1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lzw implements the Lempel-Ziv-Welch compressed data format,
// described in T. A. Welch, ``A Technique for High-Performance Data
// Compression'', Computer, 17(6) (June 1984), pp 8-19.
//
// In particular, it implements LZW as used by the GIF and PDF file
// formats, which means variable-width codes up to 12 bits and the first
// two non-literal codes are a clear code and an EOF code.
//
// The TIFF file format uses a similar but incompatible version of the LZW
// algorithm. See the golang.org/x/image/tiff/lzw package for an
// implementation.
package lzw
// TODO(nigeltao): check that PDF uses LZW in the same way as GIF,
// modulo LSB/MSB packing order.
import (
"bufio"
"errors"
"fmt"
"io"
)
// Order specifies the bit ordering in an LZW data stream.
type Order int
const (
// LSB means Least Significant Bits first, as used in the GIF file format.
LSB Order = iota
// MSB means Most Significant Bits first, as used in the TIFF and PDF
// file formats.
MSB
)
const (
maxWidth = 12
decoderInvalidCode = 0xffff
flushBuffer = 1 << maxWidth
)
// decoder is the state from which the readXxx method converts a byte
// stream into a code stream.
type decoder struct {
r io.ByteReader
bits uint32
nBits uint
width uint
read func(*decoder) (uint16, error) // readLSB or readMSB
litWidth int // width in bits of literal codes
err error
// The first 1<<litWidth codes are literal codes.
// The next two codes mean clear and EOF.
// Other valid codes are in the range [lo, hi] where lo := clear + 2,
// with the upper bound incrementing on each code seen.
//
// overflow is the code at which hi overflows the code width. It always
// equals 1 << width.
//
// last is the most recently seen code, or decoderInvalidCode.
//
// An invariant is that hi < overflow.
clear, eof, hi, overflow, last uint16
// Each code c in [lo, hi] expands to two or more bytes. For c != hi:
// suffix[c] is the last of these bytes.
// prefix[c] is the code for all but the last byte.
// This code can either be a literal code or another code in [lo, c).
// The c == hi case is a special case.
suffix [1 << maxWidth]uint8
prefix [1 << maxWidth]uint16
// output is the temporary output buffer.
// Literal codes are accumulated from the start of the buffer.
// Non-literal codes decode to a sequence of suffixes that are first
// written right-to-left from the end of the buffer before being copied
// to the start of the buffer.
// It is flushed when it contains >= 1<<maxWidth bytes,
// so that there is always room to decode an entire code.
output [2 * 1 << maxWidth]byte
o int // write index into output
toRead []byte // bytes to return from Read
}
// readLSB returns the next code for "Least Significant Bits first" data.
func (d *decoder) readLSB() (uint16, error) {
for d.nBits < d.width {
x, err := d.r.ReadByte()
if err != nil {
return 0, err
}
d.bits |= uint32(x) << d.nBits
d.nBits += 8
}
code := uint16(d.bits & (1<<d.width - 1))
d.bits >>= d.width
d.nBits -= d.width
return code, nil
}
// readMSB returns the next code for "Most Significant Bits first" data.
func (d *decoder) readMSB() (uint16, error) {
for d.nBits < d.width {
x, err := d.r.ReadByte()
if err != nil {
return 0, err
}
d.bits |= uint32(x) << (24 - d.nBits)
d.nBits += 8
}
code := uint16(d.bits >> (32 - d.width))
d.bits <<= d.width
d.nBits -= d.width
return code, nil
}
func (d *decoder) Read(b []byte) (int, error) {
for {
if len(d.toRead) > 0 {
n := copy(b, d.toRead)
d.toRead = d.toRead[n:]
return n, nil
}
if d.err != nil {
return 0, d.err
}
d.decode()
}
}
// decode decompresses bytes from r and leaves them in d.toRead.
// read specifies how to decode bytes into codes.
// litWidth is the width in bits of literal codes.
func (d *decoder) decode() {
// Loop over the code stream, converting codes into decompressed bytes.
loop:
for {
code, err := d.read(d)
if err != nil {
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
d.err = err
break
}
switch {
case code < d.clear:
// We have a literal code.
d.output[d.o] = uint8(code)
d.o++
if d.last != decoderInvalidCode {
// Save what the hi code expands to.
d.suffix[d.hi] = uint8(code)
d.prefix[d.hi] = d.last
}
case code == d.clear:
d.width = 1 + uint(d.litWidth)
d.hi = d.eof
d.overflow = 1 << d.width
d.last = decoderInvalidCode
continue
case code == d.eof:
d.err = io.EOF
break loop
case code <= d.hi:
c, i := code, len(d.output)-1
if code == d.hi && d.last != decoderInvalidCode {
// code == hi is a special case which expands to the last expansion
// followed by the head of the last expansion. To find the head, we walk
// the prefix chain until we find a literal code.
c = d.last
for c >= d.clear {
c = d.prefix[c]
}
d.output[i] = uint8(c)
i--
c = d.last
}
// Copy the suffix chain into output and then write that to w.
for c >= d.clear {
d.output[i] = d.suffix[c]
i--
c = d.prefix[c]
}
d.output[i] = uint8(c)
d.o += copy(d.output[d.o:], d.output[i:])
if d.last != decoderInvalidCode {
// Save what the hi code expands to.
d.suffix[d.hi] = uint8(c)
d.prefix[d.hi] = d.last
}
default:
d.err = errors.New("lzw: invalid code")
break loop
}
d.last, d.hi = code, d.hi+1
if d.hi >= d.overflow {
if d.hi > d.overflow {
panic("unreachable")
}
if d.width == maxWidth {
d.last = decoderInvalidCode
// Undo the d.hi++ a few lines above, so that (1) we maintain
// the invariant that d.hi < d.overflow, and (2) d.hi does not
// eventually overflow a uint16.
d.hi--
} else {
d.width++
d.overflow = 1 << d.width
}
}
if d.o >= flushBuffer {
break
}
}
// Flush pending output.
d.toRead = d.output[:d.o]
d.o = 0
}
var errClosed = errors.New("lzw: reader/writer is closed")
func (d *decoder) Close() error {
d.err = errClosed // in case any Reads come along
return nil
}
// NewReader creates a new io.ReadCloser.
// Reads from the returned io.ReadCloser read and decompress data from r.
// If r does not also implement io.ByteReader,
// the decompressor may read more data than necessary from r.
// It is the caller's responsibility to call Close on the ReadCloser when
// finished reading.
// The number of bits to use for literal codes, litWidth, must be in the
// range [2,8] and is typically 8. It must equal the litWidth
// used during compression.
func NewReader(r io.Reader, order Order, litWidth int) io.ReadCloser {
d := new(decoder)
switch order {
case LSB:
d.read = (*decoder).readLSB
case MSB:
d.read = (*decoder).readMSB
default:
d.err = errors.New("lzw: unknown order")
return d
}
if litWidth < 2 || 8 < litWidth {
d.err = fmt.Errorf("lzw: litWidth %d out of range", litWidth)
return d
}
if br, ok := r.(io.ByteReader); ok {
d.r = br
} else {
d.r = bufio.NewReader(r)
}
d.litWidth = litWidth
d.width = 1 + uint(litWidth)
d.clear = uint16(1) << uint(litWidth)
d.eof, d.hi = d.clear+1, d.clear+1
d.overflow = uint16(1) << d.width
d.last = decoderInvalidCode
return d
}
|