta := isConstDelta(v.Args[0])
if x == nil {
continue
}
// slicemask(x + y)
// if x is larger than -y (y is negative), then slicemask is -1.
lim, ok := ft.limits[x.ID]
if !ok {
continue
}
if lim.umin > uint64(-delta) {
if v.Args[0].Op == OpAdd64 {
v.reset(OpConst64)
} else {
v.reset(OpConst32)
}
if b.Func.pass.debug > 0 {
b.Func.Warnl(v.Pos, "Proved slicemask not needed")
}
v.AuxInt = -1
}
case OpCtz8, OpCtz16, OpCtz32, OpCtz64:
// On some architectures, notably amd64, we can generate much better
// code for CtzNN if we know that the argument is non-zero.
// Capture that information here for use in arch-specific optimizations.
x := v.Args[0]
lim, ok := ft.limits[x.ID]
if !ok {
continue
}
if lim.umin > 0 || lim.min > 0 || lim.max < 0 {
if b.Func.pass.debug > 0 {
b.Func.Warnl(v.Pos, "Proved %v non-zero", v.Op)
}
v.Op = ctzNonZeroOp[v.Op]
}
case OpRsh8x8, OpRsh8x16, OpRsh8x32, OpRsh8x64,
OpRsh16x8, OpRsh16x16, OpRsh16x32, OpRsh16x64,
OpRsh32x8, OpRsh32x16, OpRsh32x32, OpRsh32x64,
OpRsh64x8, OpRsh64x16, OpRsh64x32, OpRsh64x64:
// Check whether, for a >> b, we know that a is non-negative
// and b is all of a's bits except the MSB. If so, a is shifted to zero.
bits := 8 * v.Type.Size()
if v.Args[1].isGenericIntConst() && v.Args[1].AuxInt >= bits-1 && ft.isNonNegative(v.Args[0]) {
if b.Func.pass.debug > 0 {
b.Func.Warnl(v.Pos, "Proved %v shifts to zero", v.Op)
}
switch bits {
case 64:
v.reset(OpConst64)
case 32:
v.reset(OpConst32)
case 16:
v.reset(OpConst16)
case 8:
v.reset(OpConst8)
default:
panic("unexpected integer size")
}
v.AuxInt = 0
continue // Be sure not to fallthrough - this is no longer OpRsh.
}
// If the Rsh hasn't been replaced with 0, still check if it is bounded.
fallthrough
case OpLsh8x8, OpLsh8x16, OpLsh8x32, OpLsh8x64,
OpLsh16x8, OpLsh16x16, OpLsh16x32, OpLsh16x64,
OpLsh32x8, OpLsh32x16, OpLsh32x32, OpLsh32x64,
OpLsh64x8, OpLsh64x16, OpLsh64x32, OpLsh64x64,
OpRsh8Ux8, OpRsh8Ux16, OpRsh8Ux32, OpRsh8Ux64,
OpRsh16Ux8, OpRsh16Ux16, OpRsh16Ux32, OpRsh16Ux64,
OpRsh32Ux8, OpRsh32Ux16, OpRsh32Ux32, OpRsh32Ux64,
OpRsh64Ux8, OpRsh64Ux16, OpRsh64Ux32, OpRsh64Ux64:
// Check whether, for a << b, we know that b
// is strictly less than the number of bits in a.
by := v.Args[1]
lim, ok := ft.limits[by.ID]
if !ok {
continue
}
bits := 8 * v.Args[0].Type.Size()
if lim.umax < uint64(bits) || (lim.max < bits && ft.isNonNegative(by)) {
v.AuxInt = 1 // see shiftIsBounded
if b.Func.pass.debug > 0 {
b.Func.Warnl(v.Pos, "Proved %v bounded", v.Op)
}
}
case OpDiv16, OpDiv32, OpDiv64, OpMod16, OpMod32, OpMod64:
// On amd64 and 386 fix-up code can be avoided if we know
// the divisor is not -1 or the dividend > MinIntNN.
// Don't modify AuxInt on other architectures,
// as that can interfere with CSE.
// TODO: add other architectures?
if b.Func.Config.arch != "386" && b.Func.Config.arch != "amd64" {
break
}
divr := v.Args[1]
divrLim, divrLimok := ft.limits[divr.ID]
divd := v.Args[0]
divdLim, divdLimok := ft.limits[divd.ID]
if (divrLimok && (divrLim.max < -1 || divrLim.min > -1)) ||
(divdLimok && divdLim.min > mostNegativeDividend[v.Op]) {
// See DivisionNeedsFixUp in rewrite.go.
