1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
|
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package constraint implements parsing and evaluation of build constraint lines.
// See https://golang.org/cmd/go/#hdr-Build_constraints for documentation about build constraints themselves.
//
// This package parses both the original “// +build” syntax and the “//go:build” syntax that will be added in Go 1.17.
// The parser is being included in Go 1.16 to allow tools that need to process Go 1.17 source code
// to still be built against the Go 1.16 release.
// See https://golang.org/design/draft-gobuild for details about the “//go:build” syntax.
package constraint
import (
"errors"
"strings"
"unicode"
"unicode/utf8"
)
// An Expr is a build tag constraint expression.
// The underlying concrete type is *AndExpr, *OrExpr, *NotExpr, or *TagExpr.
type Expr interface {
// String returns the string form of the expression,
// using the boolean syntax used in //go:build lines.
String() string
// Eval reports whether the expression evaluates to true.
// It calls ok(tag) as needed to find out whether a given build tag
// is satisfied by the current build configuration.
Eval(ok func(tag string) bool) bool
// The presence of an isExpr method explicitly marks the type as an Expr.
// Only implementations in this package should be used as Exprs.
isExpr()
}
// A TagExpr is an Expr for the single tag Tag.
type TagExpr struct {
Tag string // for example, “linux” or “cgo”
}
func (x *TagExpr) isExpr() {}
func (x *TagExpr) Eval(ok func(tag string) bool) bool {
return ok(x.Tag)
}
func (x *TagExpr) String() string {
return x.Tag
}
func tag(tag string) Expr { return &TagExpr{tag} }
// A NotExpr represents the expression !X (the negation of X).
type NotExpr struct {
X Expr
}
func (x *NotExpr) isExpr() {}
func (x *NotExpr) Eval(ok func(tag string) bool) bool {
return !x.X.Eval(ok)
}
func (x *NotExpr) String() string {
s := x.X.String()
switch x.X.(type) {
case *AndExpr, *OrExpr:
s = "(" + s + ")"
}
return "!" + s
}
func not(x Expr) Expr { return &NotExpr{x} }
// An AndExpr represents the expression X && Y.
type AndExpr struct {
X, Y Expr
}
func (x *AndExpr) isExpr() {}
func (x *AndExpr) Eval(ok func(tag string) bool) bool {
// Note: Eval both, to make sure ok func observes all tags.
xok := x.X.Eval(ok)
yok := x.Y.Eval(ok)
return xok && yok
}
func (x *AndExpr) String() string {
return andArg(x.X) + " && " + andArg(x.Y)
}
func andArg(x Expr) string {
s := x.String()
if _, ok := x.(*OrExpr); ok {
s = "(" + s + ")"
}
return s
}
func and(x, y Expr) Expr {
return &AndExpr{x, y}
}
// An OrExpr represents the expression X || Y.
type OrExpr struct {
X, Y Expr
}
func (x *OrExpr) isExpr() {}
func (x *OrExpr) Eval(ok func(tag string) bool) bool {
// Note: Eval both, to make sure ok func observes all tags.
xok := x.X.Eval(ok)
yok := x.Y.Eval(ok)
return xok || yok
}
func (x *OrExpr) String() string {
return orArg(x.X) + " || " + orArg(x.Y)
}
func orArg(x Expr) string {
s := x.String()
if _, ok := x.(*AndExpr); ok {
s = "(" + s + ")"
}
return s
}
func or(x, y Expr) Expr {
return &OrExpr{x, y}
}
// A SyntaxError reports a syntax error in a parsed build expression.
type SyntaxError struct {
Offset int // byte offset in input where error was detected
Err string // description of error
}
func (e *SyntaxError) Error() string {
return e.Err
}
var errNotConstraint = errors.New("not a build constraint")
// Parse parses a single build constraint line of the form “//go:build ...” or “// +build ...”
