1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "fmt"
const (
rankLeaf rbrank = 1
rankZero rbrank = 0
)
type rbrank int8
// RBTint32 is a red-black tree with data stored at internal nodes,
// following Tarjan, Data Structures and Network Algorithms,
// pp 48-52, using explicit rank instead of red and black.
// Deletion is not yet implemented because it is not yet needed.
// Extra operations glb, lub, glbEq, lubEq are provided for
// use in sparse lookup algorithms.
type RBTint32 struct {
root *node32
// An extra-clever implementation will have special cases
// for small sets, but we are not extra-clever today.
}
func (t *RBTint32) String() string {
if t.root == nil {
return "[]"
}
return "[" + t.root.String() + "]"
}
func (t *node32) String() string {
s := ""
if t.left != nil {
s = t.left.String() + " "
}
s = s + fmt.Sprintf("k=%d,d=%v", t.key, t.data)
if t.right != nil {
s = s + " " + t.right.String()
}
return s
}
type node32 struct {
// Standard conventions hold for left = smaller, right = larger
left, right, parent *node32
data interface{}
key int32
rank rbrank // From Tarjan pp 48-49:
// If x is a node with a parent, then x.rank <= x.parent.rank <= x.rank+1.
// If x is a node with a grandparent, then x.rank < x.parent.parent.rank.
// If x is an "external [null] node", then x.rank = 0 && x.parent.rank = 1.
// Any node with one or more null children should have rank = 1.
}
// makeNode returns a new leaf node with the given key and nil data.
func (t *RBTint32) makeNode(key int32) *node32 {
return &node32{key: key, rank: rankLeaf}
}
// IsEmpty reports whether t is empty.
func (t *RBTint32) IsEmpty() bool {
return t.root == nil
}
// IsSingle reports whether t is a singleton (leaf).
func (t *RBTint32) IsSingle() bool {
return t.root != nil && t.root.isLeaf()
}
// VisitInOrder applies f to the key and data pairs in t,
// with keys ordered from smallest to largest.
func (t *RBTint32) VisitInOrder(f func(int32, interface{})) {
if t.root == nil {
return
}
t.root.visitInOrder(f)
}
func (n *node32) Data() interface{} {
if n == nil {
return nil
}
return n.data
}
func (n *node32) keyAndData() (k int32, d interface{}) {
if n == nil {
k = 0
d = nil
} else {
k = n.key
d = n.data
}
return
}
func (n *node32) Rank() rbrank {
if n == nil {
return 0
}
return n.rank
}
// Find returns the data associated with key in the tree, or
// nil if key is not in the tree.
func (t *RBTint32) Find(key int32) interface{} {
return t.root.find(key).Data()
}
// Insert adds key to the tree and associates key with data.
// If key was already in the tree, it updates the associated data.
// Insert returns the previous data associated with key,
// or nil if key was not present.
// Insert panics if data is nil.
func (t *RBTint32) Insert(key int32, data interface{}) interface{} {
if data == nil {
panic("Cannot insert nil data into tree")
}
n := t.root
var newroot *node32
if n == nil {
n = t.makeNode(key)
newroot = n
} else {
newroot, n = n.insert(key, t)
}
r := n.data
n.data = data
t.root = newroot
return r
}
// Min returns the minimum element of t and its associated data.
// If t is empty, then (0, nil) is returned.
func (t *RBTint32) Min() (k int32, d interface{}) {
return t.root.min().keyAndData()
}
// Max returns the maximum element of t and its associated data.
// If t is empty, then (0, nil) is returned.
func (t *RBTint32) Max() (k int32, d interface{}) {
return t.root.max().keyAndData()
}
// Glb returns the greatest-lower-bound-exclusive of x and its associated
// data. If x has no glb in the tree, then (0, nil) is returned.
func (t *RBTint32) Glb(x int32) (k int32, d interface{}) {
return t.root.glb(x, false).keyAndData()
}
// GlbEq returns the greatest-lower-bound-inclusive of x and its associated
// data. If x has no glbEQ in the tree, then (0, nil) is returned.
func (t *RBTint32) GlbEq(x int32) (k int32, d interface{}) {
return t.root.glb(x, true).keyAndData()
}
// Lub returns the least-upper-bound-exclusive of x and its associated
// data. If x has no lub in the tree, then (0, nil) is returned.
func (t *RBTint32) Lub(x int32) (k int32, d interface{}) {
return t.root.lub(x, false).keyAndData()
}
// LubEq returns the least-upper-bound-inclusive of x and its associated
// data. If x has no lubEq in the tree, then (0, nil) is returned.