// v.AuxInt = 1 means we have proved both that the divisor is not -1
// and that the dividend is not the most negative integer,
// so we do not need to add fix-up code.
v.AuxInt = 1
if b.Func.pass.debug > 0 {
b.Func.Warnl(v.Pos, "Proved %v does not need fix-up", v.Op)
}
}
}
}
if b.Kind != BlockIf {
return
}
// Consider outgoing edges from this block.
parent := b
for i, branch := range [...]branch{positive, negative} {
child := parent.Succs[i].b
if getBranch(sdom, parent, child) != unknown {
// For edges to uniquely dominated blocks, we
// already did this when we visited the child.
continue
}
// For edges to other blocks, this can trim a branch
// even if we couldn't get rid of the child itself.
ft.checkpoint()
addBranchRestrictions(ft, parent, branch)
unsat := ft.unsat
ft.restore()
if unsat {
// This branch is impossible, so remove it
// from the block.
removeBranch(parent, branch)
// No point in considering the other branch.
// (It *is* possible for both to be
// unsatisfiable since the fact table is
// incomplete. We could turn this into a
// BlockExit, but it doesn't seem worth it.)
break
}
}
}
func removeBranch(b *Block, branch branch) {
c := b.Controls[0]
if b.Func.pass.debug > 0 {
verb := "Proved"
if branch == positive {
verb = "Disproved"
}
if b.Func.pass.debug > 1 {
b.Func.Warnl(b.Pos, "%s %s (%s)", verb, c.Op, c)
} else {
b.Func.Warnl(b.Pos, "%s %s", verb, c.Op)
}
}
if c != nil && c.Pos.IsStmt() == src.PosIsStmt && c.Pos.SameFileAndLine(b.Pos) {
// attempt to preserve statement marker.
b.Pos = b.Pos.WithIsStmt()
}
b.Kind = BlockFirst
b.ResetControls()
if branch == positive {
b.swapSuccessors()
}
}
// isNonNegative reports whether v is known to be greater or equal to zero.
func isNonNegative(v *Value) bool {
if !v.Type.IsInteger() {
v.Fatalf("isNonNegative bad type: %v", v.Type)
}
// TODO: return true if !v.Type.IsSigned()
// SSA isn't type-safe enough to do that now (issue 37753).
// The checks below depend only on the pattern of bits.
switch v.Op {
case OpConst64:
return v.AuxInt >= 0
case OpConst32:
return int32(v.AuxInt) >= 0
case OpConst16:
return int16(v.AuxInt) >= 0
case OpConst8:
return int8(v.AuxInt) >= 0
case OpStringLen, OpSliceLen, OpSliceCap,
OpZeroExt8to64, OpZeroExt16to64, OpZeroExt32to64,
OpZeroExt8to32, OpZeroExt16to32, OpZeroExt8to16,
OpCtz64, OpCtz32, OpCtz16, OpCtz8:
return true
case OpRsh64Ux64, OpRsh32Ux64:
by := v.Args[1]
return by.Op == OpConst64 && by.AuxInt > 0
case OpRsh64x64, OpRsh32x64, OpRsh8x64, OpRsh16x64, OpRsh32x32, OpRsh64x32,
OpSignExt32to64, OpSignExt16to64, OpSignExt8to64, OpSignExt16to32, OpSignExt8to32:
return isNonNegative(v.Args[0])
case OpAnd64, OpAnd32, OpAnd16, OpAnd8:
return isNonNegative(v.Args[0]) || isNonNegative(v.Args[1])
case OpMod64, OpMod32, OpMod16, OpMod8,
OpDiv64, OpDiv32, OpDiv16, OpDiv8,
OpOr64, OpOr32, OpOr16, OpOr8,
OpXor64, OpXor32, OpXor16, OpXor8:
return isNonNegative(v.Args[0]) && isNonNegative(v.Args[1])
// We could handle OpPhi here, but the improvements from doing
// so are very minor, and it is neither simple nor cheap.
}
return false
}
// isConstDelta returns non-nil if v is equivalent to w+delta (signed).
func isConstDelta(v *Value) (w *Value, delta int64) {
cop := OpConst64
switch v.Op {
case OpAdd32, OpSub32:
cop = OpConst32
}
switch v.Op {
case OpAdd64, OpAdd32:
if v.Args[0].Op == cop {
return v.Args[1], v.Args[0].AuxInt
}
if v.Args[1].Op == cop {
return v.Args[0], v.Args[1].AuxInt
}
case OpSub64, OpSub32:
if v.Args[1].Op == cop {
aux := v.Args[1].AuxInt
if aux != -aux { // Overflow; too bad
return v.Args[0], -aux
}
}
}
return nil, 0
}
// isCleanExt reports whether v is the result of a value-preserving
// sign or zero extension
func isCleanExt(v *Value) bool {
switch v.Op {
case OpSignExt8to16, OpSignExt8to32, OpSignExt8to64,
OpSignExt16to32, OpSignExt16to64, OpSignExt32to64:
// signed -> signed is the only value-preserving sign extension
return v.Args[0].Type.IsSigned() && v.Type.IsSigned()
case OpZeroExt8to16, OpZeroExt8to32, OpZeroExt8to64,
OpZeroExt16to32, OpZeroExt16to64, OpZeroExt32to64:
// unsigned -> signed/unsigned are value-preserving zero extensions
return !v.Args[0].Type.IsSigned()
}
return false
}
|