// and returns the corresponding boolean expression.
func Parse(line string) (Expr, error) {
if text, ok := splitGoBuild(line); ok {
return parseExpr(text)
}
if text, ok := splitPlusBuild(line); ok {
return parsePlusBuildExpr(text), nil
}
return nil, errNotConstraint
}
// IsGoBuild reports whether the line of text is a “//go:build” constraint.
// It only checks the prefix of the text, not that the expression itself parses.
func IsGoBuild(line string) bool {
_, ok := splitGoBuild(line)
return ok
}
// splitGoBuild splits apart the leading //go:build prefix in line from the build expression itself.
// It returns "", false if the input is not a //go:build line or if the input contains multiple lines.
func splitGoBuild(line string) (expr string, ok bool) {
// A single trailing newline is OK; otherwise multiple lines are not.
if len(line) > 0 && line[len(line)-1] == '\n' {
line = line[:len(line)-1]
}
if strings.Contains(line, "\n") {
return "", false
}
if !strings.HasPrefix(line, "//go:build") {
return "", false
}
line = strings.TrimSpace(line)
line = line[len("//go:build"):]
// If strings.TrimSpace finds more to trim after removing the //go:build prefix,
// it means that the prefix was followed by a space, making this a //go:build line
// (as opposed to a //go:buildsomethingelse line).
// If line is empty, we had "//go:build" by itself, which also counts.
trim := strings.TrimSpace(line)
if len(line) == len(trim) && line != "" {
return "", false
}
return trim, true
}
// An exprParser holds state for parsing a build expression.
type exprParser struct {
s string // input string
i int // next read location in s
tok string // last token read
isTag bool
pos int // position (start) of last token
}
// parseExpr parses a boolean build tag expression.
func parseExpr(text string) (x Expr, err error) {
defer func() {
if e := recover(); e != nil {
if e, ok := e.(*SyntaxError); ok {
err = e
return
}
panic(e) // unreachable unless parser has a bug
}
}()
p := &exprParser{s: text}
x = p.or()
if p.tok != "" {
panic(&SyntaxError{Offset: p.pos, Err: "unexpected token " + p.tok})
}
return x, nil
}
// or parses a sequence of || expressions.
// On entry, the next input token has not yet been lexed.
// On exit, the next input token has been lexed and is in p.tok.
func (p *exprParser) or() Expr {
x := p.and()
for p.tok == "||" {
x = or(x, p.and())
}
return x
}
// and parses a sequence of && expressions.
// On entry, the next input token has not yet been lexed.
// On exit, the next input token has been lexed and is in p.tok.
func (p *exprParser) and() Expr {
x := p.not()
for p.tok == "&&" {
x = and(x, p.not())
}
return x
}
// not parses a ! expression.
// On entry, the next input token has not yet been lexed.
// On exit, the next input token has been lexed and is in p.tok.
func (p *exprParser) not() Expr {
p.lex()
if p.tok == "!" {
p.lex()
if p.tok == "!" {
panic(&SyntaxError{Offset: p.pos, Err: "double negation not allowed"})
}
return not(p.atom())
}
return p.atom()
}
// atom parses a tag or a parenthesized expression.
// On entry, the next input token HAS been lexed.
// On exit, the next input token has been lexed and is in p.tok.
func (p *exprParser) atom() Expr {
// first token already in p.tok
if p.tok == "(" {
pos := p.pos
defer func() {
if e := recover(); e != nil {
if e, ok := e.(*SyntaxError); ok && e.Err == "unexpected end of expression" {
e.Err = "missing close paren"
}
panic(e)
}
}()
x := p.or()
if p.tok != ")" {
panic(&SyntaxError{Offset: pos, Err: "missing close paren"})
}
p.lex()
return x
}
if !p.isTag {
if p.tok == "" {
panic(&SyntaxError{Offset: p.pos, Err: "unexpected end of expression"})
}
panic(&SyntaxError{Offset: p.pos, Err: "unexpected token " + p.tok})
}
tok := p.tok
p.lex()
return tag(tok)
}
// lex finds and consumes the next token in the input stream.
