1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build ignore
// Generate the constant table associated with the poly used by the
// vpmsumd crc32 algorithm.
//
// go run gen_const_ppc64le.go
//
// generates crc32_table_ppc64le.s
// The following is derived from code written by Anton Blanchard
// <anton@au.ibm.com> found at https://github.com/antonblanchard/crc32-vpmsum.
// The original is dual licensed under GPL and Apache 2. As the copyright holder
// for the work, IBM has contributed this new work under the golang license.
// This code was written in Go based on the original C implementation.
// This is a tool needed to generate the appropriate constants needed for
// the vpmsum algorithm. It is included to generate new constant tables if
// new polynomial values are included in the future.
package main
import (
"bytes"
"fmt"
"os"
)
var blocking = 32 * 1024
func reflect_bits(b uint64, nr uint) uint64 {
var ref uint64
for bit := uint64(0); bit < uint64(nr); bit++ {
if (b & uint64(1)) == 1 {
ref |= (1 << (uint64(nr-1) - bit))
}
b = (b >> 1)
}
return ref
}
func get_remainder(poly uint64, deg uint, n uint) uint64 {
rem, _ := xnmodp(n, poly, deg)
return rem
}
func get_quotient(poly uint64, bits, n uint) uint64 {
_, div := xnmodp(n, poly, bits)
return div
}
// xnmodp returns two values, p and div:
// p is the representation of the binary polynomial x**n mod (x ** deg + "poly")
// That is p is the binary representation of the modulus polynomial except for its highest-order term.
// div is the binary representation of the polynomial x**n / (x ** deg + "poly")
func xnmodp(n uint, poly uint64, deg uint) (uint64, uint64) {
var mod, mask, high, div uint64
if n < deg {
div = 0
return poly, div
}
mask = 1<<deg - 1
poly &= mask
mod = poly
div = 1
deg--
n--
for n > deg {
high = (mod >> deg) & 1
div = (div << 1) | high
mod <<= 1
if high != 0 {
mod ^= poly
}
n--
}
return mod & mask, div
}
func main() {
w := new(bytes.Buffer)
fmt.Fprintf(w, "// autogenerated: do not edit!\n")
fmt.Fprintf(w, "// generated from crc32/gen_const_ppc64le.go\n")
fmt.Fprintln(w)
fmt.Fprintf(w, "#include \"textflag.h\"\n")
// These are the polynomials supported in vector now.
// If adding others, include the polynomial and a name
// to identify it.
genCrc32ConstTable(w, 0xedb88320, "IEEE")
genCrc32ConstTable(w, 0x82f63b78, "Cast")
genCrc32ConstTable(w, 0xeb31d82e, "Koop")
b := w.Bytes()
err := os.WriteFile("crc32_table_ppc64le.s", b, 0666)
if err != nil {
fmt.Printf("can't write output: %s\n", err)
}
}
func genCrc32ConstTable(w *bytes.Buffer, poly uint32, polyid string) {
ref_poly := reflect_bits(uint64(poly), 32)
fmt.Fprintf(w, "\n\t/* Reduce %d kbits to 1024 bits */\n", blocking*8)
j := 0
for i := (blocking * 8) - 1024; i > 0; i -= 1024 {
a := reflect_bits(get_remainder(ref_poly, 32, uint(i)), 32) << 1
b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32) << 1
fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s */\n", uint(i+64), "", uint(i), "")
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, j*8, b)
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, (j+1)*8, a)
j += 2
fmt.Fprintf(w, "\n")
}
for i := (1024 * 2) - 128; i >= 0; i -= 128 {
a := reflect_bits(get_remainder(ref_poly, 32, uint(i+32)), 32)
b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32)
c := reflect_bits(get_remainder(ref_poly, 32, uint(i+96)), 32)
d := reflect_bits(get_remainder(ref_poly, 32, uint(i+128)), 32)
fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s */\n", i+128, "", i+96, "", i+64, "", i+32, "")
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, j*8, c, d)
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, (j+1)*8, a, b)
j += 2
fmt.Fprintf(w, "\n")
}
fmt.Fprintf(w, "GLOBL ·%sConst(SB),RODATA,$4336\n", polyid)
fmt.Fprintf(w, "\n /* Barrett constant m - (4^32)/n */\n")
fmt.Fprintf(w, "DATA ·%sBarConst(SB)/8,$0x%016x\n", polyid, reflect_bits(get_quotient(ref_poly, 32, 64), 33))
fmt.Fprintf(w, "DATA ·%sBarConst+8(SB)/8,$0x0000000000000000\n", polyid)
fmt.Fprintf(w, "DATA ·%sBarConst+16(SB)/8,$0x%016x\n", polyid, reflect_bits((uint64(1)<<32)|ref_poly, 33)) // reflected?
fmt.Fprintf(w, "DATA ·%sBarConst+24(SB)/8,$0x0000000000000000\n", polyid)
fmt.Fprintf(w, "GLOBL ·%sBarConst(SB),RODATA,$32\n", polyid)
}
|