func (t *RBTint32) LubEq(x int32) (k int32, d interface{}) {
return t.root.lub(x, true).keyAndData()
}
func (t *node32) isLeaf() bool {
return t.left == nil && t.right == nil
}
func (t *node32) visitInOrder(f func(int32, interface{})) {
if t.left != nil {
t.left.visitInOrder(f)
}
f(t.key, t.data)
if t.right != nil {
t.right.visitInOrder(f)
}
}
func (t *node32) maxChildRank() rbrank {
if t.left == nil {
if t.right == nil {
return rankZero
}
return t.right.rank
}
if t.right == nil {
return t.left.rank
}
if t.right.rank > t.left.rank {
return t.right.rank
}
return t.left.rank
}
func (t *node32) minChildRank() rbrank {
if t.left == nil || t.right == nil {
return rankZero
}
if t.right.rank < t.left.rank {
return t.right.rank
}
return t.left.rank
}
func (t *node32) find(key int32) *node32 {
for t != nil {
if key < t.key {
t = t.left
} else if key > t.key {
t = t.right
} else {
return t
}
}
return nil
}
func (t *node32) min() *node32 {
if t == nil {
return t
}
for t.left != nil {
t = t.left
}
return t
}
func (t *node32) max() *node32 {
if t == nil {
return t
}
for t.right != nil {
t = t.right
}
return t
}
func (t *node32) glb(key int32, allow_eq bool) *node32 {
var best *node32
for t != nil {
if key <= t.key {
if key == t.key && allow_eq {
return t
}
// t is too big, glb is to left.
t = t.left
} else {
// t is a lower bound, record it and seek a better one.
best = t
t = t.right
}
}
return best
}
func (t *node32) lub(key int32, allow_eq bool) *node32 {
var best *node32
for t != nil {
if key >= t.key {
if key == t.key && allow_eq {
return t
}
// t is too small, lub is to right.
t = t.right
} else {
// t is a upper bound, record it and seek a better one.
best = t
t = t.left
}
}
return best
}
func (t *node32) insert(x int32, w *RBTint32) (newroot, newnode *node32) {
// defaults
newroot = t
newnode = t
if x == t.key {
return
}
if x < t.key {
if t.left == nil {
n := w.makeNode(x)
n.parent = t
t.left = n
newnode = n
return
}
var new_l *node32
new_l, newnode = t.left.insert(x, w)
t.left = new_l
new_l.parent = t
newrank := 1 + new_l.maxChildRank()
if newrank > t.rank {
if newrank > 1+t.right.Rank() { // rotations required
if new_l.left.Rank() < new_l.right.Rank() {
// double rotation
t.left = new_l.rightToRoot()
}
newroot = t.leftToRoot()
return
} else {
t.rank = newrank
}
}
} else { // x > t.key
if t.right == nil {
n := w.makeNode(x)
n.parent = t
t.right = n
newnode = n
return
}
var new_r *node32
new_r, newnode = t.right.insert(x, w)
t.right = new_r
new_r.parent = t
newrank := 1 + new_r.maxChildRank()
if newrank > t.rank {
if newrank > 1+t.left.Rank() { // rotations required
if new_r.right.Rank() < new_r.left.Rank() {
// double rotation
t.right = new_r.leftToRoot()
}
newroot = t.rightToRoot()
return
} else {
t.rank = newrank
}
}
}
return
}
func (t *node32) rightToRoot() *node32 {
// this
// left right
// rl rr
//
// becomes
//
// right
// this rr
// left rl
//
right := t.right
rl := right.left
right.parent = t.parent
right.left = t
t.parent = right
// parent's child ptr fixed in caller
t.right = rl
if rl != nil {
rl.parent = t
}
return right
}
func (t *node32) leftToRoot() *node32 {
// this
// left right
// ll lr
//
// becomes
//
// left
// ll this
// lr right
//
left := t.left
lr := left.right
left.parent = t.parent
left.right = t
t.parent = left
// parent's child ptr fixed in caller
t.left = lr
if lr != nil {
lr.parent = t
}
return left
}
// next returns the successor of t in a left-to-right
// walk of the tree in which t is embedded.
func (t *node32) next() *node32 {
// If there is a right child, it is to the right
r := t.right
if r != nil {
return r.min()
}
// if t is p.left, then p, else repeat.
p := t.parent
for p != nil {
if p.left == t {
return p
}
t = p
p = t.parent
}
return nil
}
// prev returns the predecessor of t in a left-to-right
// walk of the tree in which t is embedded.
func (t *node32) prev() *node32 {
// If there is a left child, it is to the left
l := t.left
if l != nil {
return l.max()
}
// if t is p.right, then p, else repeat.
p := t.parent
for p != nil {
if p.right == t {
return p
}
t = p
p = t.parent
}
return nil
}
|