// On return, p.tok is set to the token text,
// p.isTag reports whether the token was a tag,
// and p.pos records the byte offset of the start of the token in the input stream.
// If lex reaches the end of the input, p.tok is set to the empty string.
// For any other syntax error, lex panics with a SyntaxError.
func (p *exprParser) lex() {
p.isTag = false
for p.i < len(p.s) && (p.s[p.i] == ' ' || p.s[p.i] == '\t') {
p.i++
}
if p.i >= len(p.s) {
p.tok = ""
p.pos = p.i
return
}
switch p.s[p.i] {
case '(', ')', '!':
p.pos = p.i
p.i++
p.tok = p.s[p.pos:p.i]
return
case '&', '|':
if p.i+1 >= len(p.s) || p.s[p.i+1] != p.s[p.i] {
panic(&SyntaxError{Offset: p.i, Err: "invalid syntax at " + string(rune(p.s[p.i]))})
}
p.pos = p.i
p.i += 2
p.tok = p.s[p.pos:p.i]
return
}
tag := p.s[p.i:]
for i, c := range tag {
if !unicode.IsLetter(c) && !unicode.IsDigit(c) && c != '_' && c != '.' {
tag = tag[:i]
break
}
}
if tag == "" {
c, _ := utf8.DecodeRuneInString(p.s[p.i:])
panic(&SyntaxError{Offset: p.i, Err: "invalid syntax at " + string(c)})
}
p.pos = p.i
p.i += len(tag)
p.tok = p.s[p.pos:p.i]
p.isTag = true
return
}
// IsPlusBuild reports whether the line of text is a “// +build” constraint.
// It only checks the prefix of the text, not that the expression itself parses.
func IsPlusBuild(line string) bool {
_, ok := splitPlusBuild(line)
return ok
}
// splitGoBuild splits apart the leading //go:build prefix in line from the build expression itself.
// It returns "", false if the input is not a //go:build line or if the input contains multiple lines.
func splitPlusBuild(line string) (expr string, ok bool) {
// A single trailing newline is OK; otherwise multiple lines are not.
if len(line) > 0 && line[len(line)-1] == '\n' {
line = line[:len(line)-1]
}
if strings.Contains(line, "\n") {
return "", false
}
if !strings.HasPrefix(line, "//") {
return "", false
}
line = line[len("//"):]
// Note the space is optional; "//+build" is recognized too.
line = strings.TrimSpace(line)
if !strings.HasPrefix(line, "+build") {
return "", false
}
line = line[len("+build"):]
// If strings.TrimSpace finds more to trim after removing the +build prefix,
// it means that the prefix was followed by a space, making this a +build line
// (as opposed to a +buildsomethingelse line).
// If line is empty, we had "// +build" by itself, which also counts.
trim := strings.TrimSpace(line)
if len(line) == len(trim) && line != "" {
return "", false
}
return trim, true
}
// parsePlusBuildExpr parses a legacy build tag expression (as used with “// +build”).
func parsePlusBuildExpr(text string) Expr {
var x Expr
for _, clause := range strings.Fields(text) {
var y Expr
for _, lit := range strings.Split(clause, ",") {
var z Expr
var neg bool
if strings.HasPrefix(lit, "!!") || lit == "!" {
z = tag("ignore")
} else {
if strings.HasPrefix(lit, "!") {
neg = true
lit = lit[len("!"):]
}
if isValidTag(lit) {
z = tag(lit)
} else {
z = tag("ignore")
}
if neg {
z = not(z)
}
}
if y == nil {
y = z
} else {
y = and(y, z)
}
}
if x == nil {
x = y
} else {
x = or(x, y)
}
}
return x
}
// isValidTag reports whether the word is a valid build tag.
// Tags must be letters, digits, underscores or dots.
// Unlike in Go identifiers, all digits are fine (e.g., "386").
func isValidTag(word string) bool {
if word == "" {
return false
}
for _, c := range word {
if !unicode.IsLetter(c) && !unicode.IsDigit(c) && c != '_' && c != '.' {
return false
}
}
return true
}
var errComplex = errors.New("expression too complex for // +build lines")
// PlusBuildLines returns a sequence of “// +build” lines that evaluate to the build expression x.
// If the expression is too complex to convert directly to “// +build” lines, PlusBuildLines returns an error.
func PlusBuildLines(x Expr) ([]string, error) {
// Push all NOTs to the expression leaves, so that //go:build !(x && y) can be treated as !x || !y.
// This rewrite is both efficient and commonly needed, so it's worth doing.
// Essentially all other possible rewrites are too expensive and too rarely needed.
x = pushNot(x, false)
// Split into AND of ORs of ANDs of literals (tag or NOT tag).
var split [][][]Expr
for _, or := range appendSplitAnd(nil, x) {
var ands [][]Expr
for _, and := range appendSplitOr(nil, or) {
var lits []Expr
for _, lit := range appendSplitAnd(nil, and) {
switch lit.(type) {
case *TagExpr, *NotExpr:
lits = append(lits, lit)
default:
return nil, errComplex
}
}
ands = append(ands, lits)
}
split = append(split, ands)
}
// If all the ORs have length 1 (no actual OR'ing going on),
// push the top-level ANDs to the bottom level, so that we get
// one // +build line instead of many.
maxOr := 0
for _, or := range split {
if maxOr < len(or) {
maxOr = len(or)
}
}
if maxOr == 1 {
var lits []Expr
for _, or := range split {
lits = append(lits, or[0]...)
}
split = [][][]Expr{{lits}}
}
// Prepare the +build lines.
var lines []string
for _, or := range split {
line := "// +build"
for _, and := range or {
clause := ""
for i, lit := range and {
if i > 0 {
clause += ","
}
clause += lit.String()
}
line += " " + clause
}
lines = append(lines, line)
}
return lines, nil
}
// pushNot applies DeMorgan's law to push negations down the expression,
// so that only tags are negated in the result.
// (It applies the rewrites !(X && Y) => (!X || !Y) and !(X || Y) => (!X && !Y).)
func pushNot(x Expr, not bool) Expr {
switch x := x.(type) {
default:
// unreachable
return x
case *NotExpr:
if _, ok := x.X.(*TagExpr); ok && !not {
return x
}
return pushNot(x.X, !not)
case *TagExpr:
if not {
return &NotExpr{X: x}
}
return x
case *AndExpr:
x1 := pushNot(x.X, not)
y1 := pushNot(x.Y, not)
if not {
return or(x1, y1)
}
if x1 == x.X && y1 == x.Y {
return x
}
return and(x1, y1)
case *OrExpr:
x1 := pushNot(x.X, not)
y1 := pushNot(x.Y, not)
if not {
return and(x1, y1)
}
if x1 == x.X && y1 == x.Y {
return x
}
return or(x1, y1)
}
}
// appendSplitAnd appends x to list while splitting apart any top-level && expressions.
// For example, appendSplitAnd({W}, X && Y && Z) = {W, X, Y, Z}.
func appendSplitAnd(list []Expr, x Expr) []Expr {
if x, ok := x.(*AndExpr); ok {
list = appendSplitAnd(list, x.X)
list = appendSplitAnd(list, x.Y)
return list
}
return append(list, x)
}
// appendSplitOr appends x to list while splitting apart any top-level || expressions.
// For example, appendSplitOr({W}, X || Y || Z) = {W, X, Y, Z}.
func appendSplitOr(list []Expr, x Expr) []Expr {
if x, ok := x.(*OrExpr); ok {
list = appendSplitOr(list, x.X)
list = appendSplitOr(list, x.Y)
return list
}
return append(list, x)
}
|